
A Scalable Monitoring Approach for Service Level Agreements Validation

Mun Choon Chan Yow-Jian Lin

Networking Research Laboratory
Bell Laboratories, Lucent Technologies

fmunchoon,yjling@research.bell-labs.com

Xin Wang

Electrical Engineering Department
Columbia University

xwang@ctr.columbia.edu

Abstract

In order to detect violations of end-to-end service level
agreements (SLA) and to isolate trouble links and nodes
based on a unified framework, managers of a service
provider network need to gather Quality of Service (QoS)
measurements from multiple nodes in the network. For
a network carrying over thousands of flows with end-to-
end SLAs, the information exchanged between network
nodes and a central network management system (NMS)
could be substantial. Moreover, in situations where only
a small number of flows violate their respective SLAs, sim-
ple polling mechanisms can lead to huge unnecessary over-
head in identifying these ill-behaved flows. In this work, we
propose an algorithm calledARM (Aggregation and Re-
finement based Monitoring) to reduce the amount of infor-
mation exchange.ARM uses a histogram-based dynamic
QoS data aggregation/refinement technique at each network
node and a reasoning engine at the NMS to minimize the
amount of data exchange between network nodes and NMS.
ARM not only reduces unnecessary reporting through se-
lective refinement, it also performs well across a wide range
of traffic loads. Our simulation results show thatARM is
at least an order of magnitude more efficient than a simple
polling scheme. It also outperforms two centralized, highly
optimized schemes that cannot be implemented in practice.

1 Introduction

This paper describes a scalable framework for monitor-
ing end-to-end Quality of Service (QoS) with an emphasis
on detecting flows that have violated their respective Ser-
vice Level Agreement (SLA). QoS guarantee has become
a highly desirable feature in Internet service offering. To
meet an SLA offered to a customer, an Internet Service
Provider (ISP) must provision and monitor the usage of
its network resources. Traditionally ISPs have been over-

provisioning resources to meet their SLAs, an approach that
is not cost effective. Recent works on resource allocation
[9] and [5] that build on both deterministic and statistical
models have yielded interesting results. Nevertheless, the
provision based on these results is still conservative.

The measurement-based approach for managing re-
sources is becoming an attractive alternative in ensuring
QoS offering [6]. It is based on a basic monitoring-control
loop. With a roughly-estimated initial provisioning, the
approach relies on constant interactions between measure-
ment and provisioning adjustment. The main advantage of
measurement-based approach is its dynamic adaptation to
changes in resource needs. On the other hand, the approach
poses some challenges. One of the challenges is the effi-
cient collection of measurement data, in particular, when
managing a large network.

The mechanisms for collecting measurement data vary,
depending on the amount and the type of data transmitted.
We assume that in an ISP’s network, measurements are col-
lected at routers and forwarded to a network management
system (NMS). The amount of measurement data forwarded
from a router to the NMS could beexhaustive: a router for-
wards all measurement data collected from all flows passing
through it to the NMS, or it could beselective: a router for-
wards only a subset of the measurement data as needed. The
exhaustive data collection easily yields a complete picture
but at the cost of excessive overhead, whereas the selective
one enables scalability with added complexity in selecting
proper subsets of information.

The type of measurement data conveyed to the NMS
could beend-to-end: QoS data are accumulated along the
route from the source to the destination before being for-
warded to the NMS. Alternatively, the data conveyed could
be hop-by-hop: QoS data are collected on a per-hop basis
and the NMS must assemble the received data to determine
the end-to-end QoS. End-to-end data tend to provide more
accurate measurement on an end-to-end basis, but reveal
less information in helping NMS locate performance degra-
dation in intermediate nodes. On the other hand, hop-by-

hop data can be accurate in some QoS measurement such as
loss rate, but can introduce inaccuracies in other measure-
ment such as delay. Nevertheless, since the NMS receives
per-hop data, it can easily identify the problematic links in
ill-behaved flows.

In accordance with network management terminologies,
we refer to the object that collects and sends measurement
data at each router as anagent. We also use the terms NMS
andmanagerinterchangeably.

2 Problem Statement and Key Innovations

The main focus of this paper is the design of an effi-
cient and scalable monitoring algorithm that is capable of
detecting QoS violation in a large network. The monitoring
approach proposed is based onselective, hop-by-hopmea-
surement data. The main technique used isdata aggrega-
tion.

We assume that the network of an ISP consists of a large
number (> 100) of network devices. Each of these devices
supports a large number of flows (> 1; 000) and is capable
of collecting detail information concerning all flows of in-
terest. The kind of flows concerned here, called SLA flows,
is between any two end points in an ISP network, and is
an aggregated traffic governed by an SLA. We classify each
SLA flow by its source, its destination, and its SLA. SLA
flows are long-lasting; once an SLA flow is provisioned, it
usually stays up for an extended period of time.

A naive approach to monitoring the performance of SLA
flows is to collect performance measurements of each flow
from every network device. While this approach may be
reasonable for a small network, it is inefficient, not scal-
able, and can cause severe overload as well as congestion at
the network manager during a monitoring cycle. Data ag-
gregation is one approach to achieve scalable monitoring.

The main objective of data aggregation is to use a con-
trolled amount of information to convey a close approxi-
mation of a set of data. By aggregation we mean to use
a value range (minimumand maximumvalues) to repre-
sent the many QoS measurements associated with a set of
flows. In order for the manager to properly extract informa-
tion from aggregated data, it needs to know how each agent
aggregates QoS measurements. In particular, the manager
must figure out the mapping between each aggregated data
point and its corresponding set of flows.

Given the measurement data of a set of flows, we refer to
the problem of partitioning the set for aggregation as aflow
groupingissue. Alternatives exist to address the flow group-
ing issue, each with different trade-offs. One way is to stat-
ically assign flows to groups. However, without the proper
means to predict performance similarity among flows, the
static group assignment tends to yield poor approximation.
Another way is to let both the manager and agents use the

same random group assignment function (with same ran-
dom seed each time) to add dynamics. Nevertheless, with-
out taking into account the real measurement value distri-
bution, this approach too could fail badly. A third approach
is to let each agent groups flow measurements dynamically
based on their values and notify the manger each group’s
membership along with the aggregated data. One major
problem with this approach is that the overhead of convey-
ing such membership is now in the same order as that of
conveying individual flow data, which defuncts the purpose
of data aggregation.

The key idea of the proposed monitoring approach,
calledARM (Aggregation and Refinement based Monitor-
ing), is based on a dynamic hierarchical aggregation mech-
anism which allows selective incremental refinement on re-
porting details. The approach assumes that NMS is aware
of the route for each individual SLA flow, a commonly
available information through VPN or MPLS provisioning.
The proposed approach also assumes that NMS and agents
maintain the same ordering view of SLA flow identifica-
tions. After an agent has collected QoS measures of all its
flows, the agent forwards an approximation of these mea-
sures to the NMS as a histogram with a small number of
bars. The NMS then constructs a view of the QoS that each
SLA flow is experiencing based on the relevant per-hop val-
ues represented in these histograms. The NMS will ask
agents to refine portions of their histograms only if it needs
more precise values to determine if some flows in those por-
tions have violated their respective SLAs.

ARM exhibits several key advantages. With its dynamic
histogram-based data aggregation it requires minimum data
exchange between agents and NMS in creating a coarse
but informative picture of the network status. Its selective
refinement procedure reduces unnecessary data reporting.
More importantly,ARM performs well across a wide range
of traffic loads.

We conducted extensive simulations to study the perfor-
mance ofARM in terms of monitoring overhead reduction.
In particular, we studied its performance under various net-
work load, aggregation granularity, and aggregation selec-
tion functions. Note that the reduction of data exchange
overhead between network manager and agents comes at
the cost of additional aggregation computation at network
devices. Given that modern routers are beginning to provide
hardware-assisted packet accounting and have large pro-
cessing capabilities, this appears to be a reasonable trade-
off.

The monitoring algorithm proposed here is independent
of other SLA management mechanisms, such as admission
control and bandwidth/buffer allocation schemes. The ag-
gregation and refinement are also independent of the QoS
parameter being monitored; the NMS maintains its respon-
sibility for interpreting the data end-to-end.

This document is organized as follow. Section 3 presents
our monitoring framework,ARM , followed by the simula-
tion results in Section 4. Section 5 discusses related work,
with concluding remarks in Section 6.

3 The Algorithm

This section describes the proposed monitoring algo-
rithm - ARM . We first outline the QoS measures of in-
terests for each SLA flow and the violation conditions
associated with them. After that, we present the al-
gorithm, discussing howARM incorporates a novel dy-
namic histogram-based aggregation technique for exchang-
ing measurement data, how the NMS interprets the aggre-
gated data, how the refinement takes place, and when the
algorithm terminates.

3.1 QoS Measures for SLA Flows

Typical parameters of a Service Level Agreement (SLA)
for a flow i include: average throughput (SLAi

thr); end-
to-end packet loss ratio (SLAi

loss); and average end-to-end
packet delay (SLAi

delay). Out of these three parameters,
our work has centered around the loss ratioSLAi

loss and
the delaySLAi

delay . We assume that routers at the edge of
a network can perform policing function to ensure that each
flow will not exceed a certain peak rate and burst size while
allowing it to enter the network at no more than the average
throughputSLAi

thr.
The routers in an ISP network collect measurements of

SLA flows passing through them. As mentioned,ARM is
based on hop-by-hop monitoring. The router at hopj of an
SLA flow i collects its local measurements:

� Loss Ratio (Localijloss) = packet drop count of flowi at
hopj / packet arrival count of flowi at hopj;

� Average Delay (Localijdelay) = total packet delay sum
of flow i at hopj / packet departure count of flowi at
hopj

Packet delay at a router is defined as the time difference
between a packet entering and leaving the router. Similarly,
the end-to-end packet delaySLAi

delay is the time differ-
ence between a packet entering an ingress router and leav-
ing an egress router. Here we assume zero transmission
delay. With the current technology, a router can compute
this time difference by tagging all incoming packets with
a 16-bit timestamp with 1ms resolution. Such a timestamp
allows packet delay for up to 65 seconds, which should be
sufficient for most, if not all, reasonable router performance.
Note that this also assumes that the clocks on the interface
cards are synchronized to within 1ms. If a 16-bit timestamp
is too expensive, a 8-bit timestamp with 2ms resolution is

another option, which supports up to 512ms packet delay.
This alternative may be sufficient for some routers depend-
ing on their queuing discipline and buffer size.

Given the local loss ratio and average delay measure-
ments,Localijloss andLocalijdelay , of an SLA flowi at each

hopj, assuming thatLocalijlossandLocalijdelay are small for
all i andj, we define flowi’s end-to-end measurements as
follows:

EtoEi
loss =

X

j

Localijloss (1)

EtoEi
delay =

X

j

Localijdelay (2)

It follows that a flowi meets its SLA requirements if
EtoEi

loss � SLAi
loss andEtoEi

delay � SLAi
delay .

3.2 ARM , Aggregation and Refinement-based
Monitoring

ARM addresses the scalability and overhead issues in
forwarding local measurements to the NMS for SLA viola-
tion detection. Monitoring sessions are performed period-
ically (or on demand). In order to detect and correct vio-
lations in time, the interval between periodically performed
monitoring sessions should be smaller than the SLA mea-
suring period. EachARM session operates based on the
following steps:

1 Each agent computes and forwards an aggrega-
tion of local measurements to the manager;

2 The manager processes the aggregated data to de-
tect flows violating their SLAs;

3 While the violation status of some SLA flows is
still in doubtdo

4 The manager requests, and the agents respond
with refined aggregated data;

5 The manager recheck the violation status based
on the refined data;

ARM consists of three major components: histogram-
based aggregation, violation detection, and selective refine-
ment. It uses the histogram-based aggregation in Steps 1
and 4, the violation detection procedure in Steps 2 and 5,
and the selective refinement in Step 4. Each session ends
when the manager is clear about the violation status of every
SLA flow. The following subsections discuss these compo-
nents in detail.

3.2.1 Histogram-based Aggregation

We propose a histogram-based aggregation technique to
convey an approximation that has reasonable overhead and

yet captures the dynamics in QoS measurements. More-
over, the technique provides adjustable parameters to adapt
to changes in network load (and thus the number of flows
violating their SLAs). We assume that the manager and
each agent share information about the SLA flows running
through the agent and their identifiers. Changes on such
shared information occur at a much slower time scale than
the monitoring session. For each QoS parameter such as
loss ratio or average delay, this information serves as the
basis of creating an ordered list of values according to the
ascending order of flow identifiers.

Histogram is well suited to approximate a curve, which
in our case is a series of QoS values sorted according to the
ascending order of flow identifiers. InARM each segment
of a histogram has both an upper bound and a lower bound
that represent the maximum and the minimum QoS value of
the flows included in the segment. We use three values to
encode each segment in a histogram, the upper boundU , the
lower boundL, and the lengthS (i.e., the number of flows
in the segment). When we merge two consecutive segments
i andi + 1, the resulting segmentinew carries the encod-
ingUinew = max(Ui; Ui+1), Linew = min(Li; Li+1), and
Sinew = (Si + Si+1). We also define

difference(i; i+ 1) =

[(max(Ui; Ui+1)�min(Li; Li+1)) � (Si + Si+1)]

�[(Ui � Li) � Si]� [(Ui+1 � Li+1) � Si+1] (3)

That is,difference(i, i+1)represents the increase in the area
of uncertainly after merging segmentsi andi+1. In general,
the more segments there are in a histogram, the better the
approximation is, though at the cost of additional overhead.

Histogram Construction Algorithm
Input Parameters: a list of M data points, an
initial aggregation thresholdT , and the maxi-
mum number of segmentsN

1 Initialize a histogram ofM segments, where each
segment corresponds to 1 data point. The upper
and lower bound of each segment is the data point
itself, and the segment length is 1.

2 Merge neighboring segmentsi and i + 1 if
(Uinew � Linew) � T . Let the number of seg-
ments remained after this step beC.

3 while C > N do
4 Select a segmentk such thatdifference(k, k+1)

is the smallest;
5 Merge segmentk andk + 1 and subtractC by

one;

Figure 1(a) shows a graphical representation of applying
our histogram construction algorithm to a set of 140 values.
TheN in this case is 8.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140

S
LA

 V
al

ue
s

Flow Identifier

Max0-139
Min0-139

(a) Example of Histogram Approximation - First Iteration

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140

S
LA

 V
al

ue
s

Flow Identifier

Max36-139
Min36-139

Max0-35
Min0-35

(b) Example of Histogram Approximation - Second Iteration

Figure 1. Example of Histogram Approxima-
tion and Refinement in ARM

In general, when the differences among data points are
small enough, it is more efficient to merge the histograms
in the initial phase. This is particularly true, for example,
when flows are all having minimum loss ratio or similar
average delay. This merging process is performed in Step
2, where the thresholdT define thesmall enoughdifference.

Note that this algorithm limits the number of output seg-
ments to be at mostN . The choice ofN impacts both the
data exchange overhead as well as the number of iterations
needed to complete a session.

3.2.2 Violation Detection

Once the manager receives histograms from agents (one his-
togram per QoS parameter from each agent), it must inter-
pret the aggregated data to detect flows that have violated
their respective SLAs. The following describes how the
manager makes such decisions.

To extract the upper and lower bound QoS value, say the
loss ratio, of an SLA flow at an agent is fairly straightfor-
ward. The histogram sent by each agent to the manager
approximates a curve, of which the flow identifier is the x-
axis and the QoS value is the y-axis. Note that the manager
knows exactly the set of flows passing through each agent
and their identifiers. Hence, the manager knows the index of
the x-axis. With the triplet(U;L; S) for each segment, the
manager can compute from left to right along the x-axis the
upper and lower bound QoS values of each flow reported in
the histogram.

We distinguish anexactvalue from abound for each
flow; A flow has an exact value if its upper bound and lower
bound are the same. By applying equations 1 and 2 each
twice, first using the per-hop upper bound and then the per-
hop lower bound, the manager derives the upper and lower
bound of the estimated end-to-end loss and delay for each
SLA flow.

Let EtoEi
x(upper) and EtoEi

x(lower) be the upper
and lower bound respectively of the QoS parameterx
(loss or delay) for SLA flowi. EtoEi

x(exact) exists if
EtoEi

x(upper) = EtoEi
x(lower). The manager acts in

one of the following five cases listed under two broad cate-
gories:

� EtoEi
x(exact) exists, then

– Case I:EtoEi
x(exact) > SLAi

x.
Flow i has violated itsx QoS. The manager must
take immediate actions to ease the problem.

– Case II:EtoEi
x(exact) � SLAi

x.
Flow i is fine for now.

� EtoEi
x(exact) does not exist, that is, some of the re-

ported values for flowi are SLA bounds, then

– Case III: EtoEi
x(upper) > SLAi

x �
EtoEi

x(lower).
The manager cannot infer anything definitely in
this case.

– Case VI:EtoEi
x(lower) > SLAi

x.
Flow i is definitely in violation of its SLA.

– Case V:SLAi
x � EtoEi

x(upper).
Flow i is fine for now.

In cases II and V, depending on how close it is to a viola-
tion, the manager may choose to take some actions such as
re-routing the flow. In general, since the manager has per-
hop information, it can spot problems at some hops even
when the end-to-end measure is fine.

As the objective is to detect possible SLA violations, the
only set of flows that require further investigation are those
in Case III. The following subsection describes our refine-
ment algorithm.

3.2.3 Selective Refinement

The purpose of our selective refinement approach is to re-
fine the coarsenetwork status pictures that the manager
constructed based on reported histograms. As long as some
flows are in Case III, the manager must selectively ask
agents to refine segments of their reported histograms.

Manager Selective Request Algorithm
Input Parameters: a listFS (jFSj = k) of case
III flows in the current round, the maximum num-
berNpoll of flow/segment identifiers to be sent
back to an agent, and the current histogramH
reported by the agent

1 LetCS = fsij(FS\si) 6= ;; si 2 Hg be the set
of segments inH each of which contains at least
one flow inFS, jCSj = m;

2 if k � Npoll then
3 Poll the agent for the exact QoS values of flows

in FS;
4 else
5 Ask the agent to refine the segments in some

setRS � CS, whereRS = CS if m � Npoll.

The strategies for choosingRS fromCS in Step 5 vary.
We currently pick the firstm segments ofCS whenm >
Npoll. The parameterNpoll allows the manager to limit
the communication overhead between the manager and the
agents. The manager can also use it as a threshold to decide
whether it is time to poll an agent for exact flow data in-
stead, as we have shown in Steps 2–3. Note that ifCS = ;,
then the manager does not poll the corresponding agent.

When the manager does polling in Step 3, the agent sim-
ply replies with the exact values for the flows listed inFS.
Otherwise, the agent performs the following algorithm to
refine the histogram.

Agent Selective Refinement Algorithm
Input Parameters: a list of segmentsRS in the
current histogram to be refined, and the maxi-
mum numberNi of new segments to be reported
at roundi

1 Use heuristics to select a numberbk for refining
segmentsk 2 RS into bk new segments, where
1 � k � jRSj, and

PjRSj
k=1 bk � Ni;

2 Apply Histogram Construction Algorithm to
each segmentsk and create a set of new segments
fskij1 � i � bkg;

3 Add a triplet(Uki; Lki; fki) to a reply message
for each newly created segmentski;

4 Send the reply message to the manager;

Note that in our implementation scheme the rightmost

flow identifier in a segment serves as the segment identifier.
We also use it to signal segment boundary, instead of using
the length of each segment. Hence, in Step 3 abovefki is
the rightmost flow id ofski.

The choices ofbk in Step 1 are not crucial. It is more im-
portant to strike a balance between maximum increases in
total number of segments (so that some flows can get a best
approximation quickly) and fair distribution of refinement
to all segments (so that more Case III flows can get some
value refinement).

For example, assume that a histogram has N segments,
all need refinement. Furthermore, assume that an agent is
due to send back2N triplets in reply. Should the agent
choose to evenly allocate 2 to each existing segment, then
the manager gets a new histogram of 2N segments, with a
moderate refinement on each flow value. However, should
the agent choose to refine only one existing segment, as-
sume it is possible, then after receiving2N triplets from
the agent the manager now has an updated histogram of
N + (2N � 1) = 3N � 1 segments, with no refinement
for other segments. One example of choosing a set ofbk is
given in Section 4.

Figure 1(b) shows the result (of 15 segments total) af-
ter refining the first segment of the histogram in Figure 1(a)
into 8 additional segments. Observe that in order to recon-
struct therefinedhistogram, the manager only needs the 8
triplets(U1i; L1i; f1i), 1 � i � 8 from an agent.

3.2.4 Summary

Here is a recapitulation of each monitoring session in our
proposed framework. To initiate a session, either the man-
ager starts polling all agents or the agents periodically send
their initial histogram.

1 Each agent uses the Histogram Construction Al-
gorithm to generateN1 segments and sends the
results to the manager;

2 The manager applies the analysis outlined in Sec-
tion 3.2.2 to identify a set of Case III flows;

3 While some Case III flows existdo
4 The manager decides whether to poll or to ask

for refinement based on the Manager Selective
Request Algorithm;

5 Each agent that receives a refinement request
sends back a response based on the Agent Se-
lective Refinement Algorithm;

6 The manager re-check the violation status of
the Case III flows based on the refined data;

7 The managerreturns all the flows being classi-
fied as Case I and Case VI, i.e., flows with SLA
violations;

Since we use a triplet to encode each segment, there is
intrinsic 50% overhead if we would have to report each data
point as a segment versus as a (flowid, value) pair.

Corollary 1 Let the number of flows to be reported by an
agent beM and the maximum number of segments re-
ported at each round beN . In the worst case,ARM needs
(2M=N) � 1 rounds to complete a session, and the total
overhead is3(2M �N).

Here the worst case assumes that we evenly divideN to
all segments that need refinement. WhenM = N , ARM
finishes in one round, and the overhead is3M compared to
2M of a naive method that reports (flowid, value) pairs di-
rectly. AsN becomes smaller, not onlyARM needs more
rounds to complete a session, the worst case overhead ap-
proaches6M . However, as we will illustrate in the next
section, our experimental results show thatARM preforms
much better on average. Due to information aggregation
ARM even outperformed some ideal but unrealistic intelli-
gent schemes that only report flows with SLA violation.

4 Experimental results

In order to evaluate the effectiveness of the proposed al-
gorithm in monitoring the service performance of a network
with QoS guarantees, we conducted extensive experiments
in a simulated network domain. The result reported in this
section addresses the following issues:

� the advantage of using the proposed monitoring algo-
rithm in terms of overhead reduction;

� the effect of changingNi, whereNi is the maximum
number of new segments each agent reports at roundi
(cf. the Agent Selective Refinement Algorithm).

4.1 Testbed Setup

As a first step test, the experiments were carried out over
a randomly generated 30 nodes topology shown in Fig. 2.

The topology is organized as a single three level hierar-
chy. The highest level is the core routers consisting of nodes
0, 1 and 2. The next level routers are nodes 6, 7, 12, 15, 16,
20, 23, 24 and 28. The rest are edge routers.

All links are duplex. The one-way bandwidth of each
link depends on the type of routers it connects at both ends.
It is 20 Mb/s for links connecting two core routers, 15 Mb/s
for ones between a core and a next level router, and 10 Mb/s
for the rest.

An on-off model is used to generate traffic with differ-
ent average rate and burst size. Leaky bucket is used for
policing at the edge routers. Input traffic is selected from
the four classes listed in Table 1, which shows the leaky

0

2 1

6 7 15 16

28

24

23

12

20

3

4

5
8 9

17

10

11

13

14

19 18
2122

27

26

25

29

Figure 2. Simulation network topology

bucket parameters associated with each traffic class used in
the simulations. All flows in the simulation have the same
SLA, which allows average end-to-end delay of 150ms and
loss ratio of 0.02. Within the network, packets are sched-
uled using the FIFO discipline.

Class 1 Class 2 Class 3 Class 4
r (kb/s) 128 128 64 64
busy time (s) 0.3 0.5 0.3 0.5
idle time (s) 0.7 0.5 0.7 0.5

Table 1. Traffic parameters for the four classes
used in the simulations

There is a local network management agent on each
router and a centralized network manager. For simplicity, in
our simulation we placed a management link between each
node and the central network manager. Loss ratio and aver-
age delay were collected at each network node and samples
of the statistics were reported to the manager periodically
based on the algorithm presented in Section 3.

All experiments are performed using ns-2.

4.2 Random Load Generator

We developed a random load generator to generate net-
work traffic with various loading conditions. The load gen-
erator mimics admission control procedures in practice. It
runs a flow generation loop. For each iteration in the loop, it
randomly selects two edge routers as the source-destination
pair for a flow, and selects traffic class for the flow. The
generator then attempts to “admit” the flow by securing its
resources (in this case, bandwidth) along its route.

To create overload situations on some number of links,

flows are admitted even when there is insufficient link band-
width along portion of the path. Nevertheless, a list of links
that have been “over-subscribed” is maintained. The flow
generation loop terminates when the number of admitted
flows is at leastX and the number of over-subscribed links
is more thanY .

The above steps result in reasonable traffic pattern vari-
ations, but only within a range of overload conditions. In
order to generate a wide range of network load, where the
number of flows violating their SLAs varies from none to al-
most entire set of flows, admission control is performed us-
ing thevirtual bandwidth of each link. By sizing the virtual
bandwidth of all links up and down by multiplying the ac-
tual link bandwidth by a constant factor, the generator now
terminates when it has used up the virtual bandwidth from
more thanY links (and admitted more thanX flows, too).

The constant sizing factor reflects how willingly an ISP
wants to risk SLA violations. The smaller the factor, the
more conservative the admission control is, and the lesser
SLA violations the network may observe.

We setX = 1000 andY = 8 for all traffic loads gener-
ated in our experiments. The virtual bandwidth sizing factor
is from 0.5 to 1.5.

4.3 Comparison of Monitoring Performance

The performance of our monitoring scheme is compared
to 2 centralized off-line schemes which are expected to per-
form well. In both schemes, it is assumed that all flow status
are known by a singlevirtual management agent and this
virtual agent only sends to the network manager data relat-
ing to flows with SLA violations. Inscheme-1, for each
flow with SLA violation the virtual agent sends to the man-
ager QoS data of the flow collected at all hops. Inscheme-2,
instead of sending data collected at all hops for those flows
with SLA violations, only sufficient information is sent such
that the manager can confirm their violation status. That is,
if there are 3 hops and a significant loss is occurring only
on a single congested link, then only the loss ratio on that
link is sent. This is the minimum information required to
identify a SLA violation without resorting to some form of
aggregation.

Comparison is based on the total count of all data items
sent from the agents to the manager. Each data item, regard-
less of its type, has a count of 1. For the idealized schemes,
each update consists of 2 data items, one for the flow iden-
tifier and the other for the measured value. ForARM , the
overhead for one update is 3 (maximum value, minimum
value and flow identifier). In addition, a minimum overhead
of 2 data items is incurred in allARM message exchanges
to indicate the number of delay and loss updates.

Let I be the set of flows with loss violation in a session,
andJ be the set of flows with delay violation in the same

session.

� For scheme-1, the count per session is2 �
(
P

i2I Hopi +
P

j2J Hopj), whereHopi is the hop
count of flowi.

� For scheme-2, the count per session is2 �
(
P

i2I Mini+
P

j2J Minj) whereMini is the min-
imum number of hops to decide if violation occurs in
flow i.

� For ARM , the count per session is
PR

r=1(2 +PK

k=1(3� (H loss
rk +Hdelay

rk)+2� (P loss
rk +P delay

rk)))
whereR = number of rounds,K = number of links,
and, for each linkk in roundr, H loss

rk = number of
new loss histogram segments,Hdelay

rk = number of
new delay histogram segments,P loss

rk = number of loss
polling updates, andP delay

rk = number of delay polling
updates.

For comparison, a simple polling approach requires a to-
tal count of4 � (

P
i2F Hopi), whereF is the entire set

of flows, andHopi is the hop count of flowi. Each entry
consists of the two pairs (flowid, loss value) and (flowid,
delay value). Note that if the manager and agents share the
sorted list of flows, as we have assumed forARM , a better
polling approach will be to send only the sorted QoS data
without flow identifiers. Nevertheless, it will only change
the normalized values reported in our experimental results,
but not the relative measures betweenARM and the other
two idealized schemes.

In all the experiments,bk in Step 1 of theAgent Selec-
tive Refinement Algorithm described in Section 3.2.3 is
chosen as follows.

We first assignbk to each segmentsk, where bk =

max(bjskj=4c; 2). If
PjRSj

k=1 bk > Ni, we randomly de-
crease somebk so as to comply with the restriction thatPjRSj

k=1 bk � Ni. In any case,bk could be reduced to 0 (i.e.,
no refinement on segmentsk), but must not be set to 1. On
the other hand, if

PjRSj
k=1 bk < Ni, we randomly increase

somebk till the sum equalsNi.
All experiments ran for 100 seconds simulation time ex-

cluding a 5 seconds warmup time. The performance of var-
ious algorithms are evaluated by running each algorithm 50
times using different traffic loads generated by the random
load generator. The minimum number of flows in an ex-
periment is 1000, the maximum is 1864 and the average
is 1306. The minimum total data item count using simple
polling in an experiment is 12944, the maximum is 25868
and the average is 18344.

In the first experiment, the parameterNi is fixed at 16
for the entire simulation run.Npoll is fixed at 32 for all
experiments.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Scheme-1 Normalized Overhead

ARM, Ni=16
Scheme-1
Scheme-2

(a) Monitoring overhead incurred

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

of

 It
er

at
io

ns

Scheme-1 Normalized Overhead

ARM, Ni=16

(b) Number of Iterations Required forARM forNi = 16

Figure 3. Performance Comparison between
Scheme-1, Scheme-2 and ARM

The measurement overhead of all three schemes are nor-
malized by dividing the monitoring data item count by the
total count required in a simple polling approach. That
is, if the count for simple polling is 1000 and the count
for ARM is 100, the normalized overhead forARM is
100=1000 = 0:1.

Figure 3 shows the performance of Scheme-1, Scheme-2
andARM relative to that of Scheme-1 for the same traffic
load. The x-axis is the normalized Scheme-1 overhead, and
the y-axis is the respective normalized overhead of Scheme-
1, Scheme-2, andARM . The choice of Scheme-1 normal-
ized overhead for the x-axis serves as an indication of the
number of SLA violations in the network, though the rela-
tionship is not exact because the monitoring overhead also
depends on the number of hops the flows go through. To
make the data easier to read, for each scheme we display
only the mean value of the data within each 0.05 segment
along the x-axis. In other words, the value depicted at

x + :025 corresponds to the mean of all values collected
within the segmentx to x + :05. As an example, in Figure
3(a) the set of traffic loads that generates average normal-
ized overhead between0:45 to 0:5 using Scheme-1 gener-
ates average normalized overhead of 0.09 usingARM with
Ni = 16.

When there is no SLA violation,ARM incurred a min-
imum normalized overhead of 0.02 whereas Scheme-1 and
Scheme-2 have no overhead. However, as the number of
SLA violations increases, normalized overhead forARM
increases slowly and performs better than Scheme-1 for
normalized overhead larger than 0.06. Beyond normal-
ized overhead of 0.15,ARM performs even better than
Scheme-2. This may come as a surprise since Scheme-1
and Scheme-2 are highly optimized schemes with very low
redundant information exchanged. The difference is that in
these two cases, exact values are exchanged. On the other
hand,ARM provides only bounds on these values and can
thus aggregate many values into a single segment. Another
advantage ofARM is that as the number of violations in-
creases, the normalized overhead does not increase linearly
with the number of violations. It is due to the fact that once
the lower bound of the QoS values violates the SLA, the
computation can terminate and there is no need to obtain
the actual values.

Figure 3(b) shows the average number of iterations it
takes beforeARM terminates using the same x-axis seg-
ments and y-axis averages. When the number of violations
is small, it takes much longer to detect all violations because
it is harder to aggregate values and a much finer picture of
the network is needed before SLA validation can be com-
pleted. However, as the number of violations increases, it
becomes easier to detect violations as aggregation ofsimi-
lar values becomes more common.

Figure 4(a) shows the improvement ofARM over
Scheme-1 and Figure 4(b) shows the the improvement of
ARM over Scheme-2 forNi set to 4, 16, 64 and 128. Fig-
ure 5(a) shows the average number of rounds forNi set to
4, 16, 64 and 128. In these experiments,Ni is fixed dur-
ing a single simulation run. The same segment size of 0.05
is used on the x-axis, so is the segment mean value on the
y-axis.

Figure 4(a) and 4(b) show that the overhead incurred by
ARM increases withNi. This is because whenNi is large,
the number of measurements collected in each round may
be much more than what is needed. The extent of such ex-
cessive measurement increases asNi gets larger. The av-
erage overhead incurred whenNi = 128 is about twice the
amount of overhead incurred whenNi = 16. A smallerNi

is more efficient. On the other hand, whenNi is too small,
the amount of new information collected in each round may
be too little and many rounds are needed before the algo-
rithm can terminate. In Figure 5(a), the average number of

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Scheme-1 Normalized Overhead

N=4
N=16
N=64

N=128
Scheme-1

(a) Overhead incurred by Scheme-1 andARM

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Scheme-2 Normalized Overhead

N=4
N=16
N=64

N=128
Scheme-2

(b) Overhead incurred by Scheme-2 andARM

Figure 4. Comparison of Scheme-1, Scheme-
2 and ARM for Ni = 4,16,64 and 128

rounds required whenNi = 4 is about 10 times that required
whenNi = 128. A largerNi can thus lead to much shorter
termination time.

The results can be summarized as follow:

� ARM performs better than Scheme-1 and Scheme-2
in most cases except where the number of violations is
very low. This is true for allNi shown.

� A small Ni reduces the normalized overhead but in-
creases the number of round required. The reverse is
also true.

The trade-off in our scheme is between data collection
overhead and termination time. Figure 5(b) shows a plot
of the normalized overhead vs. number of round for various
values ofNi that clearly illustrates this trade-off. The figure
indicates that decreasingNi decreases the basic overhead of
the algorithm but at the same time increases the number of

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

of

 It
er

at
io

ns

Scheme-1 Normalized Overhead

N=4
N=16
N=64

N=128

(a) Number of Rounds Required forARM

0

2

4

6

8

10

12

14

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

of

 It
er

at
io

ns

Normalized Overhead

N=4
N=16
N=64

Dynamic
N=128

(b) Trade-Off of Overhead vs Convergence Time

Figure 5. Performance of ARM and Dynamic
ARM for Ni = 4,16,64 and 128

rounds it takes for the algorithm to converge. On the other
hand, increasingNi to 128 keeps the number of rounds to a
very small value but increases the normalized overhead. In
addition, since more data are sent in a single cycle, a larger
Ni increases the load at the network manager. Thus,Ni

should not be set beyond some threshold in order to avoid
degeneratingARM into a simple polling scheme.

Given the trade-off characteristics ofARM , a dynamic
version ofARM is evaluated. In dynamicARM , a small
Ni of 16 is used in the first round in order to reduce the
risk of over-sampling. If a second round is required,Ni is
increased to 32. If a third or subsequent round is required,
Ni is set to 128 so that the algorithm will terminate quickly.
The performance of this dynamicARM is shown in Figure
5(b) and Figure 6.

The results show that dynamicARM performs much bet-
ter thanARM with Ni = 16 andNi = 128 in terms of the
combine performance of iteration and overhead. Dynamic

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Scheme-1 Normalized Overhead

N=4
N=64

Dynamic
N=128

(a) Overhead Comparison

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

of

 It
er

at
io

ns

Scheme-1 Normalized Overhead

N=16
N=64

Dynamic
N=128

(b) Number of Rounds Comparison

Figure 6. Performance Comparison of Dy-
namic ARM and ARM for Ni = 4,16,64 and
128

ARM is similar in performance toNi = 64. Compare to
ARM with Ni = 64, dynamicARM terminates faster when
the overload is low to moderate due to the use of a largeNi

in later rounds. However, when the overload is high, it tends
to over-sample and incurs a higher overhead.

Before concluding this section, it is important to point
out that while the performance ofARM is fairly robust over
a wide range of traffic load, the quantitative result ofARM
may change if the total number of flows in the network in-
creases by more than an order of magnitude. Hence, if the
number of flows is much larger, largerNpoll andNi may be
more appropriate than the values given in this section.

5 Discussion and Related Work

The term, service level agreement, is still subject to def-
inition. Not only the choice of QoS parameters is a fre-

quent debate, the ways that these parameters are measured
or interpreted can vary significantly as well. For example,
different lengths of measurement intervals could influence
even a simple term such as an average delay or a connec-
tion availability. While a precise description of each QoS
parameter is important to an SLA, the issue is orthogonal
to our work. In our simulation experiments, we collect QoS
values over a range of 100-200 seconds. For networks in op-
eration the interval could be in the order of minutes. To get
an accurate end-to-end measurement the agent would have
to synchronize their clocks to within seconds, especially if
data collection is triggered periodically.

The collection of performance data serves many pur-
poses. This work focused on the detection of SLA viola-
tion, which does not need to know the exact performance
of every single flow. Hence, we can apply the aggregation
technique to achieve tremendous savings in information ex-
change. The same aggregation technique will not apply to
usage accounting, for example, where the QoS of every flow
must be evaluated individually. However, monitoring for
detection and control occurs at a shorter time scale and re-
quires quicker reactions. For accounting purpose service
providers can transfer measurement data to log servers for
off-line processing.

Network monitoring is an essential management require-
ment and much effort has been devoted to providing a uni-
fied monitoring framework including common protocols for
fetching information, syntax for defining monitoring infor-
mation and management information.

The most popular protocols for network monitoring are
the IETF Simple Network Management Protocol (SNMP)
([1], [2]) and the ISO Common Management Information
Protocol (CMIP). Many management Information Bases
(MIBs) have been defined, including the Remote Network
Monitoring Management Information Base (RMON MIB)
([12], [13]). RMON provides significant expansion in
SNMP functionality, including support for off-line opera-
tions, more sophisticated data processing and multiple man-
agers. A drawback with these MIBs is that they describe the
information available on individual devices and also tend to
be fairly low levels and focuses on counters for hardware
statistics and errors. A recent development is the definition
of a MIB module for performance management of Service
Level Agreements [14]. It is assumed that SLA is defined
via policy schema definitions and the MIB defines statistics
related to a policy rule definition.

Given that the amount of management information in
a large network can be very large and the inefficiency of
continuous polling, a number of proposals have been made
to reduce the management information overload. A com-
mon approach to reducing monitoring overhead is to vary
the polling frequencies base on the state and characteris-
tics of variable being monitored. In [4], two algorithms are

proposed for changing polling frequencies, either based on
past history or based on how close a measured value is to a
threshold. In [15], Discrete Fourier Transform is applied to
each sequence of collected data and the polling frequency
is selected as 2 times the largest frequency if the manage-
ment bandwidth is sufficiently large. In [7], the authors pre-
sented a model in which the behavior of the network states
is captured by state transition diagrams. They showed that a
greedy algorithm that delays measurement as much as pos-
sible is correct and optimal.

In [8], the amount of information to be collected is re-
duced by only collecting information that is required to sat-
isfy the objective of monitoring. For example, if the end-
to-end delay of a specific path is required, then only per-
formance data of delay along the specific path will be col-
lected. An inference engine is used to map a request to the
individual measurement components.

End-to-end measurements per SLA flow is ideal for de-
ciding if a flow meets its SLA. A large scale end-to-end
measurement of packet dynamics over the Internet can be
found in [10]. A discussion of using Operation and Man-
agement (OAM) cells to measure end-to-end performance
over a ATM network can be found in [3]. While such mea-
surements are appropriate for determining the end-to-end
Quality of Service, there are two potential problems. First,
the number of measurements taken is equal to the number
of flows with SLA and may not be scalable for a large net-
work. In addition, when problems are detected, locating
the congestion links is not straightforward. Additional mea-
surements in the core of the network are still needed. It is
precisely these problems that motivated our work.

Finally, the IETF IP Performance Metrics (IPPM) Work-
ing Group has attempted to develop a set of standard metrics
that can be applied to the quality, performance, and reliabil-
ity of Internet delivery services. For more details, refer to
[11].

6 Conclusion

We have presented a monitoring framework to address
the scalability in detecting SLA violations. The monitor-
ing is based on hop-by-hop measurement of QoS values,
aiming at deriving qualitative status of flows and links, i.e.,
finding which flows have SLA violations and which links
are having long delay or high loss rate. With a dynamic
histogram-based data aggregation technique and an itera-
tive refinement process, the proposed framework,ARM
achieved substantial reduction in overhead and scaled well
over a wide range of traffic loads.ARM constantly re-
mains at 10% overhead compared to a simple polling mon-
itoring scheme, and often outperforms two other schemes
that represent the most optimized but un-implementable ap-
proaches without data aggregation.

Two future directions are of immediate interests to us.
We plan to look at the monitoring issues with routers that
employ more sophisticated queuing mechanisms such as
WFQ or support differentiated services. We also plan to
look into ways of using the monitoring results to trigger
management actions. In particular, we can easily extend
ARM to identify not only flows that violate their SLAs, but
also those that receive significantly better services than what
their SLA stated. Based on such a monitoring tool we plan
to develop an SLA management application to adjust provi-
sioning among these flows. After all, it is a provider’s best
interest to utilize available resources to satisfy as many SLA
flows as possible.

References

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple
network management protocol (SNMP).IETF RFC 1157,
May 1990.

[2] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. Proto-
col operations for version 2 of the simple network manage-
ment protocol (SNMPv2).IETF RFC 1905, Jan 1996.

[3] T. Chen, S. Liu, M. J. Procanik, D. Wang, and D. Casey.
INQUIRE: A software approach to monitoring QoS in ATM
networks.IEEE Network, pages 32–37, March/April 1998.

[4] P. Dini, G. V. Bochmann, T. Koch, and B. Kramer. Agent
based management of distributed systems with variable
polling frequency policies. InProceedings of Integrated
Network Management V, pages 553–564, San Diego, Cal-
ifornia, May 1997. IFIP.

[5] A. Elwalid and D. Mitra. Design of generalized processor
sharing schedulers which statistically muiliplex heteroge-
neous QoS classes. InProceedings of the IEEE INFOCOM,
pages 1220–1230, New York, NY, March 1999.

[6] M. Grossglauser and D. N. C. Tse. A time-scale decom-
position approach to measurement-based admission control.
In Proceedings of the IEEE INFOCOM, pages 1539–1547,
New York, NY, March 1999.

[7] J. Jiao, S. Naqvi, D. Raz, and B. Sugla. Minimizing the
monitoring cost in network managemment. InProceedings
of Integrated Network Management VI, pages 155–170, San
Diego, California, May 1999. IFIP.

[8] S. Mazumdar and A. Lazar. Objective-driven monitoring for
broadband networks.IEEE Transaction on Knowledge and
Data Engineering, 8(3), Jun 1996.

[9] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: The multiple node case.IEEE/ACM Transactions on
Networking, 2(2):137–150, 1994.

[10] V. Paxson. End-to-end internet packet dynamics. InPro-
ceedings of ACM SIGCOMM’97, pages 139–152, Cannes,
France, Sep 1997. ACM.

[11] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Frame-
work for IP performance metrics.IETF RFC 2330, May
1998.

[12] S. Waldbusser. Remote network monitoring management
information base.IETF RFC 1757, Feb 1995.

[13] S. Waldbusser. Remoate network monitoring management
information base version 2 using smiv2.IETF RFC 2021,
Jan 1997.

[14] K. White. Definitions of managed objects for service level
agreements performance monitoring.IETF RFC 2758, Feb
2000.

[15] K. Yoshihara, K. Sugiyama, H. Horiuchi, and S. Obana. Dy-
namic polling scheme based on time variation of network
management infomation values. InProceedings of Inte-
grated Network Management VI, pages 141–154, San Diego,
California, May 1999. IFIP.

