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Abstract—Cognitive radio (CR) techniques promise to
significantly increase the available spectrum thus wireless
bandwidth. With the increase of spectrum allowed for CR, it
is critical and challenging to perform efficient wideband sens-
ing. We propose an integrated sequential wideband sensing
framework which concurrently exploits sequential detection
and compressed sensing (CS) techniques for more accurate
and lower cost spectrum sensing. First, to ensure more timely
spectrum detection while avoiding the high overhead involved
in periodic recovery of CS signals, we design a CS-based
sequential wideband detection scheme to effectively detect the
PU activities in the wideband of interest. Second, to further
identify the sub-channels occupied, we exploit joint sparsity
of the signals among neighboring users to achieve efficient
cooperative wideband sensing. Our performance evaluations
demonstrate that our proposed scheme can outperform other
peer schemes significantly in terms of the detection delay,
detection accuracy, sensing overhead and sensing accuracy.

Index Terms—cognitive radio; sequential detection; wide-
band sensing; compressed sensing; cooperative sensing.

I. INTRODUCTION

Cognitive radio (CR) is attracting growing interests due
to its capability of intelligently and dynamically identifying
and exploiting the spectrum holes to improve the spectral
usage efficiency [1], [2]. A core function of CR (or
secondary user, SU) is to sense the spectrum and detect
the presence or absence of the primary users (PUs). Many
studies have been done to improve the effectiveness of
spectrum sensing. Sequential analysis has been exploited
with a slotted sensing structure [11] or with periodic
spectrum sensing [14] for better sensing performances.

Spectrum sensing for wideband becomes increasingly
important for CRs to obtain a “wider” view of the spec-
trum. It enables a CR to find spectrum resources more
flexibly and quickly, and also allows a CR to transmit
data at higher rate with more spectral resources available.
Wideband sensing, however, is challenging. A wideband
can be generally divided into sub-bands or sub-channels,
whose occupancy status (i.e. occupied by PUs or not) can
be determined through sensing. One possible way is to
sense all the narrow sub-channels one by one, and there are
many existing studies on the scheduling of channel sensing
order [10]. Although applicable for a band with a limited

number of sub-channels, for a wideband with extremely
large number of sub-channels, sensing each channel one
by one will bring large overhead and delay. Alternatively,
CRs can sense the wideband directly with some high-
end wideband components equipped at higher cost, e.g.,
wideband attenna and radio frequency (RF) front-end,
high-speed analog-to-digital converter (ADC) .

In order to avoid the use of costly high-speed ADC in
wideband sensing, compressed sensing (CS) theory [3], [4]
has been exploited to reduce the number of samples re-
quired [15], [16]. However, due to the higher computational
complexity for CS recovery in wideband sensing, it would
be very expensive to directly apply these CS methods
to perform periodic sensing. On the other hand, simply
making sensing decision based on data collected within one
time period is also prone to failure caused by low SNR and
in the presence of noise. The spectrum sensing becomes
even harder when a user receives weak signals as a
result of channel fading. Although cooperative sensing may
help overcome this problem, simply applying cooperative
wideband sensing using samples from a large number of
users would involve high computational complexity.

In this work, we consider a CR network with multiple
users. To address the issues above, we propose a coop-
erative sequential compressive sensing framework which
incorporates two major steps, wideband signal occupancy
detection to detect the presence of PU in the wideband
of interest, and cooperative wideband compressive sensing
to determine which sub-bands are actually occupied in
the wideband by obtaining the wideband power spectrum.
Different from conventional CS-based wideband sensing,
the first step takes advantage of both sequential analysis
and compressive sampling to first detect if there exist
PU signals in a wide band without need of complex sig-
nal reconstruction. In contrast to conventional cooperative
spectrum sensing which simply exploits the diversity of
user sensing data to improve the sensing performances,
the second step takes advantage of joint sparsity of signals
from multiple SUs to further reduce the sampling rate while
improving the sensing accuracy. The major contributions
of our work are as follows:
• We incorporate the compressed sensing technique into978-1-4673-7331-9/15/$31.00 c© 2015 IEEE



the sequential periodic wideband detection, taking
advantage of both techniques for accurate and low-
overhead PU detection. Specifically, we perform se-
quential analysis [17] based on sub-Nyquist samples
directly without incurring high CS recovery overhead,
and exploit sequential detection to improve the detec-
tion performance.

• We exploit the intra-signal temporal correlation and
the inter-signal spatial correlation to perform more
efficient cooperative compressed spectrum sensing.
Instead of simply performing wideband sensing for
each user, we employ joint sparsity model to jointly
recover the wideband power spectrum sensed by co-
operative users which further reduces the sampling
rate and CS reconstruction overhead.

• We perform extensive simulations to validate and
demonstrate the major advantages of our design.

The rest of this paper is organized as follows. The
next section gives an overview of related work. We then
present some backgrounds in Section III and the system
model in Section IV. We describe our scheme on se-
quential wideband detection with compressive sampling in
Section V, and cooperative wideband compressive sensing
in Section VI. In Section VII, we provide the simulation
results with various discussions. The paper is concluded in
Section VIII.

II. RELATED WORK

Sequential analysis [17] has been applied in spectrum
sensing to attain better performances such as shorter la-
tency and more precise decision. Kim et al. in [21] and
Min et al. in [22] proposed to apply sequential spectrum
sensing in CRNs. In [14], [20], the authors show that
scheduling periodic sequential sensing helps to improve
the spectrum sensing performances. Some studies, such as
[23] and [24], have taken into account change detection for
cognitive radios, while we also propose a change detection
scheme to improve the sequential detection performance
for wideband.

Different from existing efforts, the focus of this paper
is on effective detection of the activities of legacy wireless
systems over a wide spectrum. The sequential detection
is only applied over sparse samples of signals (rather
than Nyquist samples) to facilitate low cost coarse signal
monitoring, before we determine the actual sub-channels
occupied by the primary signals.

Compressed sensing (CS) is a useful tool for wideband
spectrum sensing and analysis. Tian et al. [16] developed
CS techniques tailored for wideband sensing to identify
spectrum holes, where sub-Nyquist samples are used along
with a wavelet-based edge detector. Similarly, in [15],
[25]–[27], various wideband spectrum sensing schemes
based on CS are proposed. There are also some references
discussing cooperative wideband sensing based on CS. For
example, in [28] [29] distributed compressed wideband
sensing schemes are proposed.

The goal of this work is to enable efficient periodic
cooperative wideband sensing. Different from the literature
work, to reduce the sensing overhead and improve the
sensing performance, our scheme is divided into two steps:
(a) We exploit CS-based sequential detection (without
compressed sensing reconstruction) to first detect PU’s
presence in the wideband; (b) We employ joint sparsity
models to recover the wideband status from the signals
perceived in the sequential analysis, which takes advantage
of the correlation of user samples to further reduce the
samples needed and speed up the detection process.

III. PRELIMINARIES

Before we present our detailed sensing algorithms, we
first provide some background knowledge on wideband
sensing and compressed sensing.

A. Wideband Sensing

For traditional channel detection, the two hypotheses
regarding the state of the channel are:
• H0: The channel is available (the PU is absent);
• H1: The channel is occupied by the PU,
A wideband can usually be divided into sub-bands/sub-

channels. In the example of Figure 1, a wide spectrum band
is shown to range from 0 to W (Hz) and equally divided
into J sub-bands with the bandwidth of each being W/J
(Hz). Depending on the spectrum band of interest, the band
may not start from 0 Hz. In addition, sub-bands are not
necessarily of the same bandwidth. The power spectrum
characteristics across the wideband can be used to indicate
the status of each sub-band, e.g. by thresholding the power
amplitude in each sub-bands. In this framework, all the
PUs within the wideband can be regarded as a PU group,
which occupies part of the sub-channels in the wideband.
Throughout this paper, we will interchangeably use sub-
band/sub-channel.

. . .
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Fig. 1. Frequency division for wideband CRs. CR can employ OFDM-
like techniques that divide the wideband spectrum into J sub-bands.

For wideband sensing, a big challenge is that the re-
quired Nyqusit sampling rate can be fairly large, which
would lead to a high cost to ADC elements and also
brings more processing overhead. For example, consider-
ing a 0∼500 MHz wideband, the Nyquist sampling rate
will be 1 GHz. This motivates us to exploit compressed
sensing to significantly reduce the required sampling rate
for wideband sensing.

B. Compressed Sensing

The main idea of compressed sensing is to take ad-
vantage of the sparsity within the signal to significantly



reduce the sampling rate. An N -dimensional signal d
is considered to be K-sparse in a domain (also called
a dictionary matrix) Ψ ∈ CN×N if there exists an N -
dimensional vector x ∈ RN×1 so that d = Ψx and x has
at most K non-zero entries (K � N ).

If a signal d is measured with a matrix Φ ∈ CM×N
(M < N ), the obtained linear measurement y ∈ RM×1,
possibly affected by noise n ∈ RM×1, is:

y = ΦΨx + n = Ax + n, (1)

where the sensing matrix A ∈ RM×N is essentially the
product of the measurement matrix and the dictionary/basis
matrix: A = ΦΨ.

Obviously, with M < N , Equation (1) is under-
determined. E. J. Candès et al. show in [5] that the
under-determined equation system can be solved if some
conditions are met. One of the conditions is the number of
measurements M is enough:

M ≥ cK log

(
N

K

)
, (2)

where c is a fairly small constant. Further details can
be found in [5]. Given the measurements y, the unknown
sparse vector x can be reconstructed by solving the fol-
lowing convex optimization problem:

min ‖x‖`1 , s.t. ‖Φd− y‖`2 ≤ ε,d = Ψx (3)

where the parameter ε is the bound of the error caused by
noise n, `p means the `p-norm (p = 1, 2, ...). The solution
can also be expressed as:

x̂ = argmin
u: ‖y−Au‖`2≤ε

‖u‖`1 . (4)

The signal d = Ψx can then be recovered as d̂ = Ψx̂.
In addition to the convex optimization approach to solve

the problem above, such as `1 minimization [6], there exist
several iterative/greedy algorithms such as Cosamp [13].
Such convex or greedy approaches are generally called
reconstruction algorithms.

IV. SYSTEM MODEL

We consider a general CR network with a set of CR
nodes, each can sense the wide spectrum band to find
some unoccupied spectrum channels to transmit data. PUs
generally alternate between a period of activity and a
period of idle time, and it is most critical to detect the
change of the channel occupancy state.

In this section, we first introduce the basic operational
model, we then introduce the infrastructure for the periodic
sensing and the framework for compressed detection and
sensing over wideband.

A. Basic Operational Model

In order to timely detect the channel condition change,
each user will periodically sense the wide spectrum band.
As CS recovery would involve a high computational com-
plexity, reconstructing the spectrum signals in each sensing
period is costly. Instead, each SU first sub-samples the
wideband spectrum it monitors, and then performs the
sequential detection based on the sub-sampled data. If the
spectrum is detected to have PU activities, CS recovery
is further called for to detect the occupancy conditions of
sub-channels in a wide band.

Due to fading, different users may receive signals in
different conditions. If a user receives very weak signals
as a result of severe channel condition, it would be difficult
for the user to make detection decision. It would also be
hard for the user to correctly identify the sub-channels
occupied through CS reconstruction. In this case, a user
with weak channel condition can request a collaboration
from its neighbors to make joint detection decision, and
neighboring CS nodes can collaborate in performing the
joint CS reconstruction to identify the sub-channels occu-
pied at lower cost.

B. Periodic Sensing Structure

Fig. 2 illustrates the periodic channel sensing structure,
where the channel detection time (CDT) is the maximum
allowed time for a sensing decision to be made. A CDT
usually consists of multiple sensing-transmission periods,
each being called a sensing period Tp. In this work, as in
802.22 WRAN standard, the sensing time Ts is fixed, e.g.,
1 ms, and Tp may only take values that are multiples of a
MAC frame size 10 ms due to many higher-layer concerns
such as synchronization.

CDT

Tp

Ts

. . . . . .

time

Fig. 2. Channel detection time CDT , sensing period Tp, and sensing
time Ts

The detection overhead (Rdo) describes the proportion
of time dedicated to the PU detection task and is defined
as the ratio between Ts and Tp, i.e., Rdo = Ts/Tp. In this
work, Ts (1 ms) is rather short compared to Tp (k ·10 ms),
so the detection overhead is at most 10% for satisfactory
SU communication performance. Scheduling of sequential
detection will have a significant influence on the detection
overhead.

C. Compressed Sensing for Wideband Detection and Wide-
band Sensing

If a CR samples the signal of interest for a duration
of Ts, the continuous signal received at the RF front-
end of CR, i.e., dc(t), is composed of PUs’ signals and
background noise. By using a certain sampling rate fN



over the sensing time Ts, we could obtain a discrete time
sequence d[n] = dc(

n
fN

), n = 0, 1, · · · , N −1, in a vector
form d ∈ CN×1. Here, N = TsfN is usually chosen to be
a positive integer.

To reduce the cost of wideband sensing, in our frame-
work, SU’s detector collects the signal at a certain sub-
Nyquist sampling rate, fsub < fnyq , with fnyq being the
Nyquist sampling rate. Different from periodic Nyquist
sampling, the samples are taken randomly based on a mea-
surement matrix Φ whose dimension is M×N (M < N ),
where M = fsubTs and N = fnyqTs denote the number
of sub-Nyquist samples and Nyquist samples, respectively.

Mathematiclaly, if there is any PU signal within the
wideband of our interest, the sub-sample vector in Ts for
a certain SU will be expressed as

y = Φ(d + n′) = Φd + n

= ΦΨx + n = Ax + n, (5)

where the sub-Nyquist measurements are y ∈ RM×1, the
sparse vector in Fourier spectrum domain x ∈ RN×1, the
additive noise in the wideband n′, the sampled noise n ∈
RM×1, and the sensing matrix A ∈ RM×N .

It is mentioned in [9], [19] that if the signal’s spectrum
vector x = Ψ−1d is sparse (Ψ−1 is the Discrete Fourier
Transform), then Φ = AΨ−1 is essentially an M × N
random sampling matrix constructed by selecting M rows
independently and uniformly from an N × N identity
matrix I. This measurement matrix Φ can be trivially im-
plemented by pseudo-randomly sub-sampling the original
signal d. As we can adopt inverse DFT matrix as the
sparse dictionary Ψ, in our framework, the measurement
matrix will be reflected by sub-Nyquist sampling. For time
domain signals with length N , this measurement process
corresponds to smaller sampling numbers M < N . If the
spectral sparsity level K of x is known, we can choose
the number of measurements M to secure the quality of
spectral recovery, as expressed in Equation (2).

V. SPECTRUM DETECTION BASED ON SEQUENTIAL
COMPRESSED-SENSING

In the cooperative detection network we consider, each
SU periodically sub-samples the wideband signal based on
the theory of compressed sensing, and detects the spec-
trum activity through group-based compressive sequential
detection. If a user receives very weak signals as a result
of severe channel conditions such as fading, it can send a
request to its neighbors to seek collaborations, and perform
collaborative sequential detection based on responses from
neighboring users.

A. Cooperative Grouped-Compressed-Data SPRT

Wald’s Sequential Probability Ratio Test (SPRT) [17] is
a classic sequential detection methodology which puts each
sample into the sequential test. We consider a cooperative
grouped-compressed-data SPRT (GCD-SPRT), which de-
partures from the conventional SPRT in four perspectives:

1) Instead of taking samples at Nyquist rate, in each Ts,
an SU randomly takes much smaller number of samples
based on the CS theory; 2) Data samples within each
Ts are grouped into a “super-sample” to avoid the com-
plexity of processing each sample and more importantly
to reduce the effect of short-term channel randomness; 3)
The sub-sampling within Ts and the use of super samples
in different time periods can exploit the temporal data
redundancy and time diversity to reduce the total number
of samples; 4) Besides making the sequential detection
at each SU, a SU receiving weak signals could request
a cooperation from its neighbors to fuse their data along
with its own, taking advantage of spatial diversity to make
faster detection decision. Cooperative GCD-SPRT can be
performed at an SU as follows:

Step 1: Calculate the power z(y) from M compressed
samples.

If there is any PU signal within the wideband of our
interest, the sub-sample vector will be expressed as in
Equation (14). After a sensing block Ts, the normalized
power of M sub-Nyquist samples contained within is

z(y) =

∑M
i=1 y

2
i

Ts
=
fsub
M

M∑
i=1

y2
i , (6)

where yi denotes the individual samples within Ts, and
M = fsubTs.

In practice, the number of samples taken within a single
Ts is fairly large. For example, for Ts = 1 ms and a 0 ∼
500MHz wideband, the Nyquist sample number will be
N = 106; and even if we perform sub-sampling with 1/10
of the Nyquist sampling rate, we will have 105 sub-Nyquist
samples. With the Law of Large Numbers (M � 10) and
Central Limit Theorem, we have the average signal within
a Ts approximating Gaussian regardless of the original
distribution of the PU signal, that is, z(y)

i.i.d.∼H0 : N (fsubPn,
(fsubPn)2

M ),

H1 : N (fsubPn(1 + SNR), (fsubPn)2(1+SNR)2)
M ),

(7)

which can be similarly derived from the results in [14].
Here, SNR is defined as the ratio between the nominal
signal power P and local noise floor σ2 = PnW , where
Pn is the noise power spectral density (PSD) and W is the
wideband’s bandwidth.

Step 2: Derive the test statistic T (z(y)) for each
group.

The log-likelihood ratio (LLR) of the power sample is
calculated as

T (z(y)) = ln
f1(z(y))

f0(z(y))
, (8)

where f0(·) and f1(·) are the pdfs under H0 and H1, re-
spectively, as indicated in Eq. (7). For ease of presentation,
we will simply refer to z(y) as z.



Step 3: Accumulate the test statistics T (z) across
groups to obtain the aggregate test statistic T

As we accumulate T (zk) (k = 1, 2, ...) sequentially, the
aggregate test statistic up to the s-th group is

Ts =

s∑
k=1

T (zk) =

s∑
k=1

ln
f1(zk)

f0(zk)
. (9)

Step 4: On demand cooperation with other users
If a user cannot make timely detection decision due to

its weak signal conditions, it can request its neighbors
to collaborate. In response, an SU q can share its own
aggregated test statistic T qsq . Assume the user receives
responses from Q− 1 cooperating users, its can form the
accumulated cooperative test statistic as:

T ′s = Ts +

Q−1∑
q=1

T qsq (10)

Step 5: Make detection decision
Compare the accumulated cooperative test statistic in

Equation (10) against two constant thresholds A and B.
The two decision thresholds are chosen in Wald’s SPRT

as:
A = ln

pMD

1− pFA
, and B = ln

1− pMD

pFA
. (11)

The decision rule for the SU is designed as:
• if T ′s > B, it decides that the PU has reclaimed the

channel.
• if T ′s < A, it decides that the channel is still available;
• otherwise, it goes to Step 1 to continue sampling

another group of power data, cooperating with other
users, and updating T ′s+1 using Eq. (10).

The stopping time S for an SU is defined as the
minimum number of groups of LLR statistic (of the user
itself) needed until one of the two decision thresholds is
first crossed; that is,

S = min{s : either T ′s < A or T ′s > B}. (12)

If S is small, it means that the SU can make the detection
decision (PU is present or not) faster. This helps an SU to
evacuate the channels timely upon the return of PU, or
spend more time for data transmission upon the detection
of channel idle.

B. Quick Detection of Channel State Changes

It is important to quickly detect the “change point”
where the wideband state shifts from H0 to H1 due to
PU reappearance or vice versa. Straight-forwardly, sensing
decision can be made once in each CDT window. After
a channel is detected to be idle, an SU can dedicate
to transmission as shown in Fig. 3(a), similar structure
without compressed sensing is given in [22]. However, if
the PU reappears, the channel will not be sensed until the
next CDT window, which may make the evacuation delay
of the SU exceed the CDT time, the maximum delay
allowed for an SU to evacuate the channel.

Instead, we consider using backward GCD-SPRT along
with moving CDT window (Fig. 3 (b)), where GCD-SPRT
can run backward, starting from the latest group of data.
This helps reduce the impact of the older sensing data to
more quickly detect the possible status change. In order to
further speed up the change point detection, we propose an
in-depth sensing method in which a CR adjusts its sensing
frequency to ensure more rapid and precise detection after
suspecting the possible H0-to-H1 transition, as in Fig. 3
(c).

CDT CDT

PU appears
Max delay for 

detecting PU

H0 H1

CDT

H0 H1

CDT

H0 H1

(a)

(b)

TP,1 TP,2

(c)

Fig. 3. Detection delay (indicated by the red arrows) with (a) forward,
non-overlapping GCD-SPRT; (b) backward, overlapping GCD-SPRT; and
(c) backward, overlapping GCD-SPRT with short-term Tp adjustment

It is critical to determine when an in-depth sensing
should be triggered. We set the following criteria:

Tc = max{T̄new − T̄old} ≥ δ(nnew
B

n
− nold

A

n
)

= δ(nnewB − noldA)/n, (13)

in which Tc is the test statistic that will trigger in-depth
sensing; T̄new and T̄old are the summation of the newer
and older test statistics in the CDT-window, nnew and nold
are the numbers of test statistics classified as newer and
older, and n = nnew + nold; B and A are the thresholds
in Equation (11), and δ is the parameter that controls the
sensitivity of SU to the shift. With a smaller δ value, SU
is more sensitive to the changes in the observed data.

For the given set of test statistics in the CDT-window,
the SU starts with the most recent test statistic (with the
remaining sensing blocks in the window as “old”) and ob-
tains the difference; then the new test statistic set includes
one more recent test statistic, with the old test statistic
set losing this test statistic, so the numbers of newer test
statistics and older ones are increased and decreased by one
respectively. This test continues until the data from a CDT-
window have all been checked. If Equation (13) is still not
met, then GCD-SPRT-based sequential detection is pursued
with Tp unchanged; otherwise, Tp will be changed and
an in-depth sensing is performed to speed up the decision
process. Choices of Tp will be discussed in the simulations.



VI. COOPERATIVE WIDEBAND COMPRESSED SENSING

After detecting the existence of PU activities in a
wideband, it is necessary to determine the sub-channels
actually occupied so the remaining spectrum can be used
by SUs for transmissions. In this work, we exploit com-
pressive sensing to reconstruct the spectrum usage map
from the sub-sampled data. This recovery can be done by
individual users independently. However, if a user receives
weak signals, the accuracy of spectrum reconstruction is
low. Instead, we take advantage of the joint sparsity of
samples from neighboring users to cooperatively recover
the spectrum usage maps. This not only helps to more
accurately recover the spectrum occupancy maps, but also
helps to significantly reduce the total number of samples
thus the sampling cost.

A. Wideband Spectrum Usage Detection with Intra-User
Compressive Sensing

With samples collected from multiple time periods in
sequential detection, a user can first fuse its temporal
samples taking advantage of the time diversity for better
recovery of the spectrum signals.

As the user senses the same spectrum over time, the
basis Ψ for a signal to project to remains the same. If an
SU adopts the same measurement matrix Φ before a local
sequential detection decision is made, we can average the
compressed readings from all time periods:

y = Φ(d + n′) = Φd + n

= ΦΨx + n = Ax + n, (14)

where we have the average values for the sub-Nyquist mea-
surements y ∈ RM×1, sparse vector in Fourier spectrum
domain x ∈ RN×1, additive noise in the wideband n′,
the sampled noise n ∈ RM×1, and the sensing matrix
A ∈ RM×N . Each user can individually recover its x by
solving the optimization problem in (3).

Next, we will investigate the benefit of exploiting coop-
erative compressive sensing. For simplicity, we will now
disregard the averaging mark and denote this averaged
result for the q-th secondary user as i.e., yq,xq etc.
q ∈ {1, 2, ..., Q}. Q is the number of SUs.

B. Detection of Wideband Spectrum Occupancy with Inter-
User Cooperative Compressive Sensing

Each user can independently perform wideband spec-
trum sensing with the number of CS samples sufficient to
reconstruct the spectrum map. When the channel condition
is not good, the number of samples required and the
duration of sensing would be high. When the received
signals are very weak, there is also a possibility not being
able to recover the spectrum signals. In the case of the
existence of multiple users in a neighborhood, the users
can collaborate in spectrum sensing to improve the sensing
quality as well as reduce the sensing time and samples.
In a dedicated control channel, every SU can share its

average signal samples with nearby users that are within
its transmission range.

With data from Q users, a straight-forward way of
cooperation is to concatenate samples from all users and
process together using a super CS matrix. However, this
may introduce a high computational overhead. As samples
from neighboring SUs may have strong spatial correlation,
the redundant samples will not efficiently contribute to the
CS recovery process. To avoid this issue, we will exploit
the Joint Sparsity Model 1 (JSM-1) [7] to significantly
reduce the measurement requirement and reconstruction
overhead.

Due to the spatial correlation, the readings at nearby
users may have common factors, generally introduced by
global conditions such as the PU group activities. Besides,
the readings at each user also have localized factors, intro-
duced by its individual condition, such as spatial location
and local noise. The actual PU signal (before sub-Nyquist
sampling) received at a secondary user q, q ∈ {1, 2, ..., Q},
can be expressed as:

dq = sc + sq, q ∈ {1, 2, ..., Q}, (15)

where

sc = Ψxc, ‖xc‖0 = Kc, sq = Ψxq, ‖xq‖0 = Kq, (16)

where sc is the sparse-common component that is common
to all of the dq and has the sparsity Kc in the basis Ψ. sq
is the sparse-innovations (unique portions) of the dq and
each has the sparsity Kq in the same basis.

We can see the benefit of exploiting the joint sparsity in
a simple case of Q = 2 users, when a node collaborates
with its most adjacent node [12]. If CS theory is directly
employed, we may need the number of measurements in
the order of c(Kc+K1) to reconstruct d1 and c(Kc+K2)
to reconstruct d2, respectively. To recover the two signals
together, we only need c(Kc +K1 +K2) measurements.

1) Joint Recovery of Spectrum among SUs: For co-
operative recovery of signals from Q users, let Λ :=
{1, 2, . . . , Q} denote the set of indices for the Q signals
in the ensemble. Denote the signal in the ensemble by
dq ∈ RN , which is sparse in basis Ψ, with q ∈ Λ.

To compactly represent the signal and measurement
ensembles, we denote M̃ =

∑
q∈ΛMq and define X, D,

Y, and Φ̃ as

X =



xc

x1

x2

...
xQ


, Y =


y1

y2

...
yQ

 , D =


d1

d2

...
dQ

 ,
(17)



and

Φ̃ =


Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦQ

 , (18)

Ψ̃ =


Ψ Ψ 0 . . . 0

Ψ 0 Ψ . . . 0

...
...

...
. . .

...
Ψ 0 0 . . . Ψ

 , (19)

Using the structured Ψ̃, we can represent D sparsely
using vector X, which contains Kc +

∑Q
q=1Kq non-zero

elements, to obtain D = Ψ̃X. We then have Y = Φ̃Ψ̃X =
ÃX. With sufficient measurements, we can recover the
vector X, and thus D (all dq) and wideband status (xc +
xq), by solving the following problem:

min ‖X‖`1 (20a)

s.t.Y = Ψ̃Φ̃X, (20b)

which can be solved with a single linear program.
The fusion can be done each user or a cluster head.

After getting the compressed readings yq from all users, a
fusion node can form new matrices as in (17) (18) (19) and
solve the problem as in (20). After getting the estimated
wideband status (xc + xq) for each user, it needs to fuse
the results in order to get a more accurate cooperative
wideband sensing result.

2) Fusion of Wideband Spectrum Maps: With the spec-
trum usage condition observed from each user, we can fuse
the results with two candidate schemes:

(a) Soft Fusion. Power spectrum usage maps recovered
by all users are averaged to get a new map, and each
sub-band value is compared with an energy threshold to
determine which sub-bands are occupied. We will adopt
soft fusion in the simulations.

(b) Hard Fusion. The spectrum energy map from each
user is applied to determine which sub-bands are occupied
individually, and the resulted binary spectrum maps (where
the occupied sub-bands marked as “1” and the idle ones
marked as “0”) are merged by OR rule (other options are
AND rule, majority rule, weighted combing rule and so
on).

VII. SIMULATIONS AND RESULTS

In this section, we conduct MATLAB simulation studies
to demonstrate the performance of our design. We also
compare our scheme with other peer schemes to show the
advantages of our work.
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Fig. 4. Compressed sensing recovery under SNR = −5dB

1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of users (Q)
D

e
te

c
ti
o

n
 d

e
la

y
 (

in
 u

n
it
s
 o

f 
C

D
T

)

 

 

conv1

reference

proposed

proposed−snr1

proposed−snr2

Fig. 5. Detection delay

A. Simulation Settings

1) System Setup: We consider a wideband of 500 MHz,
which can be virtually divided into 50 sub-bands, each
occupying 10 MHz. The Nyquist sampling rate is 1 GHz.
A PU group signal is a wideband signal that spreads over
the wideband, but may only occupy a small portion of the
wideband, i.e., the number of occupied sub-bands is much
smaller than the total number of sub-bands monitored. The
noise is assumed to be circular complex AWGN, i.e., n ∼
N (0, η2). SNR values will be given in specific tests.

For the periodic sensing model, we set the sensing
block duration Ts = 20µs, with channel detection time
CDT = 40ms and the required PFA = PMD = 0.01.
Rather than using the Nyquist sampling rate fnyq = 1 GHz,
we adopt the sub-Nyquist sampling rate fsub = 0.25 GHz.
The number of compressed samples in a sensing block
Ts is M = fsubTs = 5000, whereas the Nyquist number
N = fnyqTs = 20, 000. An example of the wideband sig-
nal spectrum, noisy spectrum and recovered spectrum using
CS is presented in Fig. 4, where the SNR is -5 dB. The
wideband signal has three occupied sub-bands that have
center frequencies of 75, 125 and 225 MHz respectively
and each sub-band has a bandwidth of 10 MHz.

We also set the MAC frame size FS = 200µs. For the
sensing period Tp, we adopt the settings similar to those
in [14].

Throughout simulations, we use `1-magic as the basic
reconstruction algorithm [6].
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B. Performance and Analysis

The peer schemes we will compare in our simulations
are summarized in Table I. “reference” is the scheme with
proposed sequential detection but with Nyquist sampling
(without using CS). We use “reference” as a benchmark
to evaluate the performance of using sub-sampling with
our proposed scheme. “conv1” uses conventional non-
overlapping forward SPRT without CS. “conv2” recon-
structs signals every Tp in order to use recovered signals
to perform sequential detection and identify the actual
spectrum channel occupancy. In collaborative sensing case,
“conv2” concatenates the signals from multiple users to
form a super matrix for further reconstruction. Table I also
gives the default SNR for each scheme (if not otherwise
stated), for group 1 schemes, the default SNR= −18.8dB;
for group 2, the default SNR= −5dB.

TABLE I
PEER SCHEMES COMPARISON

Group 1: default SNR= −18.8dB
“proposed”: δ = 2, Tnew

p ← 2FS
“proposed-snr1” : proposed with SNR= −20.8dB
“proposed-snr2” : proposed with SNR= −22.8dB
“conv1” : non-overlapping forward SPRT w/o CS, see Fig. 3 (a) and [22]
“reference” : proposed sequential w/o CS, i.e., with Nyquist sampling

Group 2: default SNR= −5dB
“proposed-joint”: proposed joint recovery among SUs
“proposed-joint1” : proposed with SNR= −10dB
“proposed-joint2” : proposed with SNR= −15dB
“conv2” : with CS, reconstruct signals each Tp for sequential detection
“peer2” : with CS, concatenated signal reconstruction, see [28]

Fig. 8. Reconstruction overhead comparison.

The performance we compare include detection delay,
detection accuracy, sub-band sensing accuracy and recon-
struction overhead.

1) Detection Delay: The detection delay is defined as
the time used by the user to make a decision. In Fig. 5,
as expected, detection delay for all schemes reduce as
the number of users increases. This clearly indicates the
benefit of cooperative sensing. The detection delay is larger
when the SNR is smaller. Compared to “conv1”, our
proposed scheduling of GCD-SPRT scheme can achieve
much shorter delay to make a decision, thus accelerating
the detection process, the delay reduction is up to 1/3.

As expected, we observe that the performances of “pro-
posed” and “reference” are very similar, which indicates
CS-based sequential detection can maintain comparable
performance while reducing the number of samples re-
quired by Nyquist sampling. Performances of the proposed
scheme under two other SNRs are also given.

2) Detection Accuracy: The detection accuracy is de-
termined based on the probability of successfully detecting
present PU activities in the wideband. As shown in Fig. 6,
although only 1/4 of the samples are used, our proposed
scheduled GCD-SPRT scheme can achieve similar perfor-
mance as that not using the sub-sampling (“reference”).
Compared to “conv1”, GCD-SPRT achieves up to 60%
higher accuracy.

We also see that when the number of users (Q) increases,
the detection accuracy improves more rapidly, which im-
plies the advantages of cooperation among SUs.

3) Wideband Sensing Accuracy: The measurement rate
indicates how many measurements are used in sub-Nyquist
sampling, which is calculated as the ratio of actual number
of sub-Nyquist measurements over the original length
(Nyquist) of the signal. Wideband sensing accuracy implies
the accuracy of sub-band sensing in the wideband of
interest, which is defined as the number of successfully
identified (PU occupied or not) sub-channel over the total
number of channels in the wideband.

From Fig. 7 it is obvious that as the measurement
rate becomes larger, i.e., more measurements in the sub-
sampling process, the wideband sensing (each sub-band is
occupied or not) accuracy increases. This agrees with CS



theory.
We see that at the same measurement rate, our scheme

outperforms “peer2” because it can achieve better sensing
accuracy, which shows the advantages of joint CS recon-
struction. The performances of the proposed joint scheme
under two other SNRs are also given in Fig. 7.

If we draw a horizontal line (measurement rate) at
a certain vertical value (sensing accuracy), we can see
how many measurements are needed by each scheme to
achieve that sensing accuracy. We further observe that
compared to “peer2” that uses long concatenated signal
to perform reconstruction, the joint recovery scheme can
actually reduce the requirement for measurement rate under
the same requirement of wideband sensing accuracy. For
example, at sensing accuracy 50%, the proposed joint
recovery scheme can reduce the measurement rate by 20%
compared to“peer2”. The reason is that we exploit the
temporal and spatial correlations in multiple users’ signals
that can reduce the measurement requirement to reconstruct
every user’s signal.

4) Reconstruction Overhead: In Fig. 8 the CS recon-
struction overhead of different schemes are compared. The
reconstruction overhead for each user in the simulation is
first evaluated by the actual average time used by a user to
run the reconstruction in Matlab. The overhead is then nor-
malized by being divided by the reconstruction overhead of
one user in scheme “conv1”. We can see that among all the
schemes, our proposed joint recovery scheme can achieve
the least overhead. Compared to “conv2”, which is the
sequential detection scheme with CS reconstruction every
sensing period Tp, the overhead for CS reconstruction in
our proposed scheme is about 80% lower.

VIII. CONCLUSION

This paper presents an integrated framework to effi-
ciently perform wideband detection and wideband sensing.
Compressed sensing (CS) technique is incorporated with
sequential detection to ensure low overhead and more
accurate wideband detection. To further identify the sub-
bands occupied by PU, we take advantage of the joint
sparsity among neighboring users to achieve effective
cooperative wideband sensing. Simulation results demon-
strate the significant advantages of our design in reducing
the detection delay, increasing the detection accuracy, as
well as reducing CS recovery overhead and compressive
measurement requirements.
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