Chapter 2
Processes and Threads

"Processes

*Threads

*"Interprocess communication
»Classical IPC problems
»Scheduling

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Process Model

*Process: an abstraction of a running program.

All runnable software is organized into a number of
sequential processes.

*Each process has its own flow of control (i.e. program
counter, registers and variables).

In @ multiprogramming environment, processes switch back
and forth.

*No built-in assumption about timing in programs (use
interrupts instead).

The Process Model

One program counter

N Four program counters
A Process
E switch @ D —_— —_—
LYy B 2
o
G A # B Y C ‘ DY B| =— —
E& AT —
j D Time ——

(a) (b) (c)

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only
one program is active at once.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Creation

Events which cause process creation:

« System initialization.

« Execution of a process creation system call by a
running process (e.g., fork() in unix).

Auser request to create a new process (shell
command or click an icon).

* Initiation of a batch job.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Termination

Events which cause process termination:

* Normal exit (voluntary).

* Error exit (voluntary).

« Fatal error (involuntary).

* Killed by another process (involuntary).

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process Hierarchies

Parent creates a child process, child processes can
create its own child process

Forms a hierarchy
— UNIX calls this a "process group”

Windows has no concept of process hierarchy
— all processes are created equal

Process States

Three state model:

1. Running: using CPU currently.

2. Blocked: unable to run until some external event (e.g. I/O
completes) happens.

3. Ready: runnable, temporarily stopped to let another process
run.

Four possible transitions:
1. Process blocked for input.
2. Scheduler picks another process.
3. Scheduler picks this process.
4. Input becomes available.

Process States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process States

What happens when all processes in memory are
blocked for I/O?

*Swapping: move a process from memory to disk
(suspend) and bring another process on disk to memory.

*Five state model, add two more states:

1. Blocked/Suspend: the process is in secondary
memory and waiting an event.

2. Ready/Suspend: the process is in secondary memory
but is available for execution as soon as it is loaded into
memory.

*Transitions among states:

Five State Model

Schedule

Time out
Suspend

Ready/Suspend »
. Event occurs

Event occurs

Activate

Blocked/Suspend | Blocked

Suspend

Implementation of Processes (1)

Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating
system handles interrupts and scheduling. Above that layer
are sequential processes.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of Processes (2)

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of Processes (3)

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keyboard

Thread Usage

Fonr score and seven
yems ago, ow fathers
brought forth upan this
continent a new nation
conceived in liberty,
and dedicated to the
proposition that all
men are created equal

Now we aw engaged
in a great civil war
testing whether that

nation, er any nation
so canceived and so
dedicated, can long
endure. We ar met an
a great battlefield of
that war,

We have come to
dedicate a portion of
thar field as a final
testing place for those
who here gave their

lives that this nation
might live, U is
altogether fitting and
proper that we shonld
do this

But, ina largersemse,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
gound. The bave
men, living and dead,

who stmggled hers
have consecrated it, far|
above o pear power
to add or detract. The
world will little note,
mr long remember,
what we say here, but|
it can never forget|
whatthey did here

Tt is for v the living,
mther, o be dedicated

here to the unfinished
wotk which they wha
fought here have this
far 50 nobly advanced
1t is mther for s 10 be
here dedicated to the
geat task remaining
before vs, that fom
these honored dead we
take incizased devotion
1o that cavse for which

they gave the last full
measure of devotion,
that we here highly
tesalve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new hirth of freedom
and that government of
the people by the
people, for the peaple

L

"

Kernel

D

Figure 2-7. A word processor with three threads.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

isk

Thread Usage (2)

Web server process

Y

Dispatcher thread

~ *2? l Worker thread

Web page cache

Kernel

Network
connection

User
space

Kernel
space

Figure 2-8. A multithreaded Web server.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher
thread. (b) Worker thread.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread Usage (4)

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls, interrupts

Figure 2-10. Three ways to construct a server.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Classical Thread Model (1)

Process 1 Process 1 Process 1 Process
\\ | | i
User)
space
Thread Thread
Kernel K |
space Kernel erne

(a) (b)

Figure 2-11. (a) Three processes each with one thread. (b) One
process with three threads.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Classical Thread Model (2)

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private
to each thread.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Classical Thread Model (3)

Thread 2
1
Thread 1 Thread 3
\ /
Thread 1's ,..H E H = Thread 3's stack
stack v
Kernel

Figure 2-13. Each thread has its own stack.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

POSIX Threads (1)

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread’s attribute structure
Pthread_attr_destroy | Remove a thread’s attribute structure

Figure 2-14. Some of the Pthreads function calls.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementing Threads in User Space

Process Thread Process Thread
\ _/ __/
F \ \
(888)(898
space <
[B =

Sl | | B w £ B

Run-time Thread Process Process Thread
system table table table table

Figure 2-16. (a) A user-level threads package. (b) A threads
package managed by the kernel.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Hybrid Implementations

Multiple user threads
on a kernel thread

\ !

User
> space

-

Kernel
Kernel <— Kernel thread space

Figure 2-17. Multiplexing user-level threads
onto kernel-level threads.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Pop-Up Threads

Pop-up thread
Process created to handle

o incoming message
Existing thread

Incoming message |

Network
(a) (b)

Figure 2-18. Creation of a new thread when a message arrives.
(a) Before the message arrives.
(b) After the message arrives.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Inter-process Communication (IPC)

Processes communicate through shared memory
Spooling: Simultaneous Peripheral Operation On Line
Possible problems (race condition)

Example: a print spooler.

*To print a file, a process enters the file name in a designated Spooler
directory (an array implemented with circular queue).

*Another process, printer daemon, prints the files and removes them
from the directory.

*Shared variables: in, out.

*Print procedure:

1. in ->next-free-slot (local variable)

2. Put the file name to print in the array location indexed by next-free-
slot

3. Increment next-free-slot

4. next-free-slot ->in.

Race Conditions

Spooler
directory
4 abc out=4
5| prog.c
6 prog.n
7 in=7

Figure 2-21. Two processes want to access
shared memory at the same time.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Race Conditions

Assume two processes A & B and processes can be switched out
during execution.
A sequence of actions which can cause problems:

1. Process A: in(= 7) -> next-free-slot
2. Ais switched out and B is running.
3. Process B: in(=7) -> next-free-slot
4. B puts fie name to print in Slot 7.
5. B increments its local variable to 8.
6. B stores 8 into in.

7. Ais scheduled to run again.

8. A puts file name to print into Slot 7.
9. Alincrements its local variable to 8.
10. A stores 8 into in.

Race condition: Several processes access and manipulate the same
data concurrently, and the outcome of the execution depends on the
particular access order.

Race Conditions

Another example:
Bookkeeping application. Need to maintain data coherence, i.e. keep
a=>hb.

Process1:a=a+1;b=b+ 1
Process2:b=2xb;a=2xa

Initially a = b
Execution sequence:
a=a+1

b=2xb

b=b+1

a=2xa

At the end a # b.

Critical section (region): Portion of a program that accesses shared
variables

Mutual exclusion: Mechanism which makes sure that two or more
processes do not access a common resource at the same time.

Critical Regions (1)
Four conditions required to avoid race condition:

* No two processes may be simultaneously inside their
critical regions.

* No assumptions may be made about speeds or the
number of CPUs.

* No process running outside its critical region may
block other processes.

No process should have to wait forever to enter its
critical region.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Critical Regions (2)

A enters critical region

/ A leaves critical region

Process A | :
I I I I
| | I |
I | B attempts to | B enters | B leaves
| | enter critical | critical region : critical region
region
| | I |
| |
Process B
| I y
| | hd | |
I I B blocked ! !
Ty T Ty T,

Figure 2-22. Mutual exclusion using critical regions.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutual Exclusion with Busy Waiting

Proposals for achieving mutual exclusion:

« Disabling interrupts
Lock variables

e Strict alternation
Peterson's solution
The TSL instruction

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disabling Interrupts

A hardware solution:

1. Disable interrupts

2. Enter critical section

3. Do something in critical section
4. Exit critical section

5. Re-enable interrupts

Give too much power to user processes.
Only works for single CPU.

Lock Variables

A binary shared variable lock.
lock = 1: critical region occupied
lock = O: critical region unoccupied

The code for entering critical section:
1. loop: if lock == 1 then goto loop;

2. lock = 1;
3. critical-section();
4. lock =0:

A possible execution sequence:

1. Process A executes (1) and finds lock = 0. Drops from loop.

2. Process A is switched out.

3. Process B checks lock and sees lock = 0 and drops from loop.

4. Process B sets lock = 1 and enters critical section.

5. Process A wakes up, sets lock = 1 (again) and enters critical section.

Strict Alternation

Processes take turns to enter critical section

For two processes, use a variable turn:
turn = O: process 0 can enter critical section
turn = 1: process 1 can enter critical section

Limitations:

1. The faster process has to adapt to the pace of the
slower process

2. Two processes have to take turns to enter their critical
section. No one can enter twice in a row.

Strict Alternation

while (TRUE) { while (TRUE) {
while (turn !=0) /* loop */ ; while (turn !=1) /[* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(a) (b)

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note
the semicolons terminating the while statements.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Peterson's Solution

Combine lock and take turns

Four possibilities for condition:
(turn=process && interested[other]=true)
from the point of view of process 0.
Case 1:turn = 0, interested[1] = false
Process 1 is not in critical region.
Process 0 enters critical region.

Case 2: turn = 0, interested[1] = true
Process 1 is in critical region.

Process 0 waits.

Case 3: turn = 1, interested[1]=false
Impossible.

Case 4: turn = 1, interested[1]=true
Process 1 is trying to enter critical region, but process 0's turn first.
Process 0 enters critical region.

Peterson's Solution

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The TSL Instruction

Need hardware support (machine must have this special
instruction)

TSL: combine
(Mem) -> R and 1 -> Mem into an atomic operation.

The TSL Instruction

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1

CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was nonzero, lock was set, so loop

RET | return to caller; critical region entered
leave_region:

MOVE LOCK,#0 | store a 0 in lock

RET | return to caller

Figure 2-25. Entering and leaving a critical region
using the TSL instruction.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Sleep and Wakeup

Avoid busy waiting. Use sleep and wakeup.

Sleep: a system call that causes the caller to block until
another process wakes it up.

Wakeup(p): wakeup process p.
How to handle wakeup if sent to a process not asleep:

*lgnore
*Queue

The Producer-Consumer Problem

A circular buffer has n slots. Producer puts an item into buffer each time.
Consumer takes an item out of the buffer each time.

Use sleep and wakeup to write procedures for producer and consumer.

N-1

The Producer-Consumer Problem

#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_item();
count = count - 1;
if (count == N — 1) wakeup(producer);
consume_item(itemn);

}

/* number of slots in the buffer */
/* number of items in the buffer */

/* repeat forever */

/* generate next item */

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer */

/* decrement count of items in buffer */
/* was buffer full? */

/* print item */

Figure 2-27. The producer-consumer problem
with a fatal race condition.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Producer-Consumer Problem

Problem: wakeup sent to a process that has not gone to sleep.

Example:

-Buffer empty.

*Consumer reads count = 0 and is switched out (not sleep yet).
*Producer enters an item in buffer and increments the counter.
* Producer sends wakeup. Wakeup lost.

«Consumer is scheduled to run again.

«Consumer goes to sleep.

*Producer eventually fills buffer and goes to sleep.

Quick fix:

Set wakeup waiting bit if wakeup is sent to a non-sleeping process.

If a process tries to go sleep and the bit is on, clears the bit and stays
awake.

More than one wakeup ?

Semaphores

=A synchronization integer variable.
»Two atomic operations: down and up
= A queue for blocking
*"Implementation of semaphores

type semaphore = record
value : integer

|: queue of processes
end;

down(s): If s.value >= 1 then

s.value = s.value - 1

else block the process on the semaphore queue s.|
(i.e. add the process to queue s.l)

up(s): If some processes are blocked on s
then unblock a process (remove a process from queue s.l)
else s.value = s.value + 1

Semaphores

Two types of semaphores

=Binary semaphore:
Two values 0 and 1, used for mutual exclusion (i.e. to ensure that
only one process is accessing shared information at a time)
semaphore mutex = 1
down(mutex);
critical-section();
up(mutex);

»Counting semaphore:
Used for synchronizing access to a shared resource by several
concurrent processes (i.e. to control how many processes can
concurrently perform operations on the shared resource).

Semaphores

Semaphores are not supported by hardware, but can be

easily implemented using TEST and SET LOCK
instruction

and enable/disable interrupts.

Example: Solving the producer consumer problem by
semaphores

Semaphores

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)

i
int item;
while (TRUE) { /* TRUE is the constant 1 */
item = produce_item(); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */
}
}
void consumer(void)
{
int item;
while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove _item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */
}
[] [| }

Figure 2-28. The producer-consumer problem using semaphores.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Semaphores

The sequence of down and up operations matters.
Reverse the sequence of downs in producer:

. Buffer empty.

. Run producer through while loop n times.
. Buffer full.

. Run producer again.

. Producer sleeps on semaphore empty.

. Run consumer.

. Consumer sleeps on semaphore mutex.

. Deadlock.

ONOO TP~ WDN -

Semaphores

Reverse the sequence of downs in consumer:

. Buffer empty.

. Run consumer.

. Consumer sleeps on semaphore full.

. Run producer.

. Down(empty), ok.

. Producer sleeps on semaphore mutex.
. Deadlock again.

NOoO gk, WODN -

Semaphores

Although semaphores provide a simple and sufficiently
general scheme for IPC, they suffer from the following
drawbacks:

1. A process that uses a semaphore has to know WHICH
other processes use these semaphore. May also have to
know HOW

these processes are using the semaphore.

2. Semaphore operations must be carefully installed in a
process. The OMISSION of an up or down may result
Inconsistencies or deadlocks.

3. Programs using semaphores can be extremely hard to
verify for correctness.

Monitors

Monitor is a high-level synchronization primitive

Combine three features:
1. Shared data

2. Operations on the data
3. Synchronization

Programming constructs, implemented by compiler.
Only one process active in a monitor at a time (implicitly
controlled by monitor lock)

Easier and safer to use.

Monitors

<Monitor name>: monitor
begin
Declaration of data local to the monitor

procedure <name> (<formal parameters>);
begin

procedure body

end;

Declaration of other procedures.

begin

Initialization of local data of the monitor
end;

end;

Monitors

Need some way to wait, two choices:

(1) Busy-wait inside monitor
(2) Put the process to sleep insider monitor

Condition variables (things to wait on):

swait(condition): release monitor lock, and put the process to sleep.
When process wakes up again, re-acquire monitor lock immediately.

*signal(condition): wake up one process waiting on condition variable
(FIFO).
If no body is waiting, do nothing (no history).

*broadcast(condition): wake up all processes waiting on the condition
variable.

Monitors

Need to decide who gets the monitor lock after a signal:

*On signal, signaler keeps monitor lock. Awakened process waits for
monitor lock with no special priority.

*On signal, awakened process gets the monitor lock. Signaler exits
from monitor immediately.

Monitors

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer(),

end;
end monitor;

Figure 2-33. A monitor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monitors

monitor ProducerConsumer
condition full, empty;
integer count;
procedure insert(item: integer),
begin pro.cedure producer,
if count = N then wait(full); begin

insert_item(item); while rrue do

count := count + 1; begln. |

if count = 1 then signal(empty) item = produce_itent;
end; ProducerConsumer.insert(item)
function remove: integer; end
begin end;

if count = 0 then wait(empty); proFedure consumer,

remove = remove _item, begin

count := count — 1: while true do

if count = N — 1 then signal(fill) begin.
end: item = ProducerConsumer.remove;
count :=0; consume _item(item)
end monitor; end
end;

Outline of producer-consumer problem with monitors

Message Passing

Why use message passing

*Two parts of communication can be totally separated (no shared data)
*No invisible side effects
*No need to know the other part

Message:
A piece of information that is passed from one process to another.

Mailbox:
A shared data structure where messages are stored between the time they
are sent and the time they are received.

Message Passing

Operations:

send: copy a message into mailbox. If the mailbox is full
wait until there is enough space in the mailbox.

Format: send(destination, message)
receive: copy a message out of mailbox, and delete from
mailbox. If the mailbox is empty, then wait until a message

arrives.

Format: receive(source, message)

Message Passing

Design issues of message system
Addressing: how to specify the sending and receiving processes.

Direct addressing: sender and receiver communicate directly.
send: a specific identification of the destination process, such as
process@machine.domain

receive:

(a) explicit addressing

(b) implicit addressing

Indirect addressing: messages are sent to a shared data structure called
mailboxes (queues that can temporarily hold messages)

Relationship between mailboxes and processes

(a) One mailbox per process. Use process name in send, no hame in
receive.

(b) No strict mailbox-process association, use mailbox name.

Message Passing

Extent of buffering

Buffering
None - rendezvous protocol

Blocking vs. non-blocking operations

Blocking receive:

receive message if mailbox is not empty, otherwise wait until message
arrives

Non-blocking receive:

receive message if mailbox is not empty, otherwise return.

Blocking send:

wait until mailbox has space.

Nonblocking send:

return “full" if no space in mailbox.

Four possible send and receive combinations.

Message Passing

Message Passing

Queueing discipline:
First in first out (FIFO)

Priority

Message Passing

Producer’s mailbox Consumer's mailbox

1)
>I | | I

N slots N slots

(4)

Message Passing

(1) Consumer sends empty message to producer's mailbox.
(2) Producer takes empty message and builds full message.
(3) Producer sends full message to consumer's mailbox.

(4) Consumer takes full message out and consumes it.

Producer-Consumer Problem
with Message Passing

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer */

while (TRUE) {

item = produce _item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */

build _message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

Figure 2-36. The producer-consumer problem with N messages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Producer-Consumer Problem
with Message Passing

void consumer(void)

{
int item, i;
message m;
for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {
receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume _item(item); /* do something with the item */
}
}

Figure 2-36. The producer-consumer problem with N messages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Equivalence of Primitives

Semaphores, monitors and messages are equivalence.
Each of these methods can be used to implement the
other methods.

1. Implement monitors with semaphores

Associate with each monitor a binary semaphore mutex
(monitor lock), initially 1.

Associate with each condition variable a semaphore,
initially O.

Translate:

wait(c) ‘ up(mutex); down(c); down(mutex)

signal(c) ‘ up(c)

Monitors

monitor ProducerConsumer
condition full, empty;
integer count;
procedure insert(item: integer),
begin pro.cedure producer,
if count = N then wait(full); begin

insert_item(item); while rrue do

count := count + 1; begln. |

if count = 1 then signal(empty) item = produce_itent;
end; ProducerConsumer.insert(item)
function remove: integer; end
begin end;

if count = 0 then wait(empty); proFedure consumer,

remove = remove _item, begin

count := count — 1: while true do

if count = N — 1 then signal(fill) begin.
end: item = ProducerConsumer.remove;
count :=0; consume _item(item)
end monitor; end
end;

Outline of producer-consumer problem with monitors

Equivalence of Primitives

2. Implement message passing with semaphores.

*Associate with each process a semaphore, initially 0, on which it will
block.

A shared buffer area holds mailboxes. Each mailbox contains:
= # full slots
= # empty slots
» send queue (those processes which cannot send their messages
to the mailbox
»receive queue (those processes which cannot receive their
message from the mailbox
*messages linked together

A semaphore, mutex, to protect the shared buffer area.

Equivalence of Primitives

Mailboxes

Equivalence of Primitives
send/receive operations:

Case 1. Mailbox has at least one empty or full slot:
down(mutex)

insert/remove message

update counters and links

up(mutex)

Case 2. Process i does receive on an empty mailbox:
down(mutex)

enter receive queue

up(mutex)

down(Pi)

down(mutex)

Case 3. Process i does send on a full mailbox:
down(mutex)

enter send queue

up(mutex)

down(Pi)

down(mutex)

Equivalence of Primitives

How to wake up sleeping processes?

*If a receiver receives a message from the full mailbox,
wakes up (does up) the first process in the send queue.

*If a sender sends a message to the empty mailbox, wakes
up the first process in the receive queue.

Equivalence of Primitives

3. Implement semaphore with monitors

Associate with each semaphore a counter and a linked list.
*Counter stores the value of the semaphore

Linked list stores the processes sleeping on the semaphore
Associate with each process a condition variable

Operations:

down(s) : If counter_s > 0, then counter_s --
else {enter linked list of s; wait (Pi)}

up(s) : If linked list not empty, then {remove one process from the list,
say, Pi; signal(Pi)}
else counter _s++;

Equivalence of Primitives

4. Implement messages with monitors.

*Associate with each process a condition variable for
blocking

*A shared buffer

*Similar to semaphores except no mutex necessary.

Equivalence of Primitives

5. Implement semaphores with messages.

For mutual exclusion, introduce a new process,
synchronization process.

Associate each semaphore with a counter and a linked list
of waiting processes.

Operations:
To do up or down on a semaphore, call the corresponding
library procedure up or down.

Equivalence of Primitives

Up/down
procedure

Send

Up/down
procedure

Full message

Receive

Synchronization
process

Empty message

Synchronization
process

|

Equivalence of Primitives

Synchronization process does:

down: If count > 0 {counter--; send back empty message}
else {enter caller into queue and does not send reply;}

up: If counter = 0 {move one process out of queue; send
this process a reply }
else counter++;

Equivalence of Primitives

6. Implement monitor with message passing

Combine (5) and (1). That is, using messages to implement
semaphores first, then using semaphores to implement
monitors.

Barriers

................................ @ @
Process © (B} I I I
© E: ©-| & 8l©
................ @ @
Time — Time —— Time —
(a) (b) (c)

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the
last process arrives at the barrier, all of them are let through.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Classical IPC Problems

The dining philosophers problem

Problem description:
Five philosopher sit around a round table, and each of them
has one fork.

Activities: eating and thinking.
To eat, need two adjacent forks.

Goal: no starvation.
Useful for modeling processes that are competing for

exclusive access to a limited number of resources, such as
tape drive or other I/O devices.

Dining Philosophers Problem

Figure 2-44. Lunch time in the Philosophy Department.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Dining Philosophers Problem

#define N 5 /* number of philosophers */

void philosopher(int i) /* i. philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

}

Figure 2-45. A nonsolution to the dining philosophers problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Dining Philosophers Problem

#define N 5

#define LEFT (i+N-1)%N
#defi #define N 5

#defi #define LEFT (i+N-1)%N
#defi #define RIGHT (i+1)%N

#defi #define THINKING O
typec #define HUNGRY 1
int st #define EATING 2
sem: typedef int semaphore;
sem: int state[N];

semaphore mutex = 1;

FO'd semaphore s[N];
void philosopher(int i)
{
while (TRUE) {
think();
take forks(i);
eat();
} put_forks(i);
- }
}

/* number of philosophers */
/* number of i's left neiahbor */

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i philosopher number, from O to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

Figure 2-40. A solution 10 the dining philosophers problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Dining Philosophers Problem

void take forks(int i) /* i: philosopher number, from O to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}

Figure 2-46. A solution to the dining philosophers problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Dining Philosophers Problem

void put_forks(i) /* i philosopher number, from 0 to N-1 */

{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */

}

void test(i) /* i: philosopher number, from O to N—-1 */

{

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&sfi]);

}
Figure 2-46. A solution to the dining philosophers problem.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Dining Philosophers Problem

Problems with solution 2:

Assume Philosophers 1 and 4 eat for a long time and
Philosophers 2 and 3 eat for ashort time. A possible
execution sequence:

1.4 and 1 eating.

2. 0 and 3 become hungry (blocked).

3. 4 finishes eating and checks neighbors.

4. 0 IS NOT ALLOWED TO EAT, but 3is allowed to eat.

5. 4 becomes hungry again.

6. 3 finishes eating and allows 4 to eat again.

7. 1 finishes, 0 IS STILL NOT ALLOWED TO EAT because of
4
8

. 2 is allowed to eat.
9. 1 becomes hungry again.
10. 2 finishes and allows 1 to eat.
11. repeat, 0 IS NEVER ALLOWED TO EAT.

Dining Philosophers Problem

A working solution:

#define N 5

typedef int semaphore;

semaphore fork[N]; /* initially 1; */
semaphore room = 4; /* allow 4 in the dining room */
philosopher(i)

int i;

while (TRUE) {

think();

down(room); /* get into dining room */
down(fork[i]); /* get left fork */
down(fork[(i+1)%5)]); /* get right fork */
eat();

up(fork[(i+1)%5)]); /*put back right fork*/
up(fork[i]); /* put back left fork */
up(room); /* get out of dining room */

}

}

The Readers and Writers Problem

Read } Write

Problem description:

A data area (file or memory) shared among a number of processes.
Some processes (readers) only read the data area.

Other processes (writers) only write to the data area.

Conditions must be satisfied:

1. Any number of readers may simultaneously read the data area.
2. Only one writer at a time may write to the data area.

3. If a writer is writing to the data area, no readers may read it.

The Readers and Writers Problem

Special type of mutual exclusion problem. A special solution
can do better than a general solution.

*Solution one:

Readers have priority. Unless a writer is currently writing,
readers can always read the data.

*Solution two:

Writers have priority. Guarantee no new readers are allowed
when a writer wants to write.

*Other possible solutions:

Weak reader's priority or weak writer's priority.

Weak reader's priority: An arriving reader still has priority
over waiting writers. However, when a writer departs, both
waiting readers and waiting writers have equal priority.

The Readers and Writers Problem

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to 'rc’ */

semaphore db = 1; /* controls access to the database */

int rc = 0; /* # of processes reading or wanting to */

void reader(void)

{

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc+ 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read_data_base(); /* access the data */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc—1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use_data_read(); /* noncritical region */

}

}

Figure 2-47. A solution to the readers and writers problem.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Readers and Writers Problem

void writer(void)

{
while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write _data_base(); /* update the data */
up(&db); /* release exclusive access */
}
}

Figure 2-47. A solution to the readers and writers problem.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Sleeping Barber Problem

The Sleeping Barber Problem

Problem description:

B

Customer in Waiting chairs

J— .
-

Full
(without hair cut)

Barber chair

.

|

|

~

Customer out
(gets hair cut)

—_—

When no customer, barber sleeps. If no waiting chair,

customer leaves.

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
} else {
up(&mutex);
}

he Sleeping Barber Problem

/* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/* if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Solution to sleeping barber problem.

CPU Scheduling

Resources: the things operated on by processes.
Resources ranges from CPU time to disk space, to I/0O channel
time.

Resources fall into two classes:

(1) Preemptive:

OS can take resource away. Use it for something else, and then
give it back later.

Examples: processor or I/O channel.

(2) Non-preemptive:
Once given, it cannot be reused until the process gives it back.
Examples: file space and terminal.

Anything is preemptive if it can be saved and restored.

CPU Scheduling

0.S. makes two related kinds of decisions about resources:

(1) Allocation:
Who gets what? Given a set of requests for resources, which
process should be given which resources in order to make
most efficient use of the resources?

(2) Scheduling: How long can they keep it? When more resources
are requested than can be granted immediately, in which order
should hay be served?

Examples: processor scheduling and memory scheduling (virtual
memory).

Resource # 1: the processor.
Processes may be in any one of three general scheduling states:
Running, ready and blocked.

CPU Scheduling

Criteria for a good scheduling algorithm:

1. Fairness: every process gets its fair share of CPU.

2. Efficiency (utilization): keep CPU busy.

3. Response time: minimize response time for interactive users.
4. Throughput: maximize jobs per hour.

5. Minimize overhead (context swaps).

Context switch: changing process. Include save and load registers
and memory maps and update misc tables and lists.

Clock interrupt: Clock interrupt occurs at fixed time interval (for 60
Hertz AC frequency, 60 times per second) and O.S. scheduler can
run. Every interrupt is called a clock tick (a basic time unit in
computer systems).

Scheduling — Process Behavior

(@ I —— — — |

Long CPU burst \

Waiting for 1/0

Short CPU burst \
/ n
L

1
L

]
[]
-
-
|

I
8]

Time

Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for 1/0O. (a) A CPU-bound process. (b) An I/O-bound process.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Categories of Scheduling Algorithms

« Batch
 |nteractive
e Real time

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling in Batch Systems

* First-come first-served (FCFS)
* Shortest job first
* Shortest remaining time next

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

First IN First Out (FIFO or FCFS)

Run until finished, usually “finished" means “blocked."
Process goes to the back of run queue when ready.

Problem: one process can dominate the CPU.

Solution: limit the maximum time that a process can run
without a context switch. The time is called quantum or time

slice.

Shortest Job First (SJF)

*Suitable to batch system.
*Non-preemptive policy.

Must know the runtime or estimate runtime of each
Process.
*All jobs are available at system start-up time.

*Schedule the jobs according to their runtimes.

*Optimal with respect to average turnaroundtime.

Shortest Job First

8 4 4 4
A B | C | D
(a)
4 4 4 8
B | C | D A

Figure 2-40. An example of shortest job first scheduling.
(a) Running four jobs in the original order. (b) Running them
in shortest job first order.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shortest Job First

The runtimes of jobs AB C D (min): 8,4, 4,4

1. Runin order AB C D:

Jobs Turnaround times

A: 8

B:8+4 =12

C:8+4+4=16
D:8+4+4+4=20

Average Turnaround Time

ATT = (8+12+16+20)/4 = 14 (min)

2. Run in the order B C D A:
Jobs Turnaround times

B: 4

C:4+4=8

D:4+4+4=12
A:4+4+4+8=20

Average Turnaround Time

ATT = (4+8+12+20)/4 = 11 (min)

Shortest Job First

Shortest job first achieves the shortest average turnaroundtime.

General proof:

1. For four jobs.

Suppose the runtimes for jobs A, B, C and D are a; b; ¢ and d respectively.
Run in the order AB C D.

Average Turnaround Time:
AlT=[a+(a+b)+(a+b+c)+(a+b+c+d)J/d=(4a+3b+2c+d)4

a has the largest coefficient and must be the smallest. B must the second
smallest,...

Shortest Job First

2. Forn jobs.

njobsJd1J2...Jn
Runtimes T1, T2, ..., Tn
Run in order J1; J2; ..., Jn.

Jobs Turnaround times
J1: T1

J2: T1+T2

J3: T1+T2+T3

Ji: T1+T2+ ... +Ti
Jn: T1+T2+ ... +Tn

Average Turnaround Time:
ATT=[NT1+(n-1)T2+ (n-2)T3+ ... +(n-i+ 1)Ti+ ...+ 2Tn-1+ Tn]/n

Shortest Job First

We want to prove:
if T1 <=T2 <= ... <=Tn, then ATT is optimal (smallest).

Prove it by contradiction.
Suppose for some 1 <=i<j<=n,we have Ti>Tj.

Note that we have (n-i+ 1)Tiand (n-j+ 1)Tj in ATT, but
N-i+1>n-j+1.

We can always reduce the ATT by exchanging the running order of Ji
and Jj. That is,

(n-i+1)Tj+(n-j+1)Ti < (n-i+1)Ti+(n-j+1)T]

Thus, shortest job first is optimal.

Shortest Job First

If jobs are not available at the beginning, the shortest job first may not be
optimal.

A counterexample.

Five jobs:ABCDE
Runtimes: 2,4, 1,1, 1
Arrive times: 0, 0, 3, 3, 3

*Run in order AB C D E (shortest job first).

Jobs Turnaround times

A: 2

B:2+4=6

C:6-3+1=4

D:4+1=5

E:5+1=6

ATT = (2+6+4+5+6)/5 = 23/5

Shortest Job First

Run in order B C D E A.

Jobs Turnaround times

ATT = (4+2+3+4+9)/5 = 22/5

Shortest Remaining Time First

A preemptive version of shortest job first

*Scheduler always chooses the process whose
remaining run time is the shortest.

*Allows new short jobs to get good service

Scheduling in Interactive Systems

* Round-robin scheduling
* Priority scheduling

« Multiple queues

* Shortest process next

* Guaranteed scheduling

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Round-Robin Scheduling

*Maintain a list of runnable processes.

*Run a process for one quantum then move to the back of
queue. Each process gets equal share of the CPU.

*If process blocks (say, for I/O or semaphore) then remove it
from the queue and start to run the next process in queue.

*If a process becomes runnable, add it to the end of queue.
Length of quantum:
*Short: too much overhead

*Long: poor response time

In general: about 100 ms (or about 10K -100K instructions)

Round-Robin Scheduling

Current Next Current
process process process
B F D G A F D G A B

(@) (b)

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable
processes after B uses up its quantum.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Round-Robin Scheduling

Round robin may produce bad results:
Example: Ten processes, each requires100 quantum.

In round robin: each takes about 1000 (10*100) quantum
to finish.

In FIFO, they would require average 500 quantum to
finish.

How can we minimize the average response time (or
turnaround time)?

Use shortest job first.

Priority Scheduling

Assign each process a priority. Run the runnable process
with the highest priority.

How to assign priority:

I/O bound jobs have higher priority

CPU bound jobs have lower priority

If a job uses 1/f of the quantum, then Priority = f.

Unix command “nice" allows a user to lower the job priority
voluntarily.

Problem: high priority job may dominate CPU.

Solution: decrease priority of the running process at each
clock tick (dynamic priority).

Priority Class Scheduling (Multiple Queues)

Combine round robin and priority.
Group processes into priority classes.

Use priority scheduling among the classes.
Use round robin within each class.

Classes may have different quantum.
Adaptively change quantum: exponential queue
Give a newly runnable process a high priority and a very short quantum.

If the process uses up the quantum without blocking then decrease priority
by 1 and double quantum for next time.

Priority Class Scheduling

Queue Runable processes
headers . A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

Figure 2-42. A scheduling algorithm with four priority classes.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Priority Class Scheduling

Example:

Two processes P1 and P2.

P1: doing 1 ms computation followed by 10 ms I/O.
P2: doing all computation.

Initial quantum = 100 ms.

*P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then
becomes ready again.

*P2: priority 100 uses 100 ms CPU, switched out.

*P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then
becomes ready again.

*P2: priority 99 uses 200 ms CPU, switched out.

Shortest Process Next (Aging Algorithm)

How to use shortest job first in an interactive system?

Consider each command as a job
Estimate the runtime for a command (job) based on past runtime.

TO: estimated runtime per command for some terminal
Ti: runtime for the ith command (i >=1)
Si: predicted runtime for the ith (i >=1) command

Recurrence:
Si=To
Sn+i1=aln+(1-2)Sn;0<=a<=1;n>1

Closed form:

i - n
Sn+1=aln+ (1-a)aTn1+ .. +(1-a)aTn-i+... +(1-a5] “aT1 + (1-a) To

Shortest Process Next (Aging Algorithm)

Leta ="

Snt1=%oTnt Y2 Tn1+ ...+ Y8 Thi+ ...+ %" T1+ %2 To

Aging algorithm:

Estimate the next value in a series by taking the weighted
average of the current measured value and previous

estimate.

Possibility of starvation of longer jobs.

Guaranteed Scheduling

Also called fair share scheduling
n users logged in, each user receives about 1/n of the CPU time.

(1) Keep track of:

How long each user logged in
How much time a user used

(2) Compute:
CPU time entitled for a user = logged in time/n

Ratio = used time/ entitled time

(3) Choose the lowest ratio process to run until its ratio has moved above
its closest competitor.

Two Level Scheduling

Lower-level: scheduling among the processes in memory
Higher-level: scheduling between disk and memory
Criteria for higher-level scheduling:

1. Time the process stays in memory

2. CPU time of the process

3. Size of the process
4. Priority of the process

Scheduling in Real-Time Systems

Real-Time Systems:

 Hard real-time systems: The deadlines must be met.

« Soft real-time systems: The deadlines should be met
most of the time.

Periodic events: Events occur at regular intervals
Aperiodic events: Events occur unpredicatably

Scheduling in Real-Time Systems

Schedulable real-time system
Given

— m periodic events

— event i occurs within period P; and requires C; seconds
Then the load can only be handled if

A real-time system that meets this criteria is said
schedulable.

Scheduling in Real-Time Systems

Example:

P1 =100, P2 =200, P3 =500, P4=1000
C1=50, C2=30, C3=100,Cs=7

50/100 + 30/200 + 100/500 + C4/1000 <= 1

Cs <=150

Thread Scheduling (1)

Process A Process B Process A Process B
Order in which l

threads run \

2. Runtime 1 2 O
system
picks a —
thread — = =

4
L‘I. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

fa) fla)

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per
CPU burst.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Thread Scheduling (2)

Process A Process B Process A Process B
Order in which l

threads run \

Y
2. Runtime 12 3
system
picks a —
thread — = =

4
L1. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

=\ LA

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Summary of Scheduling Algorithms

In principle, scheduling algorithm can be arbitrary, since the
system should produce the same results in any event (get
the job done).

However, the algorithms have strong effects on the system's
overhead, efficiency and response time.

The best schemes are adaptive. To do absolutely best, we
have to be able to predict the future.

Best scheduling algorithms tend to give highest priority to
the process that needs the least!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Process Hierarchies
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Monitors
	Message Passing �
	Message Passing �
	Message Passing �
	Message Passing �
	Message Passing
	Message Passing
	Message Passing
	Message Passing
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Monitors
	Equivalence of Primitives�
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	The Sleeping Barber Problem
	The Sleeping Barber Problem
	The Sleeping Barber Problem
	CPU Scheduling
	CPU Scheduling
	CPU Scheduling
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Slide Number 136
	Slide Number 137
	Slide Number 138

