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Abstract—The support for high data rate applications with the cognitive radio technology necessitates wideband spectrum sensing.
However, it is costly to apply long-term wideband sensing and is especially difficult in the presence of uncertainty, such as high noise,
interference, outliers, and channel fading. In this work, we propose scheduling of sequential compressed spectrum sensing which
jointly exploits compressed sensing (CS) and sequential periodic detection techniques to achieve more accurate and timely wideband
sensing. Instead of invoking CS to reconstruct the signal in each period, our proposed scheme performs backward
grouped-compressed-data sequential probability ratio test (backward GCD-SPRT) using compressed data samples in sequential
detection, while CS recovery is only pursued when needed. This method on one hand significantly reduces the CS recovery overhead,
and on the other takes advantage of sequential detection to improve the sensing quality. Furthermore, we propose (a) an in-depth
sensing scheme to accelerate sensing decision-making when a change in channel status is suspected, (b) a block-sparse CS
reconstruction algorithm to exploit the block sparsity properties of wide spectrum, and (c) a set of schemes to fuse results from the
recovered spectrum signals to further improve the overall sensing accuracy. Extensive performance evaluation results show that our
proposed schemes can significantly outperform peer schemes under sufficiently low SNR settings.

Index Terms—cognitive radio; sequential detection; wideband sensing; compressed sensing.
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1 INTRODUCTION

Cognitive radio (CR) is attracting growing interest due to
its capability of intelligently and dynamically identifying
and exploiting spectrum holes to improve the spectral usage
efficiency [1], [2]. A core function and essential element of
the CR (or secondary user, SU) is to sense spectrum and
detect the presence/absence of the primary users (PUs). The
growth of high data rate applications such as video makes
it attractive to explore holes in a wide spectrum band for
transmissions. In addition, some legacy systems constantly
change their transmission channels for better performance
and security. Thus it is important to enable efficient wide-
band sensing for CRs to obtain a “wider” spectrum view for
more flexible resource access.

A wideband can be generally divided into sub-bands or
sub-channels, where the occupancy status by PUs can be
determined via sensing of the sub-bands one by one. For a
wideband with an extremely large bandwidth (thus a large
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number of sub-channels), this will bring large overhead and
sensing delay. Alternatively, to meet the need of Nyquist
sampling rate, CRs can sense the wideband directly with
some high-end wideband components, including wideband
attenna, wideband radio frequency (RF) front-end and high-
speed analog-to-digital converter (ADC). This will inevi-
tably introduce high cost, and may not even be feasible
with existing devices. To address this challenge, compressed
sensing (CS) [3], [4] is exploited in wideband sensing to
reduce the number of samples required [5], [6].

As the activities of PUs are often unknown and dynamic,
simple one-time spectrum sensing is inadequate. Under low
signal-to-noise ratio (SNR), making a sensing decision sim-
ply based on data collected within one time duration either
is prone to failure if the sensing duration is not long enough,
or suffers from long sensing delay. An SU needs to check the
channel status over time, either for in-band sensing where
an active SU during its data transmission needs to sense
its current channel, or for out-of-band sensing where an
SU needs to find an alternate channel. It is important that
an SU can make sensing decisions in a timely fashion: for
in-band sensing, this helps detect a returning PU rapidly
and evacuate the SU from the channel in order not to create
significant interference to the PU; for out-of-band sensing, a
quick sensing decision saves sensing resources (e.g. sensing
time and power) and allows more time for an SU to exploit
spectral resources for its data transmissions.

Rather than only considering the sensing algorithm to
detect the spectrum activities, it is also very important to
determine when and how often to perform sensing. Despite
the importance, this is largely ignored in the literature
work on wide-band spectrum sensing. Some limited efforts
have been made to periodically sense the spectrum of a
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narrow frequency channel [7], [8]; however, it would be
very expensive to directly apply CS methods for periodic
sensing due to the higher computational complexity for
CS recovery. Therefore, despite the advantage in detecting
highly agile incumbent signals and facilitating spectrum
management, conventional wide-band sensing cannot be
directly used to meet the need for long-term sensing, and
is costly and inaccurate in the presence of uncertainty, high
noise, interference, outliers, and channel fading.

Complementary to existing efforts on wide-band
spectrum sensing, in this paper, we focus on the efficient
scheduling of sensing, in a timely and cost-effective fashion,
to detect spectrum usage activities in the presence of uncer-
tain PU activity patterns and varying channel conditions.
The major contributions of our work are as follows:

• We propose a novel wideband sensing scheduling
scheme, sequential compressed spectrum sensing. It in-
corporates the compressed sensing technique into
the sequential periodic sensing framework to take
advantage of both for accurate and low-overhead
spectrum sensing. Specifically, we perform sequen-
tial analysis [9] based on sub-Nyquist samples directly
without incurring excessive CS recovery overhead,
and exploit the sequential detection to improve the
sensing performance.

• We investigate a two-stage change-point detection
method to quickly and efficiently determine the
change in channel usage. In the first stage, sequential
sensing is performed to detect the potential change
in spectrum occupancy, and in the second stage,
intensive in-depth wideband sensing is triggered
to make final decisions rapidly on the wideband
spectral usage conditions.

• We propose a CS recovery algorithm that exploits
the block feature of wideband spectrum to further
improve the CS reconstruction performance for more
accurate determination of spectrum occupancy con-
ditions.

• We perform extensive simulations to validate and
demonstrate the major advantages of our design.

The rest of this paper is organized as follows. After
briefly reviewing related work in Sec. 2, we describe the
system model in Sec. 3. Sequential wideband sensing based
on compressed sensing is presented in Sec. 4 followed by
Sec. 5 where change-point detection and in-depth sensing
scheduling are introduced. Section 6 presents our block-
sparse recovery algorithm and integrated framework. In
Sec. 7, we present and analyze the simulation results. The
paper concludes in Sec. 8.

2 RELATED WORK

The majority of work on spectrum sensing focus on im-
proving the quality for one-time sensing. From a long-
term perspective, the presence of uncertainty, such as high
noise, interference, channel fading and anomalies, makes
it a daunting task to perform accurate detection solely in
one time. Some recent efforts attempt to more accurately
sense frequency channels based on a sequence of data
with a method such as sequential analysis [9] to detect

the spectrum usage conditions at shorter latency and more
precise decision. In Kim et al. in [10] and Min et al. in [11],
the time is divided into frames each containing a number
of sensing blocks, and a decision is made only based on
blocks of samples within each frame. Without sensing in
the remaining time of the frame after a decision, these
schemes are subject to a significant detection delay upon
the returning of the legacy users. Guo et al. in [12] proposed
a backward sequential probability ratio test which combines
the observations from the past several sensing blocks to
improve the sensing performance. Rather than fixing the
period between sensing blocks without scheduling, a fun-
damental difference between our work and [10], [11], [12]
is that we adaptively schedule sensing over time to speed
up the decision while not introducing a high overhead. In
[7], [8], the authors show that scheduling periodic sequen-
tial sensing helps to improve the spectrum sensing perfor-
mance. However, it would be very expensive to perform
compressed sensing periodically. While there are some stu-
dies on change detection [13], [14], they are often decoupled
from the sequential spectrum sensing, while there is a need
and unique opportunity to put the two together.

Different from existing efforts, one focus of this paper
is on effective detection of the activities of legacy wireless
systems over a wide spectrum band through smart schedu-
ling of wide-band sensing. The sequential detection is only
applied over sparse samples of signals (rather than Nyquist
samples) to facilitate low cost coarse signal monitoring,
before we determine the actual sub-band occupied by the
primary signals. To efficiently detect the change of wide
spectrum band, we also adapt the schedule of sequential
detection to speed up the detection.

In multiband joint detection [15], primary signals are
jointly detected over multiple sub-bands rather than over
one large band at a time, where a set of frequency de-
pendent detection thresholds are optimized to achieve the
best trade-off between aggregate measures of opportunistic
throughput and interference to PUs. As each SU senses the
sub-bands one by one, it will incur a long detection delay
when the number of sub-bands is large. In addition, the
work focuses on the cooperation among SUs in sensing sub-
bands. Our work allows an SU to directly sense a wide-band
in a long term at low overhead.

Alternatively, compressed sensing (CS) is a useful tool
for wideband spectrum sensing and analysis. Sub-Nyquist
samples are used along with a wavelet-based edge detector
in [5] for coarse sensing of wideband to identify spectrum
holes, and other wideband spectrum sensing schemes ba-
sed on CS are proposed in [16], [17], [18]. Sun et al. [6]
proposed a multi-slot wideband sensing algorithm with CS
and a scheme to reconstruct the wideband spectrum from
the compressed samples. Compressive sensing with flexible
channel division is proposed in [19], and the authors in
[20] make an effort to reduce the computational complex-
ity of compressed sensing with the information from geo-
location database. Romero et al. in [21] propose to exploit
the second-order statistics such as covariance to improve
the compressed sensing performances. Efforts are also made
for cooperative wideband sensing [22], [23], [24], [25], [26],
[27] with the sensing from multiple users. For example, the
algorithm in [24] improves the detection performance and
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reduces the computational overhead by exploiting the joint
sparse properties of wideband signals among multiple SUs.

Although these aforementioned methods show it is pro-
mising to apply CS to sensing wide spectrum bands, the
complexity involved in CS signal reconstruction makes
it difficult for these methods to be used for long-term
spectrum monitoring desired by practical cognitive radio
systems. Instead, we propose to concurrently exploit se-
quential detection and compressed sensing for an overall
light weight and accurate wideband sensing. Moreover, our
framework is not dependent on any particular wideband
sampling methodology, and the aforementioned wideband
compressed sensing schemes can be applied in our algo-
rithm when there is a need to detect detailed spectrum
occupancy conditions in a wideband.

Traditional CS reconstruction algorithms, such as [28]
and [29], tend to bring unbearable overhead when the
number of samples is utterly large. Taking advantage of the
block-sparse feature of signals, in [30], Stojnic et al. propo-
sed a recovery algorithm for block-sparse signals with an
optimal number of measurements. Different from existing
literature, we design a self-adaptive weighted recovery al-
gorithm based on signal distribution in the spectrum blocks.

The goal of this work is to enable continuous and peri-
odic wideband sensing over time. Rather than simply per-
forming CS recovery during each sensing period, we take
advantage of sequential detection and develop various sche-
mes to reduce the recovery overhead and improve sensing
performance. Some important issues we consider include:
(a) How to better apply CS in sequential wideband sensing
to detect spectrum usage conditions without incurring high
cost for CS recovery? (b) How to schedule the sequential
wideband sensing to reduce the sensing overhead, ensure
quick and accurate detection? (c) How to detect the change
of spectrum occupancy condition more quickly and accu-
rately? (d) How to more efficiently estimate the wideband
spectrum occupancy conditions based on available sensing
data?

To answer these questions, we’ll first introduce our
system model along with some background on wideband
spectrum sensing and compressed sensing in the next
section.

3 SYSTEM MODEL

In a cognitive radio network, secondary users (SUs) can
transmit data opportunistically over spectrum unoccupied
by primary users (PUs). When primary users resume their
channel usage, however, CRs are required to evacuate the
channel within a predefined time duration. As the activities
of PUs could be uncertain and dynamic, a CR needs to sense
the channel periodically during its data transmission. In
this work, we propose a sequential compressed wideband
sensing scheme to enable efficient sensing over a wide
spectrum band periodically.

3.1 Wideband Compressed Sensing
A wideband can usually be divided into sub-bands/sub-
channels. In the example of Fig. 1, a wide spectrum band
ranging from 0 to W (Hz) is equally divided into J sub-
bands each with the bandwidth W/J (Hz). In a particular

wideband of interest, depending on the activities of diffe-
rent PUs, each sub-band can have different and varying
occupancy states. For example, in Fig. 1, sub-bands 2 to 4
are occupied by PU, whereas sub-band J is not. One way
to learn the usage conditions of a wide spectrum band is
to directly apply the traditional narrow channel detection
methods to sense the sub-bands one by one. There are
many existing studies to decide how to sense the candidate
channels. For example, an algorithm proposed by Zhao et
al. [31] determines the optimal channel sensing order. For
a wideband with a fairly large number of sub-channels,
however, sensing channels one by one may bring unaccep-
table overhead and sensing delay. For example, for a 0 ∼ 1
GHz wideband with each sub-channel occupying 1 kHz, the
number of sub-channels is 106.

Another way to facilitate wideband spectrum sensing is
to equip CRs with essential components such as wideband
antenna, wideband RF front-end and high speed ADC to
perform sensing over the wideband directly. For wideband
sensing, a big challenge is that the required Nyqusit sam-
pling rate can be excessively high. For example, a 0∼500
MHz wideband would result in a Nyquist sampling rate
of 1 GHz, which would incur high ADC element costs and
processing overhead. This motivates us to exploit CS to sig-
nificantly reduce the required sampling rate for wideband
sensing. In this work, all PUs within the wideband can
be regarded as a PU group that occupies part of the sub-
channels in the wideband. Throughout this paper, we will
use “sub-band” and “sub-channel” interchangeably.

. . .
. . .

Frequency
. . .

Power

1   2  3  4 j J

W(Hz)

PU
PU

PU

Sub-band index

Fig. 1. Frequency division for wideband CRs

The compressed sensing (CS) theory suggests that if
an N -dimensional signal is sparse in certain domain, one
can fully recover the signal by using only Ω(logN) linear
measurements. The main idea behind it is to take advantage
of the sparsity within the signal to significantly reduce the
sampling rate. As a wideband is often sparsely occupied by
PUs as shown in Fig. 1, CS can be applied for wideband
sensing. For a given wide frequency band of bandwidth W ,
after obtaining the spectrum occupancy conditions from the
sensing, a CR can transmit data exploiting spectral holes .

To detect the spectrum usage condition, a CR can take
samples of the received signal dc(t) for a duration of Ts,
where the received signal is composed of PU signals and
the background noise. By using a certain sampling rate fN
over the sensing time Ts, we could obtain a discrete-time
sequence d[n] = dc(

n
fN

), n = 0, 1, · · · , N − 1, in a vector
form d ∈ CN×1. Here, N = TsfN is usually chosen to be a
positive integer. Based on the Nyquist sampling theory, the
sampling rate is required to exceed 2W , i.e., fN > 2W .

To reduce the need of high frequency sampling at the RF
front end, in our compressed sensing framework, an SU’s
detector collects the ambient signal at a certain sub-Nyquist
sampling rate fsub smaller than the Nyquist rate fnyq . An
M × N (M < N ) measurement matrix Φ is applied to
perform sub-sampling, where M and N denote the number
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of sub-Nyquist samples and Nyquist samples, respectively.
If the sensing period is Ts, then M = fsubTs, N = fnyqTs.

If there is any PU signal within the wideband of interest,
the sub-sample vector will be expressed as

y = Φ(d + n′) = Φd + n

= ΦΨx + n = Ax + n, (1)

where the sub-Nyquist measurements are y ∈ RM×1, the
sparse vector in Fourier spectrum domain x ∈ RN×1, the
additive noise in the wideband n′, the sampled noise n ∈
RM×1, and the sensing matrix A ∈ RM×N .

Given the measurements y, the unknown sparse vector
x can be reconstructed by solving the following convex
optimization problem:

min ‖x‖`1 (2a)

s.t. ‖Φd− y‖`2 ≤ ε (2b)

d = Ψx (2c)

where the parameter ε is the bound of the error caused by
noise n, `p means the `p-norm (p = 1, 2, ...). The solution
can also be expressed as:

x̂ = arg min
u: ‖y−Au‖`2≤ε

‖u‖`1 . (3)

The signal d = Ψx can then be recovered as d̂ = Ψx̂.
In addition to this convex optimization approach (`1 mi-
nimization [28]), there also exist several iterative/greedy
algorithms such as Cosamp [29]. Such convex or greedy ap-
proaches are generally called the reconstruction algorithms.

It is shown in [32] that if the signal spectrum vector
x = Ψ−1d is sparse (Ψ−1 is the Discrete Fourier Trans-
form), then Φ = AΨ is essentially an M × N random
sampling matrix constructed by selecting M rows indepen-
dently and uniformly from an N × N identity matrix I.
This measurement matrix Φ can be trivially implemented
by pseudo-randomly sub-sampling the original signal d.
As we can adopt the inverse DFT matrix as the sparse
dictionary Ψ, the measurement matrix will be reflected by
sub-Nyquist sampling. For a time domain signal with the
length N , this sub-Nyquist measurement corresponds to a
smaller sampling number M < N . If the spectral sparsity
level K of x is known, one can choose the number of
measurements M to secure the quality of spectral recovery.

3.2 Periodic Sensing over Time
To support practical transmissions, the spectrum needs to
be continuously monitored. The spectrum sensing can be
carried out periodically as in Fig. 2, and the intervals bet-
ween sensing may also vary to speed up the detection as we
will show later. To not interfere with the legacy occupants,
secondary users need to timely evacuate the channel. Thus
the channel detection time (CDT) is defined as the maximum
allowed time for a sensing decision to be made.

We consider periodic in-band channel sensing, with the
sensing performed by an SU periodically during its trans-
missions. In each period Tp, an SU will use part of the time
Ts for sensing, and the remaining time for transmissions.
A CDT usually includes multiple sensing-transmission pe-
riods Tp. To enure a sensing decision to be made within a
CDT, we have Tp ≤ CDT so that the channel is sensed

at least once during a CDT period. Our major focus is to
develop an efficient wideband sensing scheme to enable
long-term channel monitoring at low cost. Our scheme will
facilitate SUs to continuously transmit data packets over
opportunistic spectrum, but the scheduling of transmissions
of SUs is beyond the scope of our work.

CDT

Tp

Ts

. . . . . .

time

Fig. 2. Channel detection time CDT , sensing period Tp, and sensing
time Ts

The sensing overhead (Rso) describes the proportion of
time dedicated to the sensing task and is defined as the ratio
between Ts and Tp, i.e., Rso = Ts/Tp. Sensing scheduling
will have a significant impact on sensing overhead. Instead
of making a sensing decision independently within each Tp,
to improve the sensing quality, we will take the sequential
detection using consecutive groups of samples.

In order to make more precise decision under low signal
to noise ratio (SNR) through sequential wideband sensing,
a straightforward method is to directly combine the com-
pressed sensing and the periodic sensing together. With this
method, Nyquist samples of PU signals can be recovered
through d̂ = Ψx̂ in each period with x̂ first obtained
from CS reconstruction using the sub-Nyquist samples, then
Nyquist samples are further processed through a sequential
detection algorithm to determine the channel occupancy
condition. Once detecting the existence of legacy users, the
occupation status of each sub-band is determined based on
the sensed power of certain sub-bands of the recovered x.

Recovering samples through CS in each small sensing
period Tp, however, would introduce a high computational
overhead. Instead, we propose a Sequential Wideband Com-
pressed Sensing (SWCS) algorithm which directly applies
compressed samples to make the sequential detection first,
and only after the wideband channel is determined to be
occupied by PUs will CS recovery be pursued. We will
introduce the details of our algorithm in the next section.

4 SEQUENTIAL WIDEBAND COMPRESSED SEN-
SING

In this section, we introduce the basic techniques we use for
sequential detection with compressed samples.

4.1 Sequential Detection with a Group of Sub-sampled
Data
Unlike the traditional one-time detection, in a sequential
detection, a detector sequentially observes data over time
and decides, at each step, whether it has collected sufficient
observations to make a reliable detection decision (e.g., if
PUs are present in the band sensed) that it can stop making
more observations; otherwise, the detector continues to the
next step with more observations till either a decision is
made or the detector has collected the maximum amount
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of data allowed. In this work, our major task is to detect if
there exist PU signals in the wide spectrum band and then
analyze the usage conditions of the wideband spectrum.

As a classic sequential detection method, Wald’s Se-
quential Probability Ratio Test (SPRT) [9] aggregates the
log-likelihood ratio of the i.i.d. samples till either of two
predefined constant thresholds is reached. For the given
false alarm and missed detection probabilities PFA and
PMD , among all the tests, Wald’s SPRT is proven to require
the fewest samples in one test run on average. In this work,
we propose the use of grouped-compressed-data SPRT (GCD-
SPRT), with data samples within each Ts being grouped
together to form a “super-sample” to reduce the effect of
short-term channel randomness as a result of multi-path
fading.

Our proposed scheme takes advantage of compressed
sensing to reduce the sampling cost. A major difference
between our work and related work lies in two aspects: 1)
compared to the conventional sequential detection, we use
compressed samples instead of raw samples from Nyquist
sampling in the detection process, which avoids using the
high end A/D in wideband sensing; and 2) rather than
straight-forwardly recovering data through CS for each
sampling group and using the recovered Nyquist-rate sam-
ples in the sequential detection, our scheme only performs
spectrum recovery when the spectrum analysis is needed
after having determined the spectrum is occupied or likely
to be occupied, which avoids the high recovery overhead.
In this section we first introduce the basic procedures of our
GCD-SPRT and then analyze its features.

4.1.1 Procedures of GCD-SPRT
The basic steps in GCD-SPRT can be summarized as follows:

Step 1: Find the power y(x) from M sub-Nyquist
samples.

If there is any PU signal within the wideband of our
interest, the sub-sample vector will be expressed as in
Eq. (1). The normalized power of M sub-Nyquist samples
contained within a sensing block Ts is

z(y) =

∑M
i=1 y

2
i

Ts
, (4)

where yi denotes the individual samples within Ts. Recall
that M = fsubTs, then Eq. (4) can be rewritten as

z(y) =
fsub
M

M∑
i=1

y2i . (5)

In practice, the number of samples taken within a single
Ts is fairly large. For example, for Ts = 1 ms and a
0∼500MHz wideband, the Nyquist sample number will be
N = 106; and even if we perform sub-sampling with 1/10
of the Nyquist sampling rate, we will have 105 sub-Nyquist
samples. With the Law of Large Numbers (M � 10), we
have

z(y)
i.i.d.∼

H0 : N (fsubPn,
(fsubPn)

2

M ),

H1 : N (fsubPn(1 + SNR), (fsubPn)
2(1+SNR)2)
M ).

(6)
Here, SNR is defined as the ratio between the nominal
signal power P and local noise floor σ2 = PnW , where

Pn is the noise power spectral density (PSD) and W is the
bandwidth. The power samples taken with the duration
Ts is approximately Gaussian regardless of the original
distribution of the PU signal.

If Nyquist-equivalent samples are recovered from the
sub-samples by CS, then similar to Eq. (4), the power of
N recovered Nyquist-equivalent samples within Ts is

znyq(y) =

∑N
i=1 y

2
i

Ts
, (7)

where yi denotes the Nyquist-equivalent samples within Ts.
The distribution of znyq(y) is a little different from that in
Eq. (6). Specifically, fsub is substituted by Nyquist rate fnyq ,
M is substituted by Nyquist sample number N , and the
mean of the Gaussian distribution will also be different due
to the fact that the recovered samples are essentially the
estimated PU signal samples:

znyq(y)
i.i.d.∼

H0 : N (0,
(fnyqPn)

2

N ),

H1 : N (fnyqPnSNR,
(fnyqPn)

2(1+SNR)2)
N ),

(8)
We’ll introduce later in our scheduling design when

to use compressed samples and when to use recovered
samples to perform GCD-SPRT.

Step 2: Derive the test statistic for each group of
samples.

The test static T (z(y)) is defined as the log-likelihood
ratio (LLR) of the power sample and represented as

T (z(y)) = ln
f1(z(y))

f0(z(y))
, (9)

where f0(·) and f1(·) are the probability density functions
(PDFs) under H0 and H1, respectively, as indicated in Eq.
(6). As we will deal with the power sample z(y) directly, for
ease of presentation, we will simply refer z(y) as z.

Step 3: Spectrum occupancy decision with the aggre-
gate test statistic T .

Each T from Step 2 corresponds to one group of data.
For the s-th group, we have

T (zs) = ln
f1(zs)

f0(zs)
. (10)

By accumulating T (zs) (s = 1, 2, ...) sequentially, the aggre-
gate test statistic up to the s-th group is

Ts =
s∑

k=1

T (zk) =
s∑

k=1

ln
f1(zk)

f0(zk)
. (11)

To determine the spectrum occupancy status, we choose the
two decision thresholds as those in Wald’s SPRT:

A = ln
PMD

1− PFA
, and B = ln

1− PMD

PFA
. (12)

The decision rule for the SU is

• if Ts > B, it decides that the PU has reclaimed the
channel.

• if Ts < A, it decides that the channel is still available;
• otherwise, it goes to Step 1 to continue to sample

another group of power data, and update Ts+1 using
Eq. (11).
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The stopping time/run length S is defined as the minimum
number of steps after which one of the two decision thres-
holds is first crossed; that is,

S = min{s : either Ts < A or Ts > B}. (13)

A smaller S means that the SU can make its detection
decisions faster, which in turn guarantees that the SU can
(1) spend less time performing detection, (2) evacuate the
channel in a timely fashion so as not to severely interfere
with the reappearing PUs, and (3) dedicate more time to
data transmission for enhanced throughput.

4.1.2 Analysis on Run Length and Overhead

In this subsection, we provide a list of analytical results for
the sequential detector as described in the last section, in-
cluding the expected values of the test statistics, the average
run steps and the average sensing overhead. The proofs in
this subsection are omitted due to space constraint.

Proposition 1. Each of the i.i.d. test statistics T (z) has the
expected values

m0 , E[T (z)|H0]

= −M − 1

2

SNR2

(1 + SNR)2
+

SNR

(1 + SNR)2
− ln(1 + SNR),

(14)

and

m1 , E[T (z)|H1]

=
M + 1

2
SNR2 + SNR− ln(1 + SNR), (15)

under H0 and H1, respectively.

The above m0 and m1 are the average increments at
each step of the sequential test. For a given M , both values
depend solely on SNR. The average speed of the sequential
test has a direct bearing on the separation of the two under-
lying distributions. In fact, thanks to the independence of
different sample groups, we have:

−I01 = E
[
ln
f1(T )

f0(T )
|H0

]
=

∫
f0(u) ln

f1(u)

f0(u)
du. (16)

Intuitively, as the SNR increases, the two hypotheses can be
separated from each other faster.

By plotting both m0 and m1 under variable SNR va-
lues, we observe that |m0| < |m1| and both |m0| and
|m1| increase monotonically with SNR. With low channel
SNRs, that is, SNR → 0+, we have 1 + SNR ≈ 1 and
ln(1 + SNR) ≈ SNR. Plugging these two equations into
Eqs. (27) and (15), we have

m0 ≈ −
M

2
SNR2, and m1 ≈

M

2
SNR2. (17)

That is, the absolute values of the average increments under
H0 and H1 are roughly the same when the channel SNR is
low; in other words, the underlying sequential test runs at
the same rate under both hypotheses.

In general, the exact distribution of the test statistic
is difficult to derive; however, when the SNR is low, the
distributions under H0 and H1 can be approximated as
Gaussian, as shown below.

Proposition 2. Under low-SNR conditions, we have

T (z)
i.i.d.∼

{
H0 : N (m0, 2m1),

H1 : N (m1, 2m1),
(18)

in which m0 and m1 are given in Eq. (17).

From Eq. (18), the test statistics under H0 and H1 are
symmetric around zero: they have equal variances and
opposite means. This means it would take, on average, the
same number of steps for a sequential test to hit either the
lower or upper decision boundary.

Next we consider the average run length – the average
number of sample groups that need to be collected in order
to reach either decision threshold.

Proposition 3. Regardless of the SNR value, the average run
lengths S for the SU to make a decision on the channel state under
H0 and H1 are

E[S|H0] =
PFAB + (1− PFA)A

m0
(19)

and E[S|H1] =
(1− PMD)B + PMDA

m1
(20)

respectively. From Eqs. (12), (19), and (20), when PFA =
PMD , we have A+ B = 0 and E[S|H0] = E[S|H1]. That is,
the sequential test has a symmetric structure and it takes an
equal number of steps on average to reach either decision
boundary. If more strict requirement is imposed on PMD to
ensure the interference minimal to the PUs, that is, PMD �
PFA, we would have |A| >> |B| ≈ − lnPFA. In this case,
even with nearly identical increments |m0| = |m1|when the
channel SNR is very low, the upper threshold takes much
less time to be crossed. Thus, when the PU is indeed present,
the SU is expected to quickly make the correct decision.

From Eqs. (17), (19), and (20), the expected numbers of
samples for running one sequential test under H0 and H1

with low channel SNRs are

M ∗ E[S|H0] ≈ −2 ((1− PFA)A+ PFAB)

SNR2
(21)

and M ∗ E[S|H1] ≈ 2 ((1− PMD)B + PMDA)

SNR2
(22)

respectively. If both Eqs. (21) and (22) are multiplied by the
sampling period – the inverse of the sampling frequency
– we have the total expected time spent on sensing. For a
given time frame to complete the detection task, say CDT ,
the expected sensing overhead ρ under both hypotheses can
also be obtained:

E[ρ|H0] = Ts/CDT ∗ E[S|H0], (23)
E[ρ|H1] = Ts/CDT ∗ E[S|H1]. (24)

To summarize the results in this subsection, for a single
run of the GD-SPRT, we have the following relationships:
For a given channel SNR value, the number of samples M
and the expected run length E[S] are inversely proportional
under either hypothesis; as such, the expected sensing over-
head E[ρ|H0] and E[ρ|H1] are fixed. The overhead under
each hypothesis is in turn proportional to SNR−2. If the
channel SNR is reduced by 5 dB, for instance, the average
number of samples required to maintain the same sensing
accuracy level would be 10 times the original.
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4.2 Backward GCD-SPRT with Scheduling

So far we have only introduced our group-based sequential
test without considering how the groups of data can be
scheduled for sampling over time. If the GCD-SPRT is
applied over time for periodic sensing, the sensing process
may have a structure shown in Fig. 3 (a). Time is divided
into non-overlapping units, each with length CDT . The
GCD-SPRT runs within each window till either threshold
is crossed. As long as an H0 decision is made, the rest of the
CDT period can be dedicated to uninterrupted secondary
data transmission.

As no samples are taken after a decision is made within
a period, if some PUs resume the usage of their channels in
the remaining part of the period, they will not be detected
until enough samples are taken in the new period. This not
only introduces a delay in the decision making, but the
overall duration from the reappearance of a PU until the
decision making may exceed the CDT limit.

In contrast to the scheme in Fig. 3 (a), in our design, after
collecting new sensing data after every Tp, the SU updates
its sensing decision. That is, we let the CDT-window slide
forward by Tp after a new group of data has been collected,
as shown in Fig. 3 (b). As the CDT-window moves forward,
a GCD-SPRT can run backward at each position of the CDT-
window, starting from the latest group of data. Since the
newest data within the current window might be generated
under a different distribution from the older ones, by having
each sequential test run backward, we reduce the impact
of the older sensing data in the CDT-window that might
obscure the effect of the newer ones so that a possible status
change can be detected faster.

CDT CDT

PU appears
Max delay for 

detecting PU

H0 H1

CDT

H0 H1

(a)

(b)

Fig. 3. Detection delay (purple arrows) with sensing scheduling (a)
forward, non-overlapping GCD-SPRT; (b) backward, overlapping GCD-
SPRT

Both the forward and backward running schemes des-
cribed above are illustrated in Fig. 3. Here, the PU reap-
pears right after the sensing action ended in one of the
non-overlapping CDT periods. In (a), as the channel goes
undetected until the next window, the evacuation delay
of the SU may exceed the required length CDT , thereby
violating the system requirement. On the other hand, in
(b), the returning PU might be detected earlier before the
evacuation deadline, thanks to the closer intervals between
adjacent sensing groups. In both schemes, the interval Tp
can be determined based on N , which is in turn estimated
based on the given thresholds of false alarm (PFA) and
missed detection (PMD) probabilities. The schedule is not
changed during the sensing process. In our work, we pro-
pose further actions taken by the SU, where the sensing

frequency (determined by Tp) is increased after a possible
PU return is suspected, which results in even faster channel
evacuation for in-band sensing. We defer the detailed design
of this change detection to Sec. 5.
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Fig. 4. Block sparse model.

5 QUICK CHANGE DETECTION

It is important to quickly detect the “change point” where
the wideband state shifts from H0 to H1 due to PU reap-
pearance. Generally, CRs are required to evaluate channel
within a given time duration. In order to speed up the
change point detection, we propose an in-depth sensing
method in which a CR adjusts its sensing frequency and
method to ensure more rapid and precise detection after
suspecting the possible H0-to-H1 transition.

5.1 Detection of Possible Change

From Eq. (6), the mean value under H1 is (1 + SNR)
times that under H0, where SNR is defined as the ratio
between the nominal signal power P and local noise floor
σ2 = PnW . In a low-SNR case, the mean under both H1

and H0 would be very close within a sensing block time Ts.
By collecting data from different sensing blocks and com-

paring them, the SU may be able to gather information that
first indicates (1) a sufficient number of test statistic values
have been collected that the total shifts towards either of
the detection thresholds, and (2) this shift is consistent,
whereupon a change in channel status is suspected. We set
the following criteria to determine when the in-depth sensing
should be triggered to speed up the change detection:

Tc = max{T̄new − T̄old} ≥ δ(nnew
B

n
− nold

A

n
)

= δ(nnewB − noldA)/n, (25)

where Tc is the test statistic that will trigger the in-depth
sensing; T̄new and T̄old are the summation of the newer and
older test statistics in the CDT-window respectively, and
nnew and nold (n = nnew + nold) are the numbers of test
statistics classified as newer and older in the CDT-window
respectively; B and A are the thresholds in Eq. (12), and
δ is the parameter that controls the sensitivity of an SU to
the shift. With a smaller δ, the SU is more sensitive to the
changes in the observed data.

Now we explain how to classify test statistics as “new”
and “old”. A test statistic is obtained within a Ts. For a given
set of test statistics in the CDT-window, the SU starts with
the most recent one as “new” while setting the remaining



8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 4, APRIL 2018

sensing blocks in the window as “old” and calculates their
difference; then the new test statistic set includes the second
most recent test statistic, with the “old” minus this test
statistic, so the numbers of newer test statistics and older
ones are increased and decreased by one respectively. This
test continues until the data from a CDT-window have all
been checked. If Eq. (25) is still not met, then regular GCD-
SPRT-based sequential detection is pursued; otherwise, the
in-depth sensing is performed.

Despite their different goals, the regular and change
detection processes are integrated into a single framework in
our Compressed-Sensing-based sequential periodic sensing
design. During regular sensing, as a new group of energy
samples is taken, the test statistic is calculated.

5.2 In-depth Sensing
An SU will take the in-depth sensing after an H0/H1 state
change is suspected. There are many ways to schedule the
in-depth sensing, as long as the sensing process can be
carried out more accurately and robustly than the regular
periodic sensing process. In our design, we not only adapt
the sensing frequency by adjusting Tp but also use the re-
covered samples instead of compressed samples to facilitate
more accurate sequential detection.

The backward running GCD-SPRT with the schedule
change is illustrated in Figure 5, where we can observe the
increase of sensing frequency when a change is suspected af-
ter sufficient data have been accumulated. An SU can adjust
its sensing period from Tp to Tp,1 and then from Tp,1 to Tp,2
(Tp > Tp,1 > Tp,2), in order to expedite the final detection
decision. Sensing scheduling enables the SU to gather more
samples when possible PU appearances are suspected and
thus determine the occupancy of the spectrum in a timely
manner. Next we discuss some issues to be considered.

5.2.1 What value should the new Tp be adjusted to
As discussed earlier, due to many higher-layer concerns
such as coordination and synchronization, generally Tp is
set to a discrete value in a practical system.

The sensing period Tp can be set according to the number
of steps needed to reach one of the thresholds:

Tp =
CDT

A
m0, (26)

wherem0 is defined as the average increment of test statistic
T (z) at each step of the sequential test under H0:

m0 , E[T (z)|H0]

= −M − 1

2

SNR2

(1 + SNR)2
+

SNR

(1 + SNR)2
− ln(1 + SNR).

(27)
Similar to the Tp setting in 802.22 WRAN, in our sensing

scheduling, we choose an appropriate discrete Tp that is the
integer multiples of a MAC frame size FS. In general Tp
cannot be too large or too small. If it is too large, higher
sensing delay will be introduced; if too small, the temporal
diversity in periodic sensing model is not effectively exploi-
ted and the sensing overhead will also be high.

To speed up the sensing process during in-depth sensing,
we set the multiple to be a predefined small value. We will
study the impact of the Tp adjustment on performance in
simulations.

PU appears
Max delay for 

detecting PU

CDT

H0 H1

TP,1 TP,2

Fig. 5. Detection delay (purple arrows) with sensing scheduling: bac-
kward, overlapping GCD-SPRT with short-term Tp adjustment

5.2.2 When to recover samples in order to make decision
of sequential detection
There are two major benefits associated with the recovery of
the Nyquist-equivalent samples from compressed samples:
(1) we can have more reliable test statistics to conduct
SPRT, and (2) if a wideband is determined to have PU
occupancy, CS recovery can help analyze the spectrum
usage and determine which sub-bands are occupied by
recovering the spectral domain signal. Trade-offs exist in
selecting an appropriate CS recovery time: on the one hand,
if an SU recovers samples too soon, it may experience a
higher recovery overhead; on the other, if CS recovery is
pursued too late, it may result in too long a sensing delay.

We consider the scheme of shift-window-based reco-
very that is taken after suspecting a channel status change.
Samples are not recovered and used to make decisions until
the CDT-window slides forward by the original Tp. If the
new Tp is smaller than the old one, it is likely that more
than one group of data need to be recovered to serve as test
statistics. The newly recovered test statistics are aggregated
with the other groups of recovered test statistics in the CDT-
window to perform the sequential detection. This method
essentially allows SU to collect more groups of recent data
for a decision.

We will discuss how to effectively recover the wideband
spectrum from sensed samples in the next section.

6 RECOVERY OF BLOCK-SPARSE WIDEBAND
SPECTRUM

CS recovery from the sparse samples is needed in in-
depth sensing phase to make quick detection of spectrum
occupation change, and also needed to determine the de-
tailed spectrum occupancy conditions inside the wideband.
Instead of simply using traditional CS recovery algorithms
such as [28] and [29], we design our recovery algorithm
based on the wideband signal’s feature, i.e., block sparse
properties of the wideband spectrum.

In our framework, the measured signal in the frequency
domain exhibits the characteristics of block sparsity, as
shown in Figures 1 and 4, which motivates us to use the
block sparse properties to help reconstruct the signal.

6.1 Weighted Block Recovery

To exploit the block structure, instead of solving a `1 optimi-
zation problem in (2), the following problem can be solved:

min
n∑
i=1

‖Xi‖2

subject to Ax = y, (28)

where Xi = x(i−1)d+1:id. Figure 4 illustrates the main idea
of block partition. A vector x represents the sparse power
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Algorithm 1 SWCS
1: Initialization: the pseudo-random sub-Nyquist measu-

rement matrix Φ as described in Section 3.1
2: For each sensing block Ts, sub-sample with Φ, collect

sub-Nyquist samples y expressed in Equation (1).
3: Calculate test statistics described in GCD-SPRT and

perform change detection.
4: if Equation (25) is not met then
5: Perform regular Backward GCD-SPRT with fixed Tp

described in Section 4 until the decision on PU status
can be made.

6: else
7: Change is suspected and in-depth sensing is trigge-

red. Adapt sensing period Tp.
8: Perform CS recovery with a traditional CS algorithm,

e.g. `1 minimization in [28] and Cosamp in [29].
9: Use the recovered Nyquist-equivalent samples in Bac-

kward GCD-SPRT for the sequential sensing until the
decision on PU status can be made.

10: end if
11: if PU is detected to be present then
12: if If in-depth sensing has not been triggered thus there

is no CS recovery then
13: Reconstruct the most recent group of samples to

analyze the spectral usage of each sub-band in the
wideband.

14: else
15: The sub-bands recovered in multiple periods du-

ring in-depth sensing are fused to analyze the
spectral usage of each sub-band in the wideband
(Section 6.2).

16: end if
17: end if

spectrum of the wideband with nd elements. It is partitioned
into n blocks, each consisting of d elements. Xi is the i-
th spectrum block. A is the sensing matrix, and its i-th
partition Ai corresponds to the i-th spectrum block Xi.

To further improve the reconstruction performance,
instead of equally treating all the channel blocks, we give
a block with potentially higher energy a lower weight so
its recovered gain value is less restricted. We solve the
following problem in our design:

min
n∑
i=1

wi‖Xi‖2

subject to Ax = y, (30)

where wi is a weighted factor for block Xi.
We propose a weighted-block-sparse recovery algorithm

in Algorithm 2 to assign weights to each block and update
the weights through iteratively solving (30). Weights are
increased for the blocks not likely to contain many non-zero
elements, so that when solving the minimization problem in
(30) those likely-zero blocks can be dragged down; for the
blocks that are likely to be non-zero, weights are reduced to
relax those blocks. Our algorithm improves the wideband
sensing performance from two aspects: (a) noise reduction
by disregarding data from likely-zero blocks (frequency
bands) as in Algorithm 2; (b) weight update through each
iteration to improve the accuracy.

Algorithm 2 Reconstruction of block sparse signals
1: Initialization: measured vector y, size of blocks d, and

measurement matrix A.
2: if Termination condition is not met then
3: Solve the following optimization problem using semi-

definite programming

minx

n∑
i=1

wi‖Xi‖2

subject to Ax = y,x = [X1,X2, ...,Xn]. (29)

4: Sort Xi such that ‖Xj1‖2 ≥ ‖Xj2‖2 ≥ ...‖Xjn‖2.
5: Update Â to be the submatrix of A containing co-

lumns of first (K − 1)d rows of A that corresponds to
the blocks j1, ..., jK−1.

6: Update y ← Âx (Disregard the weakest block infor-
mation from measurements.)

7: Calculate x = Â−1y = [X1,X2, ...,Xn].
8: For each block Xi, count the number of x entries that

are above a predetermined threshold mi.
9: Update the weight of each block wi: wi ←

∑n
i=1mi

mi
.

10: end if
11: Output the recovered signal x = [X1,X2, ...,Xn].

6.2 Determination of wideband power spectrum usage

After detecting that PUs are present in the wideband
through sequential detection, we need to determine which
subbands are occupied. If the PUs are detected without in-
depth sensing in Section 5.2 (e.g., the PUs are likely to be
either absent from the wideband or have already been pre-
sent in the wideband before detection starts), we can apply
the group of compressed samples in the most recent sensing
period Tp to reconstruct the wideband power spectrum
usage. If in-depth sensing is triggered and compressed
samples in different sensing period Tp are reconstructed to
facilitate the sequential detection, it remains an issue how to
fuse the recovery results from Tp to determine the wideband
power spectrum usage.

In CS recovery, we first recover the spectrum domain
signals, which can form the map to indicate which sub-
bands are occupied. The Nyquist-equivalent samples can
be obtained through the inverse DFT. A recovery example
under SNR = −5dB is shown in Fig. 6. An SU analyzes the
occupancy states of the sub-bands based on the recovered
spectral energy level.

After a change is suspected, a set of spectral domain
signals will be recovered before the final sensing decision
is made, each spectrum signal is reconstructed from the
compressed data of one Tp. Thus, there will be a set of
spectral maps accordingly. In addition, when SNR is rela-
tively low (e.g., −5dB as in Fig. 6), the recovered spectrum
contains some incorrect spikes due to noise. Traditional CS-
based wideband analysis usually assumes relatively high
SNR (e.g., 20dB), which may not be practical. In the case of
relatively low SNR, to alleviate the effects of noise and make
the sub-band analysis more accurate, multiple recoveries
from different sensing periods can be applied to perform
the sequential detection on spectrum occupancy conditions.
There needs a way to fuse these recovered spectrum maps.
We consider two candidate fusion schemes:
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Fig. 6. CS recovery in a Ts under SNR = −5dB

(a) Data Fusion. Regardless of the algorithm assumed for
initiating CS sample recovery, an SU calculates the average
energy of the set of recovered power spectrum data. The
average energy value of each sub-band is compared with
an energy threshold. A binary map is applied to represent
if a sub-band is occupied, one if a sub-band has its energy
above the threshold, 0 otherwise.

(b) Decision Fusion. The spectrum energy map from
each recovery is applied to determine which sub-bands are
occupied first. Then the SU merges the maps by OR rule,
AND rule, or majority rule, among others.

In this paper we consider signal recovery. For sub-band
status analysis purposes, support recovery may be enough if
the goal is only to identify whether the sub-band is occupied
rather than the specific power level in that sub-band. Many
references (e.g., [33] demonstrate that the support recovery
is generally more robust to noise and errors than the signal
recovery. Support recovery methods can be trivially imple-
mented on top of our design.

6.3 An Integrated Framework

We have introduced different design components, and we
will now present the integrated framework. To perform an
efficient sequential detection, our algorithm from Section 4
monitors all the data within the current CDT-window and
performs the change detection in Section 5 to determine
whether the in-depth sensing in Section 5.2 should be trigge-
red. If not, the regular sensing is performed; otherwise, the
in-depth sensing is run until either an H0 or H1 decision is
made and the sensing period is reset to the original level. If
H1 decision is made, the power spectrum of the wideband
will be analyzed to determine the state of each sub-band.
The power spectrum analysis is done through the recovery
of the sparse spectrum signal from the sub-sampled data, for
which we apply a weighted block-sparse recovery algorithm
in Section 6 instead of using the traditional compressed sen-
sing reconstruction solution. Based on different CS recon-
struction algorithms, we propose two frameworks summa-
rized in Algorithm 1 and Algorithm 3. Although both have
our sequential detection structure, the difference between
the two is that Algorithm 1 (SWCS: Sequential Wideband
Compressed Sensing) exploits the traditional CS recovery
algorithm without considering the block sparsity, whereas
Algorithm 3 (SWCS-BS: Sequential Wideband Compressed
Sensing with Block Sparsity) uses our proposed weighted
block-sparse CS recovery algorithm in Algorithm 2. We

Algorithm 3 SWCS-BS
1: Initialization: the pseudo-random sub-Nyquist measu-

rement matrix Φ as described in Section 3.1
2: For each sensing block Ts, sub-sample with Φ, collect

sub-Nyquist samples y expressed in Equation (1).
3: Calculate test statistics described in GCD-SPRT and

perform change detection.
4: if Equation (25) is not met then
5: Perform regular Backward GCD-SPRT with fixed Tp

described in Section 4 until the decision on PU status
can be made.

6: else
7: Change is suspected and in-depth sensing is trigge-

red. Adapt sensing period Tp.
8: Perform CS recovery with the proposed block sparse

reconstruction algorithm in Algorithm 2.
9: Use the recovered Nyquist-equivalent samples in Bac-

kward GCD-SPRT for the sequential sensing until the
decision on PU status can be made.

10: end if
11: if PU is detected to be present then
12: if If in-depth sensing has not been triggered thus there

is no CS recovery then
13: Reconstruct the most recent group of samples to

analyze the spectral usage of each sub-band in the
wideband.

14: else
15: The sub-bands recovered in multiple periods du-

ring in-depth sensing are fused to analyze the
spectral usage of each sub-band in the wideband
(Section 6.2).

16: end if
17: end if

will compare the performances of SWCS and SWCS-BS in
simulations.

7 SIMULATIONS AND RESULTS

In this section, we conduct MATLAB simulation studies
to demonstrate the performance of our design. We first
investigate the performances of SWCS to evaluate the ef-
fectiveness of our in-depth sensing scheduling, and then
assess SWCS-BS to see the advantages of exploiting block-
sparse properties of wideband.

We will compare our scheduled sequential wideband
sensing design with non-scheduled method and also look
into some peer schemes to investigate the advantages of
SWCS scheduling. As our framework focuses on scheduling
of sequential sensing, its compressed sensing component
does not rely on any specific CS-based spectrum detection
scheme. We do not compare SWCS with various existing
wideband sensing schemes on CS sampling and recovery
design, but rather focus on evaluating the benefits as a result
of sensing scheduling using a basic CS algorithm.

7.1 Simulation Settings

7.1.1 System Setup
We consider a wideband of 500 MHz, which can be virtually
divided into 50 sub-bands, each occupying 10 MHz. The
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Fig. 7. Effects of in-depth sensing on decision delay
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Fig. 8. Effects of in-depth sensing on decision failure

−23.8 −22.8 −21.8 −20.8 −19.8 −18.8
0

0.5

1

1.5

SNR(dB)de
te

ct
io

n 
de

la
y 

(in
 u

ni
ts

 o
f C

D
T

)

 

 

sched−2−1
sched−2−2
sched−2−3
sched−2−4

Fig. 9. Effects of change detection on decision delay
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Fig. 10. Effects of change detection on decision failure

Nyquist sampling rate is 1 GHz. A PU group signal is
a wideband signal that spreads over the wideband, but
may only occupy a small portion of the wideband, i.e., the
number of occupied sub-bands is much smaller than the
total number of sub-bands monitored. The noise is assumed
to be circular complex AWGN, i.e., n ∼ N (0, η2). SNR
values will be given in specific tests.

For the periodic sensing model, we set the parameters
similarly to the requirement in IEEE WRAN 802.22. The
value of Ts is fixed, while the length of Tp can be changed,
and sensing scheduling is applied to choose an appropriate
discrete Tp. In 802.22 WRAN, Tp may only take values that
are multiples of a MAC frame size 10 ms due to many
higher-layer concerns such as synchronization. Specifically,
we set the sensing block duration Ts = 20µs, with the
channel detection time CDT = 40ms and the required
PFA = PMD = 0.01. Rather than using the Nyquist
sampling rate fnyq = 1 GHz, we adopt the sub-Nyquist
sampling rate fsub = 0.25 GHz. The number of compressed
samples in a sensing block Ts is M = fsubTs = 5000,
whereas the Nyquist number N = fnyqTs = 20, 000. An
example of the wideband signal spectrum, noisy spectrum
and recovered spectrum using CS is presented in Fig. 6,
where the SNR is -5 dB. The wideband signal has three
10 MHz sub-bands occupied with the center frequencies of
75, 125 and 225 MHz respectively.

We also set the MAC frame size FS = 200µs. Table
1 lists some default normalized Tp values (with respect to
the MAC frame size FS) under a range of SNR levels as
determined by Equation (26) and (27).

TABLE 1
Default sensing scheduling

PU energy level (dB) -23.8 -22.8 -21.8 -20.8 -19.8 -18.8
Tp/FS 5 7 12 19 29 46

7.2 Performance and Analysis
7.2.1 Change Detection and In-depth Sensing Action
A list of change detection thresholds and in-depth sensing
action is given in Table 2. From the table, we can see the
schemes differ by the factor δ, which controls the sensitivity
of a SU to the change of the sampled group of data in order

to trigger the in-depth sensing. Scheme “sched1-4’ does not
perform the in-depth sensing. In the schemes “sched1-1” to
“sched1-3”, the change threshold factor δ in Equation (25)
is kept the same and the Tp adjustments are different in the
in-depth sensing, while in schemes “sched2-1” to “sched2-
3”, δ is different and Tp adjustment is set the same. Note
that all the listed schemes are in the model of moving-CDT,
backward GCD-SPRT, and if in-depth sensing is triggered,
no decision will be made till next original Tp. In-depth
sensing period T elevp is immediately reduced to a certain
pre-determined value, but no decision is made until the
original scheduled Tp time is reached; in other words, the
in-depth sensing serves to provide more data.

TABLE 2
In-depth sensing scheduling

notation explanation
“sched1-1” δ = 2, T elev

p ← 2FS

“sched1-2” δ = 2, T elev
p ← 3FS

“sched1-3” δ = 2, T elev
p ← 4FS

“sched1-4” w/o change detection or in-depth sensing
“sched2-1” δ = 1, T elev

p ← 2FS

“sched2-2” δ = 2, T elev
p ← 2FS

“sched2-3” δ = 3, T elev
p ← 2FS

“sched2-4” w/o change detection or in-depth sensing

In Figs. 7 and 8, the effects of different in-depth sche-
duling with SWCS are investigated. Two metrics are used
to analyze the effectiveness of sensing scheduling: decision
delay, defined as the average time taken to make the final
decision on PU’s presence after its return, and probability of
decision failure, the probability that the PU’s presence is still
not detected when the CDT time limit has reached since the
appearance of PU. As expected, both metrics decrease as Tp
is reduced to accelerate the sequential sensing process and
gather more data for faster decision. Our proposed scheme
“sched1-1” greatly outperforms the “sched1-4” (GCD-SPRT
without in-depth sensing for change detection), by more
than 50% and 90% in terms of the detection delay and proba-
bility of failure, respectively. This indicates that scheduling
change detection and in-depth sensing are beneficial since
the extra sensing effort is likely to expedite the decision
making by more quickly leading the sequential test out of
the intermediate zone between the thresholds A and B.
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In Figs. 9 and 10, the effects of different thresholds for
triggering in-depth sensing with SWCS are investigated.
The trend in detection failure probability is the same as
that in the average detection delay. As the average delay
goes up, the PU will have a smaller chance to be detected
by the CDT deadline. As the threshold factor δ increases,
the decision delay and probability of detection failure get
worse. The smaller δ is, the easier it is for the SU to quickly
trigger in-depth sensing. We observe that the scheme with
default parameters “sched2-2” (δ = 2) greatly outperforms
the baseline scheme without change detection and in-depth
sensing “sched2-4”. Note that when δ goes to infinity, it
is equivalent to the cases where in-depth sensing actions
will never be triggered. Interestingly, we observe that the
performance degrades somewhat as SNR increases. With
a higher SNR, the default initial Tp is larger (see Table
1) which introduces a higher initial delay before an SU
responds by triggering the in-depth sensing, which also
affects the probability of decision failure.

7.2.2 Spectrum Analysis and Fusion
For schemes except SWCS-BS, we use `1-magic as our re-
construction algorithm [28], although some other modified
reconstruction algorithm can also be used, such as some
greedy algorithms proposed in [34]. For SWCS-BS, we ex-
ploit the proposed block-sparse CS recovery algorithm to
reconstruct the wideband power spectrum.

To assess the effects of different fusion schemes that
merge the CS-recovered spectrum from each sensing time
block Ts, we evaluate in SWCS framework the performances
of different fusion schemes under SNR = −5dB in Fig. 11.
The false alarm/missed detection ratio is defined as the
number of false-alarmed/miss-detected sub-bands divided
by the number of actually occupied sub-bands. With the
simple OR rule, large noise effects result in high false alarm
ratios, as a sub-band is considered to be occupied as long
as the sub-band is estimated to be occupied in any sensing
period. The false estimation in a period may be caused by
an abrupt noise. Nevertheless, the missed detection ratio
is very low. The AND rule also cannot handle the abrupt
fluctuations well, and it has high missed detection ratio
because it only regards the sub-band to be occupied when
the sub-band is estimated to be occupied in all the sensing
periods, although this can result in a small false alarm ratio.
The majority decision fusion (a sub-band is finally identified
as occupied if more than half of the spectrum maps collected
indicate so) and data fusion perform better in balancing
the false alarm ratio and missed detection, because these
two deal with the wrong sub-band status more softly in
the merging process. The majority decision fusion is slightly
worse than the data fusion which fuses the spectrum energy
values, rather than 0/1 decisions, in each map.

7.2.3 SWCS Peer Schemes
A list of peer algorithms along with the proposed SWCS is
shown in Table 3. The peer schemes may differ in one or
more aspects from the proposed SWCS and SWCS-BS. We
compare these peer schemes using the following metrics:
sampling overhead, recovery overhead and probability of
decision failure. Sampling overhead is defined as the ratio
of total number of actual samples (may be sub-Nyquist,

Nyquist or both) over the total number of samples required
by Nyquist sampling theorem. Recovery overhead is defined
as the number of Tp periods to incur CS recovery over the
total number of Tp periods. Decision delay is defined as the
average time overhead used to make final decision of PU’s
presence after its return. As there are no existing schemes
studying the continuous sensing over wide spectrum band,
we compare the performance of our work with three peer
schemes: “sequential w/o CS”, “periodic CS” and “sequen-
tial with CS”. We set SNR = −18.8dB in Fig. 12, where the
decision delay is normalized as the ratio of the actual delay
of each to the maximum of the four.

The scheme without CS has a high overhead due to the
Nyquist sampling, although it has no CS recovery overhead.
The detection delay of our proposed SWCS is comparable
to that of sequential without CS but with more than 60%
less sampling overhead. SWCS also has at least 50% lower
recovery overhead compared to various CS-based schemes,
as its only performs recovery when certain conditions are
met. The periodic CS scheme has a small sampling overhead
but performs worse than others in terms of the decision
delay because it lacks scheduled sequential detection that
helps speed up the decision process. The sequential with
CS scheme performs slightly better than SWCS in terms
of the sampling overhead and decision delay but has large
recovery overhead. To conclude, our SWCS can achieve a
satisfactory trade-off between sampling overhead, recovery
overhead, and decision delay.

TABLE 3
SWCS and SWCS-BS peer schemes comparison

notation explanation
“SWCS”,“SWCS-BS” default δ = 2, T elev

p ← 2FS
“sequential w/o CS” SWCS without CS/with Nyquist sampling

“periodic CS” periodic detection w/o sequential analysis
“sequential with CS” SWCS with always-recovery in GCD-SPRT

OR AND majority data fusion
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Fig. 12. Comparison of peer schemes

7.2.4 Block-sparse recovery (SWCS-BS)
We have evaluated the advantages of our proposed SWCS.
Now we will assess SWCS-BS. Recall that the difference
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between our proposed SWCS and SWCS-BS is the latter
exploits the block-sparse properties of the wideband. The
performances of SWCS (sched-1-1), SWCS-BS and a baseline
scheme (sched-1-4) are depicted in Figure 13 and 14.

In Figure 13, in terms of the detection delay, SWCS-BS is
able to obtain a maximum of 40% improvement compared to
SWCS (at SNR = −18.8dB). Compared to SWCS, SWCS-BS
exploits the block-sparse characteristics of wideband power
spectrum to improve the reconstruction accuracy under
given measurements, thus enabling the SU to detect possible
PU activities more rapidly and precisely.

Since the accuracy of detection is significantly impacted
by CS reconstruction, SWCS-BS is expected to outperform
SWCS and achieve a smaller detection failure probability.
As validated in Figure 14, SWCS-BS can achieve an impro-
vement as large as 50% (when SNR = −18.8dB) compared
to SWCS in terms of detection failure.

Figure 13 and 14 indicate that exploiting the block featu-
res of wideband power spectrum can significantly improve
the CS reconstruction performances and thus make the se-
quential sensing of the wideband more efficient. We can see
the improvement becomes larger as SNR reduces initially.
But when the SNR values are too low, due to the lack of clear
block structure, the performance improvement of SWCS-BS
becomes smaller.

Our proposed SWCS-BS presents its effectiveness in
many folds: it not only benefits from the low-cost sequential
wideband compressed sensing (SWCS) framework, but also
further takes advantage of the proposed block-sparse CS re-
construction algorithm to improve the sensing performance.
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Fig. 13. Effects of block sparsity on detection delay.
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Fig. 14. Effects of block sparsity on detection failure.

8 CONCLUSION

This paper presents two integrated frameworks (SWCS
and SWCS-BS) to efficiently schedule sequential periodic
wideband sensing based on sub-sampled data, where the
compressed sensing (CS) technique is incorporated into the
sequential detection to ensure low overhead and more accu-
rate wideband sensing. Backward grouped-compressed-
data sequential probability ratio test (backward GCD-SPRT)
is introduced for sequential detection to reduce the deci-
sion delay. In addition, we propose an algorithm to find

potential H0-to-H1 change, after which in-depth sensing is
scheduled to accelerate sensing decisions and improve the
accuracy. We also propose to exploit the block sparsity of
the wideband power spectrum to improve the CS recon-
struction quality thus the sensing performance. Finally, we
study a set of schemes to fuse spectrum signals recovered
from sparse samples in spectrum analysis for more accurate
spectrum usage detection. Simulation results demonstrate
the significant advantages of our design in reducing the
sensing delay, detection failure, as well as sampling and CS
recovery overhead.
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