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Abstract-With the rapid shift from end-to-end communica­
tions to content-based data sharing, there are increasing inter­
ests in exploiting mobile social Delay-Tolerant Networks (social 
DTNs) to deliver data, where the forwarding decision is usually 
made by comparing the social metrics of encountered nodes. 
Existing studies mostly derive long-term statistical social metrics 
without considering the temporal impact from node mobility. 

We exploit the time-varying contact graphs to analyze the 
dynamics of social DTNs based on two groups of datasets. Based 
on the analysis, we derive the time-varying characteristics of 
node contacts, durative and periodicity, and apply them to more 
accurately predict the corresponding time-varying social metrics 
(TSMs). We further propose a two-stage opportunistic forward­
ing strategy to select relays based on TSMs. Our simulation 
results verify the importance of the two properties we observe and 
the effectiveness of our algorithm in tracking time-varying social 
metrics. We also show the potential of our algorithm in finding 
general time varying metrics to improve the data dissemination 
performance of other opportunistic forwarding schemes. 

I. INTRODUCTION 

With the rapid growth of content-based data sharing ap­
plications and the popularity of mobile devices, there are 
increasing interests in exploiting mobile social Delay-Tolerant 
Networks (social DTNs) [9] to deliver data without relying 
on a well-established network infrastructure [31]. A social 
DTN is characterized with intermittent connections and op­
portunistic node encountering, where a data carrier can select 
an appropriate relay to continue forwarding the data towards 
the destination [22][28]. 

The limited connection in DTNs results in the lack of stable 
end-to-end paths, large transmission delay and unstable net­
work topology. The store-carry-forward pattern to transfer data 
can be used in social DTNs,and it will get good performance if 
we choose suitable next-hop relay. The key challenge is how to 
select the best next-hop relay. In general,we can select a proper 
relay by some appropriate metrics. Metrics such as the proba­
bility of data delivery [3] and the number of historical contacts 
[4][30] have been proposed in the literature to achieve more 
reliable data delivery. These studies, however, did not consider 
social relationship of nodes. To more accurately choose the 
next-hop relay, social characteristics such as centrality and 
similarity [18] are recently applied in the forwarding decision 

process [1], [6], while a social contact graph is used to 
derive social metrics in [13], [23]. However,there are some 
deviations between the research and the reality because of the 
characteristic of DTNs. 

The social metrics derived based on long-term statistical 
social features did not take into account the impact of node 
mobility on the constant changes of the social relationship, 
and the inaccurate social metrics may result in wrong relay 
selection thus poor performance in the data forwarding. The 
initial attempts [21], [7] to address this issue, although im­
portant, took over-simplified social metrics, and also did not 
provide algorithms to effectively track the evolving metrics. 

In this paper, we propose a novel scheme to efficiently 
support real-time opportunistic forwarding in social DTNs. 
We first derive important time-varying characteristics of node 
behaviors by analyzing two sets of social data, based on which 
we provide an efficient algorithm to predict time-varying 
social metrics (TSMs). We also propose a novel opportunistic 
forwarding mechanism that concurrently consider three types 
of time-varying social metrics: betweenness centrality [14], 
similarity and tie strength [19]. 

Our contributions can be summarized as follows: 
• We first exploit the time-varying contact graphs to an­

alyze the dynamics of social DTNs, and demonstrate 
its superiority over traditional statistical data analysis in 
capturing the time-varying features of social DTNs. 

• We derive two important properties of time-varying social 
contacts from data analysis, durative (either continuous 
or discrete) and periodicity , and present a window­
based method to capture the impact of the time-varying 
characteristics on future contact behaviors. Based on the 
properties observed and the analysis of ranking correla­
tion of different windows, we propose an algorithm to 
more accurately predict the social metrics over time. 

• We propose a two-stage opportunistic packet forwarding 
mechanism to fully exploit all the time-varying social 
metrics proposed for higher forwarding performance. 

• We evaluate the performance through extensive simula­
tions. Our results verify the effectiveness of our proposed 
time-varying social metrics and prediction/forwarding 



algorithms in achieving higher data forwarding perfor­
mance. 

Our proposed approach for calculating the time-varying 
social metrics is general and not constrained to the metrics 
we have derived, and can be applied to work with other 
existing forwarding strategies. In addition, the properties of 
node behaviors observed and verified can serve a guidance 
for more efficient designs of algorithms for social networks. 

The rest of this paper is organized as follows. Section II 
reviews the related work. Section III gives an overview on the 
contact-compare-Jorward method for opportunistic forwarding 
and the social metrics we consider. We analyze the time­
varying characteristics of social contacts and social metrics in 
real social networks in Section IV. In Section V, we provide a 
scheme to effectively predict time-varying social metrics and 
a strategy to enable more efficient opportunistic forwarding 
based on TSMs. In Section VI, we evaluate the performance of 
our forwarding strategy and TSMs prediction method through 
extensive simulations based on two groups of trace data. 
Finally, we conclude our work in Section VII. 

II. RELATED WORK 

The development of DTNs routing protocols has under­
gone several phases, including random mUlti-copy forwarding, 
forwarding based on metric comparison, and opportunistic 
forwarding based on social metric comparison. In the early 
stage DTNs routing, Epidemic [3] employs flooding to dis­
tribute data in the network where nodes freely copy their 
data to ones they encounter. Spray and Wait [4] improves 
Epidemic by restricting the number of copies a node makes 
when forwarding the packet to reduce the consumption of 
network resources. The transmissions of multiple copies help 
increase the packet delivery ratio at the cost of high network 
resource consumption. However, the blind and random packet 
forwarding makes the transmission efficiency very low. 

Subsequently, a class of forwarding mechanisms based on 
metric comparison are applied. ProPHET [5] and MaxProp [6] 
are two of such mechanisms which assume that the movement 
of nodes is not purely random and estimates the delivery 
probability to the destination based on the historical contact 
information. The delivery probability is characterized as the 
comparison metric for making forwarding decision. The use 
of comparison metric avoids the transmission blindness in 
the traditional multi-copy based on forwarding mechanism. 
In the practical social networks, regularity and randomness 
coexist due to node mobility. The assumption that the nodes' 
movement is absolutely not random without considering their 
social attributes may cause an inaccurate determination of the 
forwarding metrics. 

Social metrics are generally classified into two types, global 
and local. In Social Network Analysis (SNA), the global 
node attribute centrality is defined based on the difference 
in physical significance of nodes. Authors in [16] further 
classify the centrality into three types: degree centrality, 
closeness centrality, and betweenness centrality. Defined based 
on the number of connecting neighbors of a node, the degree 

centrality however only reflects the node's local structure [17]. 
Instead, the Closeness centrality of a node represents how fast 
it reaches all the other nodes, while the betweenness centrality 
reflects the extent for a node to locate at the shortest paths 
between all other nodes. 

There are two major types of local metrics. The similarity 
is determined based on the number of common neighbors 
between a node pair [18]. The tie strength [19] reflects the 
mutual relationship between two nodes, and is characterized 
in terms of the amount oj time, the emotional intensity, the 
intimacy (mutual confiding), and the reciprocal services. 

SimBet [1] and BubbleRap [6] are the typical opportunistic 
forwarding mechanisms that employ social metrics to deter­
mine the next hop. In SimBet, the forwarding decision is made 
based on a utility, which combines the centrality and similarity 
calculated using the the static contact graph derived from the 
historical statistics of contacts. In a practical opportunistic 
network, the social status and relationship of nodes will change 
over time due to the mobility, joining and departure of nodes. 
Such changes make the social metrics calculated based on 
long-term historical data inaccurate. The subsequent version 
SimbetTS [5] adds the tie strength for utility calculation, while 
the inaccuracy due to the dynamics in social relationship still 
exists. BubbleRap divides the centrality into global and local 
to apply outside and inside the community respectively, but 
still does not adapt to the network dynamics. 

SimBetAge [21] improves upon SimBet by adopting an aged 
graph to calculate the social metrics dynamically. The aged 
graph only uses time as the weight, but did not consider the 
regularity characteristics of contacts inherent in many social 
applications, which impacts the accuracy of the metric thus the 
network performance. Transient [7] calculates the centrality 
based on the transient contact pattern of nodes, and applies it 
in a forwarding strategy similar to that of BubbleRap. The cen­
trality only reflects the direct and indirect relationship between 
neighboring nodes rather than the relationship between nodes 
and the destination, which may lead to an inefficient relay 
selection or no chance of forwarding data to the destination. 
In contrast, our proposed TSMs exploit metrics that better 
represent the relationship between candidate relays and the 
destination. Both SimBetAge and Transient simply compare 
the metrics derived without prediction of metrics when the 
time evolves. As only the centrality metric is considered, the 
performance of Transient is compromised. 

Different from the wide diversity of the literature work 
which directly uses the social metrics calculated, the obser­
vations of the durative (i.e., continuous and discrete) and 
periodicity node behaviors allow us to more accurately predict 
the social metrics over time. We also propose a two-stage 
time-dependent opportunistic forwarding mechanism in social 
DTNs by exploiting both the global and local time-varying 
social metrics predicted. Our method used in the analysis and 
exploration of time-varying contact graphs is fundamental and 
general, which can be extended to derive other time varying 
metrics of social networks. 

In this paper, we exploit the time-varying contact graphs to 



analyze the dynamics of social DTNs, and derive the rules and 
the special time-varying characteristics of the social networks. 
Different from the wide diversity of the literature work which 
directly uses the social metrics calculated, the observations 
of the durative and periodicity features allow us to more 
accurately predict the social metrics over time. 

III. N ETWORK MODEL AND M ETRICS 

We first introduce the basic forwarding process, and then 
the social metrics to use for data forwarding in social DTNs. 

A. Basic Forwarding Mechanisms in Social DTNs 

Opportunistic forwarding mechanisms normally follow a 
contact-comparejorward pattern. When a node i with data has 
a contact with the node j, if j is the destination, i forwards 
data directly to j and completes the transmission; otherwise, 
i needs to compare its routing metric with j to determine if 
selecting j as the relay to forward its data to the destination. 

b 

clusterl cluster2 

Fig. 1: Opportunistic forwarding based on social metrics 

Most of existing schemes select relays based on both the 
global and local metrics. In Fig. 1, a source s from the cluster 
1 wants to send data to a destination d in cluster 2. As a is 
able to conununicate with nodes outside the cluster and thus 
more important globally than other neighbors, s forwards data 
to a in the first step. Nodes a and b have approximately equal 
global importance due to their positions in the network, so 
their local metrics are compared. Obviously b is closer to the 
destination than a , so data should be delivered to b to continue 
the forwarding towards d. 

B. Social Metrics 

As delay tolerant data transmISSIOns are often needed in 
applications involving social relationship, it helps to consider 
the characteristics of social networks. The metrics we take 
also include two categories of metrics: global and local. In 
social networks, some nodes have higher chance of meeting 
others because of their special social status, so these nodes 
are considered as the ones that have higher global signifi­
cance or centrality. However, if we only take into account 
the global metric in the transmission process, data may be 
only passed among nodes with higher global metrics which 
may be far from the destination. Therefore, we need to also 
apply local metrics to measure nodes' social relationships. 
The local attributes can be reflected in the real world, for 
example, one node may maintain different social ties with 
others according to nodes' social relations, daily habits and 
work styles. Particularly, a node with a closer relation to the 

destination usually accomplishes the data delivery faster than 
the ones with higher global popularity. 

1) Global Metrics: We select the betweenness centrality as 
the global metric in our forwarding mechanism, as this metric 
can reflect a node's capability of controlling the communica­
tions between other nodes. It is more appropriate to guide the 
data transmissions in social DTNs than degree centrality and 
closeness centrality discussed in Section II. 

In [25][26], the betweenness centrality is defined as 

n n 

B et v = L Lbij(v ), 
< j 

(1) 

where bij (v ) represents the fraction of the number of shortest 
paths between i and j that go through node v among all the 
shortest paths of (i, j). In this paper, we also call betweenness 
centrality as betweenness. 

2) Local Metrics: For local metrics, we adopt similarity 
and tie strength. Similarity is defined as 

Sv(d) = IN(v) n N(d) I, (2) 

which represents the number of common neighbors of a node 
pair (v, d) and reflects the indirect relationship between nodes. 

Tie strength [5] [19] measures the strength of the relation­
ship between a node pair. In this paper we use the proportion 
of the contact duration (v, d) in a time period T to measure 
the strength of the relationship between two nodes v and d: 

(3) 

As similarity and tie strength are local metrics, they can 
be calculated using the local graph conveniently. However, 
it is difficult to obtain the betweenness which requires the 
global contact information and the global contact graph to 
derive. In the ego network [11] , local contact graphs and social 
metrics are built based on local records and the interactions 
among neighboring nodes. In [12], the neighbor matrix is 
applied to calculate the ego betweenness, and the ranking of 
ego betweeness among nodes is shown to be the same as the 
ranking of the global betweenness. Thus, all social metrics can 
be gained based on the local contact graph of nodes. 

IV. TIME-VARYING CHARACTERISTICS ANALYSIS 

In this section, we introduce basic features of the social 
contacts and verify the features through two sets of social data 
collected from the practical world. Specifically, we will show 
the time-varying features of the social contacts and derive the 
characteristics of social metrics based on the features. 

A. Social Contact Graph 

In this subsection, we compare the social metric calculation 
based on statistical contact graph and time-varying graph. 



Fig. 2: Static statistical contact graph G 

TABLE I: Betweeness values in static statistical contact graph 

1) Static Statistical Contact Graph: Based on the static 
statistical data analysis, the social metrics mentioned in Sec­
tion III can be calculated from a contact graph. For example, 
with the contact graph shown in Fig. 2, the betweenness value 
of each node is calculated and shown in Table I. 

Obviously, the betweenness value of node D is the highest, 
the values of C, F are slightly lower, while G has the lowest 
value. However, the betweenness of nodes may change over 
time as a result of the edge evolution. Assume that nodes in the 
contact graph have different connections at different time of a 
day, we can decompose a contact graph into three sub-graphs: 

G. :8:00-12:00 Go: 12:00-16 :00 Go: 16: 00-20: 00 
• 

Fig. 3: Time-varying contact graphs of G 

We calculate the betweenness values from G a to G e and 
show the results in Table II. 

TABLE II: Betweeness values in time-varying contact graphs 

NodeID A B C D E F G 
Betweenness( G a ) 5 0 0 8.5 5.5 0 0 
Betweenness( G b) 0 11 0 5 5 8 0 
Betweenness( G c ) 0 4 5 0 0 8 11 

There exists a big difference between the values shown in 
Table I and Table II. In the graph G a , the betweenness of 
node D is the largest but is zero in the graph G e . Node C 
has the third largest betweenness in G e but zero betweenness 
in graphs Ga and Gb. Although the betweenness of node G 
is the minimum in the contact graphs Ga and Gb, it becomes 
the maximum in the graph Ge . These data indicate that the 
candidate relay nodes may change over time. 

2) Time- Varying Graph: In order to analyze the time­
varying characteristics of social DTNs, we first describe the 
network in the form of time-varying graph [8]. In this paper, 
a time-varying graph is defined as G == (V, E, L , w) , where V 
is the vertex set formed with mobile nodes in the network, E 
is the set of edges and each edge represents a contact between 
nodes, L is the lifetime of messages in a social network beyond 

which the undelivered messages will be discarded, and w is the 
time-window duration to determine the size of each sub-graph. 

For ease of description, we define a static aggregate graph 
G = (V, E), where E includes all contacts in the duration L . 
With each snapshot being a contact graph of a time-window, a 
graph G can be divided into multiple consecutive sub-graphs 
according to the time window sizes, namely a collection of 
time-varying graph snapshots: G I , G2, ... , Gt , ... : 

GO ,t(V, EO ,t) = {G I (V, Eo ,w ), G 2(V, Ew,2w), 

... , Gt (V, E t-w,t )}, (4) 

where V is a set of nodes, Et-w,t represents the temporal 
contacts of nodes within the time window (t - w, t) , and w is 
the time duration of each snapshot. The symbol w represents 
time-window duration, and the time t = n * w. 

Then we can map metrics defined in Equations (1) to (3) 
to those in a time window as 

n n 

B v,t = L Lbg- w,t)(v ), (5) 

< j 

Sv,t (d) = IN (t - w,t>(v) n N(t - w,t>(d) I, (6) 

d(t-w,t ) ( v , d) 
TSv t(d) = , , w (7) 

B v,t , S v,t (d) and TSv,t (d) are also called as window metrics 
whose values change in different time windows. 

B. Time-Varying Characteristics of Social Contacts 

Based on the time-varying graph, we first analyze the 
dynamic characteristics of social contact, we then extract two 
new properties, durative and periodicity, and verify these 
properties through detailed analysis of real datasets. 

1) Properties of Time-varying Social Contacts: Before we 
discuss the new properties of the time varying social contact, 
we give a definition below. 

Definition: Recurrence of edges. In a time-varying graph 
G == (V, E,L , w), if for an edge e E E and t E L , ::It' > t: 
e E Et , -w,t', the edge e has the characteristic of recurrence. 

This characteristic indicates that any edge e in the network 
will reappear in a future time window (t' - w, t'). However, 
in the practical social networks, an edge e reflects the contact 
between nodes. Not all edges are recurrent. For example, a 
node i will leave the network forever after it contacts node 
j, then eij will not recur. In addition, because information 
needs to be timely, assuming the edge will recur after an 
infinite time duration 6.t = t' - t also has no meaning. So, 
we will incorporate the social networks ' characteristics into 
the definition, and we have the following two properties for 
social contacts. 

Property 1: Durative of social contact. Assume E t-w,t is 
a set of edges within a time-varying window (t - w, t). If 
::lei, j E Et-w,t n Et,t+w , i.e., e i,j can recur in continuous 
snapshots before and after the time t, we call the contact of 
the node pair (i , j) to be durative. 



In social networks, contacts are not completely random due 
to the intrinsic social relationship among nodes. A certain pair 
of nodes may be classmates, work colleagues or conference 
participants. Based on Property 1, durative can be categorized 
into two types, continuous durative and discrete durative. 
As an event is generally not instantaneous but can continue 
for a duration of time, the contact e i, j between a node pair 
(i,j) will last and show the property of continuous durative. 
It is more common that some events can occur again after 
a brief time interval due to the dynamic of DTNs. Take 
the conference scenario as an example, if a node leaves the 
network temporarily for an extremely short period of time (e.g. 
about 5 minutes), it should not impact the durative of a contact 
which lasts for a long period of time (e.g., one or more hours) 
[27]. Thus, if the contact ei ,j recurs repeatedly within a period 
of time, it has the property of discrete durative. 

Property 2: Periodicity of social contacts. Assume Et -w,t 

is a set of edges within a time-varying window (t - w, t), T 
represents a time period which is usually set as kw, where 
k E N + . If ::le i,j E Et-w-T,t-T n E t-w, t , then ei,j can recur 
in periodical windows and the contact of node pair (i , j) has 
the periodicity feature. Obviously, when k = 1, periodicity is 
equivalent to durative. 

For any node i, its daily activities could follow some 
regularity. For instance, people could take a fixed set of buses 
to go to work, or have a meal in a fixed restaurant at some 
specific time. Therefore, a node i might meet a node k who 
has the same daily schedule. In this case, we consider the 
contact of (i, k) reappears following a daily period. To more 
accurately predict the contact relationship between nodes, we 
should take into account both types of durative. 

2) Verifying the Properties of Social Contacts: To verify 
the durative and periodicity of the social contacts, we choose 
two datasets which record nodes' behaviors in two practical 
social networks, Infocom06 collected from the conference 
environment and Cambridge collected from the university en­
vironment [10]. Both data sets capture contacts between nodes 
using Bluetooth devices, and the parameters are summarized 
in Table III. 

TABLE III: Specific information of two real data sets 

Dataset Infocom06 Cambridge 
Device IMote IMote 

Network type Bluetooth Bluetooth 
Duration(days) 3 11 

Granularity(Seconds) 120 600 
Number of devices 98 36 

Number of internal contacts 141207 10641 
Number of node pairs 8157 1033 

The major difference of the two datasets is the count of 
the average number of contacts for each node pair per day. 
Constrained to the conference environment, nodes in Info­
com06 have more frequent contacts than those of Cambridge. 
To derive some general rules followed by both, there is a 
need to properly choose the time window size w. Too large 
a window size cannot capture the time-varying features of 

10 20 30 
Node ID 

(a) Infocom06 (b) Cambridge 

Fig. 4: Durative contacts percentage of each node 

(a) Infocom06 (b) Cambridge 

Fig. 5: Periodicity contacts percentage of each node 

contacts, while too small a window size may miss the contacts 
of discrete durative and lead to inaccurate calculation of social 
metrics. Generally, w can be adjusted flexibly according to the 
number of nodes and the contact density. For both datasets, 
the duration of one hour appears to be common for durative 
and we verify this window size is reasonable in the Section 
VI-A through the simulation. 

Fig. 4 shows the time fraction of the durative contacts 
(including continuous and discrete ones) in all contacts with 
the time window set to w = 1h. With a restrictive activity 
space, for most nodes the durative percentages of Infocom06 
are between 50% and 80%, The durative percentages in 
Cambridge are slightly lower, and are around 50% and 60%. 

Fig. 5 shows the ratio of periodic contacts among all 
contacts for each node, with the time period set to T = 24h. 
The percentage of periodic contacts in each dataset is about 
30%, and only some individual nodes have too high or too 
low periodicity. The reason that some nodes have too low 
contact periodicity is because they contact with others very 
little, or because the Bluetooth devices used to measure the 
social relationship are broken or forgotten to be carried by 
the people who participate in the measurement. The ones with 
too high contact periodicity are resulted from their relatively 
simple behaviors. For example, the number of nodes they 
contact is small and the nodes they contact at the same time 
of the day are quite fixed. 

The above analyses of real social network datasets verify 
the durative and periodicity of nodes' contacts. We can apply 
them to explore time-varying characteristics of social metrics. 



C. Analysis of Time- Varying Characteristics of Social Metrics 

Based on the exploitation of dynamic characteristics of 
social DTNs, we infer the feature of social metrics and present 
a window-based methodology to capture the impact of the 
time-varying characteristics on future contact behaviors. 

1) Properties of Social Metrics: To facilitate opportunistic 
forwarding, we only care about the relative values of metrics 
and their comparison, rather than the absolute values. Social 
metrics are directly impacted by the interactions among dif­
ferent nodes. As the contacts of the node pair (i, j) usually 
have the properties of durative and periodicity, the metrics of 
node i and j have similar time-varying characteristics. 

Without loss of generality, three social metrics of node v 
within time windows (t - w, t) and (t , t + w) are uniformly 
represented as mv,t and m v,H I' With a time period T set as 
T = kw, where k E N + , Pv ,t = m v, t -T+! represents the 
metrics of node v within the time window (t - T, t - T + w). 
We can derive the time-varying characteristics of the social 
metrics' based on Property 1 and Property 2 in Section IV-B: 

Lemma 1: Durative of social metrics. For a node pair 
(i, j), ::Jt E T, if m i,t > mj,t and m i,t+ 1 > mj,HI, then we 
consider the metrics' ranking of (i,j) remains the same before 
and after the time instant t. 

Lemma 2: Periodicity of social metric. For a node pair 
(i,j), ::Jt E T, if Pi,t > Pj,t and m i,H I > mj,t+!, then we 
consider the metrics' ranking of (i, j) remains the same in the 
time windows with the time period T. 

2) Correlation Analysis of Window Metrics: We use the 
real datasets to validate the time-varying characteristics of 
social metrics shown in Lemma 1 and Lemma 2. 

Assume the current time is t, and we would like to know 
the node's capability of forwarding data within a future time 
window W t+! , called a prediction window. In Fig. 6, to test the 
durative and periodicity of metrics, we calculate the correlation 
between mt of the window Wt and m H I of WH I as well as 
the correlation between mt-T+! of a periodic window Wp in 
the duration (t - T, t - T + w) and mt+!. We also choose 
the metrics within the second recent window W t - I and static 
metrics as the references. The static metrics m(O ,t ) are derived 
based on data accumulated within a long time duration We 
from time 0 to t. 

I~ I ••• '= ~< ---+j ••• '= ~ ~ w:r= ~±rl 
• _ w t-T t-T+w t 2(') t W ~ tt w 

~, : (O, t) w, :(t - T, t - T+l1J) w~ :(t-2ltj,..c0 ", :(t- l1J,t) "'t, :(t,t+l1J) 

Fig. 6: Time-varying window partition 

As only the relative metric ranking is important for the 
opportunistic forwarding process, we calculate the ranking 
correlation coefficient p [15] [24] which reflects the correlation 
of metric ranking of all nodes: 

_ 6L:d; 
p - 1 - n(n2 _ 1)' 

where n is the number of nodes in a dataset, and di repre­
sents the difference of metric ranking between the prediction 

(a) Infocom06 (b) Cambridge 

Fig. 7: Average ranking correlation of window metrics 

1. 

o. 

o. 

o. 

0.2 

(a) Infocom06 (b) Cambridge 

Fig. 8: Highest ranking correlation percentage 

window W t+1 and each of the following windows: Wt. Wt - I, 
W p , W e. 

In Fig. 7, with w = 1h and T = 24h, we show the 
ranking correlation coefficient between the metric m H I and 
each of the following metrics, m t, mt- I , m t-T + I and m(O ,t) 

at different time instants t with the same two datasets we 
used earlier. The local metrics, similarity and tie strength are 
calculated through a randomly chosen node with all other 
nodes. 

Both datasets show the same trend. Among them, the 
average ranking correlation coefficient between the prediction 
window W t+! and the most recent window W t is the highest, 
and between W t+! and the second recent window W t - I is the 
second largest, which prove the durative of social metrics. The 
ranking correlation coefficient with the static window W e is 
the worst, which indicates that the static metrics can not well 
track the time-varying node relationship and using the static 
metric will reduce the forwarding efficiency and reliability. 
The ranking correlation coefficient of social metrics with Wp 
is between those with W t - I and with We. The correlation of 
the static tie strength is higher than that with Wp in Fig. 7(a), 
which may be due to the random selection of nodes in this 
metric calculation. 

We show the percentage of time when different types of 
window has the highest ranking correlation coefficient in 
Fig. 8. Most of time, W t has the highest ranking correlation, 
and its percentages for all metrics in each dataset are over 
50%rv60%. The second place is Wp with the percentage 
around 20%rv30%. Which is a complementary to the result in 
the case of W t at some time points. This verifies the existence 
of periodicity in social metrics. Our analysis indicates that 
the recent window metric mt and the periodic window metric 



mt-T+ l contribute most to the prediction of TSMs in the 
future window, i.e., mt+1 = h(mt) + h(pt). We thus exploit 
an improved Kalman Filer to predict future metrics. 

V. FORWARDING MECHANISM 

In this section, we first present an analytical model to predict 
the temporal social metrics (TSMs) taking into account the 
features of social metrics, we then propose an opportunistic 
forwarding mechanism based on TSMs. 

r, 
~ ~~--------------~~ 

+ 
+ 

Fig. 9: Improved Kalman Filter for TSMs prediction process 

A. TSM Prediction Model 

According to Section IV, the key problem of time-varying 
forwarding is to predict nodes ' social metrics based on the 
durative and periodicity. 

With the advantage of prediction accuracy and light-weight 
calculation, Kalman Filter (KF) is a good candidate tool 
for the prediction of time-varying social metrics in resource 
constrained mobile devices. For better prediction performance, 
we improve KF by integrating the metric values from the 
previous window and the periodic window as the input. 

At the current time t, in order to predict the future TSMs 
value mt+1 in the time window (t , t +w), the previous window 
metric m t and the periodic window metric m t-T+l can be 
input as the measured values into KF. In the basic KF, the 
system states evolve only based on the recent window metric: 

{
mt+l = Atmt + vt 

rt = Ctmt + W t 
(8) 

where rt represents the social metric value observed in the 
window (t - w, t). If we predict each metric independently, 
the vector of the system state metric At is a scalar, and the 
state transition matrix Ct = 1. vt and W t are both the white 
Gaussian noise, where Var(vt) = Qt , Var(Wt ) = Rt , and 
E(vtWn = o. 

As shown in Lemma 2, the social metrics have periodicity, 
so we add the periodic window metric value Pt = rt -T+1 as 
a deterministic input of the system, then the metric prediction 
equation changes into 

(9) 

where a + fJ = 1. 
With both the recent window metric rt and the periodic 

window metric Pt as the input of the filter, the improved 

Kalman Filter is shown in Fig. 10. The implementation of 
Kalman Filter has two stages: prediction and correction. To 
predict the metric value mt+ll t+1 in (t , t + w), we first give a 
prior prediction value mt+ l lt using both the prediction value 
m tlt for the current window (performed during the previous 
window time) and the periodic window metric value Pt based 
on Equation (9). We then modify the future metric m t+1 IH l 
by comparing the observed recent window metric rt with the 
prediction value mt lt. The recursive formula is 

{
mt+1l t = amtlt + fJPt 

mt+1 IHl = m H l lt + Gt(rt - m tlt ) 
(10) 

where Gt is the Kalman Gain for predicting m t+1 IH l at the 
time t, which is given by Equations (11) and (12): 

Gt = PH 1,t(Pt+1 ,t + RH 1) - 1 

Pt+1,t = aPt ,taT + Qt 

Pt+1,t needs to be updated as follows: 

(11) 

(12) 

(13) 

At t = 0, we have the initial value Po ,o V ar( mo) 
and mOlo = E(mo). For a certain time period right after the 
network initialization, the characteristics of social metrics are 
not stable. We consider a preparation stage at the beginning 
time of the network to obtain initial metric values, and set a 
time point after this stage to 0 as the initial time of the filter, 
where mo represents the metric value in (- w, 0) . 

For the unified handling, we first map each metric into the 
range of [0, 1]. The social metric of node v in (t - w, t) is 
denoted as m~, t, where u indicates it is a normalized metric. 
As the tie strength is a proportion value, it does not need a 
mapping process to normalize it. Therefore, we have 

(14) 

To find the relay nodes in social DTNs, we only need to 
compare the values of social metrics. We can use a nonlinear 
monotone increasing function f(x) = arctan(x) to map the 
metrics into the range [0,1] without compromising the ranking 
of social metrics. For the betweenness, its variation range is 
large, with the minimum value 0 to the maximum theoretical 
value (n - 1) (n - 2). If we directly use the arc tangent function 
to normalize it, some relatively high betweenness value may 
be mapped into a very small value which makes it hard to 
differentiate between the high betweenness values. Instead, we 
first divide the betweenness by the number of nodes n, and 
then normalize it as 

B v t 2 
B~ t = arctan --' x-, n 'IT 

(15) 

where n is the maximum betweenness value based on the 
observation from real datasets. Even if there exist several 
values larger than n in some time windows, they have no 
significant impact on the ranking of all nodes ' betweenness 
after handling them by Equation (15). 



The initial similarity value ranges from 0 to n. We first 
divide it by fo and then map it as 

u Sv ,t(d) 2 
Sv t(d) = arctan --------;;; x - (16) 

, yn 7r 

The actual maximum value of similarity is about fo in 
the real datasets. Similar to betweenness, some similarity 
values outside fo have no effect on the ranking of all nodes' 
similarity after the mapping with Equation (16). 

Then we can apply the improved Kalman Filter to obtain 
TSMs based on the normalized window metrics B~,t, S~,t' 

T S~,t' respectively. 

B. TSM-Based Forwarding Mechanism 

Our prediction model is general and can be applied to 
calculate other social metrics for typical opportunistic for­
warding schemes such as SimbetTS, BubbleRap. We show 
the performance of some existing opportunistic forwarding 
schemes in our evaluation section using the TSM prediction 
model instead of their own social metric calculation methods. 

To take full advantage of the time-varying metrics predicted 
with TSMs model for more efficient data forwarding, we 
propose a TSMs-based staged opportunistic forwarding mech­
anism, which can be abbreviated as TSMF. The transmission 
stage of v is determined based on if the future time-varying 
similarity and tie strength S~,t' TS~,t have values. When there 
exists a value for the similarity, it indicates that the node 
has the common neighbors with the destination. The relation 
between the destination and the node is closer than that with 
another node which has a large betweenness centrality. Tie 
strength shows that the node has contact with the destination, 
which is a direct relation. Therefore, the node with no zero 
tie strength is the closest to the destination. 

In our design, we consider the noise in the recursive 
prediction process in Equation (10), so TSMs may have very 
small values while they should be zero. We add a threshold 
value to facilitate the correct determination of a transmission 
stage. Assume the number of nodes in the network is 100, if 
Sv,t(d) = 1, we have Sv,t(d) ;::::; 0.06 by Equation (16). So we 
could set a relative value 0.01 as the threshold e, below which 
the time-varying similarity value is considered to be zero. As 
we normalize the social metric values, we can apply the same 
threshold e to differentiate between noise and data for all three 
social metrics. 

Next we give the definitions as follows. If T Sv,t (d) is larger 
than e, then node v is d's temporal neighbor (TN). If TSv ,t (d) 
is less than e while Sv,t (d) is larger than e, v is d's 2-
hop temporal neighbor (2-hopTN). So our staged opportunistic 
forwarding mechanism can be described as Algorithm 1. 

This process can be summarized as follows. If the data 
carrier i is neither the destination d's TN nor its 2-hopTN, 
it means i is far from the destination d at the current time. 
Then the node i should forward the data to the node j that has 
the higher temporal centrality at this stage. The node j will 
carry the data and look for d, d's TN, or d's 2-hopTN until 
the data is delivered to d successfully. 

Algorithm 1: Time-varying Data Forwarding Algorithm 

1 Ilwhen node i contacts with node j at time t; 
2 for each data Pk that node i carries do 
3 if j == Dst(Pk) then 
4 L node i forwards Pk to j; 

5 else if j E TemNeighbor(Dst(Pk)) then 
6 l if TSj,t(Dst(Pk)) > TStt(Dst(Pk)) then 
7 L node i forwards Pk to j; 

8 else if j E 2 - hopTemNeighbor(Dst(pk)) then 
9 l if Sj,t(Dst(Pk)) > Stt(Dst(Pk)) then 

10 L node i forwards Pk to j; 

11 

12 

13 

else l if B'j t > Bit then 
L n~de i f~rwards Pk to j; 

VI. PERFORMANCE EVALUATION 

The simulations are based on the real datasets mentioned in 
Section IV-B. In order to collect the relevant information of 
nodes in the network, the simulation time is decomposed into 
three phases: warm-up phase (15% of the simulation time), 
data transmission phase (70%), and message delivery phase 
without new messages generated (15%) [20]. 

The simulations are carried out in three parts. First, we 
evaluate the impact of window size on capturing the temporal 
properties of node social relationship. Second, we verify the 
advantages of our proposed forwarding strategy TSMF. Last, 
to demonstrate the effectiveness of our method in predicting 
the time varying social metrics, we applied it in some classic 
opportunistic routing protocols such as SimBetTS and Bub­
bleRap. 

As high delivery ratio and low delivery overhead are desired 
while long delay are tolerable in social DTNs, we consider 
the following metrics [6] to evaluate the performance of 
forwarding strategies: 

• Data Delivery Ratio: the ratio of the number of messages 
successfully transmitted to the destination to the total 
number of messages sent by a source node. 

• Overhead: the distribution overhead of protocol is mea­
sured by the total number of relays used. 

A. Impact of Time Window 

In Fig. 10 and Fig. 11, we can see that when the time 
window size is Ih, both datasets of Infocom06 and Cambridge 
have the highest data delivery ratio and the lowest overhead. 
With too small a window, the number of contacts is too small, 
so the calculations of social metrics are inaccurate. 

Fig. 10 shows that when the size of time window is larger 
than Ih , there is a sharp reduction of the data delivery ratio 
initially and then the reduction speed becomes smaller as 
the window size further increases. When the time window 
size is relatively large, the variation of its value has little 
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Fig. 11: Overhead of different time windows 

impact on the data delivery ratio. It verifies that our snapshot­
based method with an appropriate time-varying window size 
is efficient. 

Increasing the time window initially helps to more accu­
rately calculate the time-varying social metrics, but too large 
a window will reduce the sensitivity of the metrics to the 
network dynamics. 

This verifies that our snapshot-based method with an ap­
propriate time-varying window size is efficient. As mentioned 
in Section IV-B, the window size can be adapted in different 
network environments to better capture the social relationships 
and build more accurate social metrics. 

B. Performance of Time-varying Forwarding Strategy 

We compare TSMF with popular social routing schemes 
BubbleRap, SimBetTS and the recent proposed Transient 
presented in the Section II. In Fig. 12 and Fig. 13, TSMF 
obtains the highest data delivery ratio and the lowest overhead. 
The delivery ratio is 58.2%, 33.2% and 22.1 % higher than 
the three peer schemes, while the overhead is 38.5%, 23.7% 
and 25.2% lower. With more accurate prediction of TSMs, 
the relay nodes can be better selected in TSMF to improve 
the routing efficiency. Besides, with the increase of TTL (i.e., 
the time of data to live in social DTNs), more data could be 
delivered successfully with more relaxed time constraint. 

C. Impact of Time-varying Social Metrics 

To evaluate the advantages of our new approach in calcu­
lating time-varying social metrics, we apply it to incorporate 
the time-varying feature into the original metrics adopted by 
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SimBetTS and BubbleRap, and label them as T_SimBetTS and 
T_BubbleRap, respectively. 

In Fig. 14 and Fig. IS, T_SimBetTS and T_BubbleRap 
have much higher data delivery ratio and lower overhead as 
compared to SimBetTS and BubbleRap which use conven­
tional static social metrics. In the dataset of Cambridge, with 
respect to BubbleRap, the data delivery ratio of T_BubbleRap 
increases on average 27.9% while its overhead decreases on 
average by 10.4%. With respect to SimBetTS, the data delivery 
ratio of T_SimBetTS increases on average by 22.6% while its 
overhead reduces on average by 18.7%. Fig. 14 shows that 
with the increase of TTL, the superiority of T_SimBetTS and 
T_BubbleRap is more obvious, and moreover, the overhead 
also reduces. The reason is that the number of hops in the 
delivery of message increases with a larger TTL. 

This demonstrates that our proposed time-varying method 
for calculating the social metrics is very effective in improving 
the accuracy of metrics thus facilitating more efficient data 
delivery in social DTNs. 

VII. CONCLUSION 

The aim of this work is to develop some general algorithms 
to more accurately capture time varying features of social 
metrics to ensure higher data forwarding performance in social 
DTNs. We first analyze two groups of data sets to show 
the limitation of traditional metrics derived from the long­
term statistics. We then introduce the network model using 
time-varying contact graphs, based on which we observe the 
important temporal properties of node contacts, durative and 
periodicity, and derive the corresponding time-varying charac­
teristics of the social metrics. We further exploit these prop­
erties to more accurately predict nodes ' time-varying metrics, 
and design a real-time opportunistic forwarding mechanism. 
Our results from trace-driven simulations demonstrate that our 
time-varying social metrics help to significantly improve the 
performance of popular opportunistic social routing protocols, 
and verify that our forwarding mechanism can help further 
improve the data delivery. 
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