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The Process Model
•Process: an abstraction of a running program.

•All runnable software is organized into a number of 
sequential processes.

•Each process has its own flow of control (i.e. program 
counter, registers and variables).

•In a multiprogramming environment, processes switch back 
and forth.

•No built-in assumption about timing in programs (use 
interrupts instead).



Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual 
model of four independent, sequential processes. (c) Only 

one program is active at once.

The Process Model
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Events which cause process creation:

• System initialization.
• Execution of a process creation system call by a 

running process (e.g., fork() in unix).
• A user request to create a new process (shell 

command or click an icon).
• Initiation of a batch job.

Process Creation
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Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Process Termination
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Process Hierarchies

• Parent creates a child process, child processes can 
create its own child process

• Forms a hierarchy
– UNIX calls this a "process group"

• Windows has no concept of process hierarchy
– all processes are created equal



Process States

Three state model:
1. Running: using CPU currently.
2. Blocked: unable to run until some external event (e.g. I/O 
completes) happens.
3. Ready: runnable, temporarily stopped to let another process 
run.

Four possible transitions:
1. Process blocked for input.
2. Scheduler picks another process.
3. Scheduler picks this process.
4. Input becomes available.



Figure 2-2. A process can be in running, blocked, or ready state. 
Transitions between these states are as shown.

Process States

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Process States

What happens when all processes in memory are 
blocked for I/O?
•Swapping: move a process from memory to disk 
(suspend) and bring another process on disk to memory.

•Five state model, add two more states:
1. Blocked/Suspend: the process is in secondary 
memory and waiting an event.
2. Ready/Suspend: the process is in secondary memory 
but is available for execution as soon as it is loaded into 
memory.
•Transitions among states:



Five State Model



Figure 2-3. The lowest layer of a process-structured operating 
system handles interrupts and scheduling. Above that layer 

are sequential processes.

Implementation of Processes (1)
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Figure 2-4. Some of the fields of a typical process table entry.

Implementation of Processes (2)
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Figure 2-5. Skeleton of what the lowest level of the operating 
system does when an interrupt occurs.

Implementation of Processes (3)
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Figure 2-7. A word processor with three threads.

Thread Usage (1)
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Figure 2-8. A multithreaded Web server.

Thread Usage (2)
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Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher 
thread. (b) Worker thread.

Thread Usage (3)
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Figure 2-10. Three ways to construct a server.

Thread Usage (4)
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Figure 2-11. (a) Three processes each with one thread. (b) One 
process with three threads.

The Classical Thread Model (1)
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Figure 2-12. The first column lists some items shared by all 
threads in a process. The second one lists some items private 

to each thread.

The Classical Thread Model (2)
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Figure 2-13. Each thread has its own stack.

The Classical Thread Model (3)
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Figure 2-14. Some of the Pthreads function calls.

POSIX Threads (1)
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Figure 2-16. (a) A user-level threads package. (b) A threads 
package managed by the kernel.

Implementing Threads in User Space
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Figure 2-17. Multiplexing user-level threads 
onto kernel-level threads.

Hybrid Implementations
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Figure 2-18. Creation of a new thread when a message arrives. 
(a) Before the message arrives. 
(b) After the message arrives.

Pop-Up Threads
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Processes communicate through shared memory

Spooling: Simultaneous Peripheral Operation On Line

Possible problems (race condition)

Example: a print spooler.
•To print a file, a process enters the file name in a designated Spooler 
directory (an array implemented with circular queue).  
•Another process, printer daemon, prints the files and removes them 
from the directory.
•Shared variables: in, out.
•Print procedure:
1. in ->next-free-slot (local variable)
2. Put the file name to print in the array location indexed by next-free-
slot
3. Increment next-free-slot
4. next-free-slot ->in.

Inter-process Communication (IPC)



Figure 2-21. Two processes want to access 
shared memory at the same time.

Race Conditions
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Race Conditions
Assume two processes A & B and processes can be switched out 
during execution.
A sequence of actions which can cause problems:

1. Process A: in(= 7) -> next-free-slot
2. A is switched out and B is running.
3. Process B: in(=7) -> next-free-slot
4. B puts fie name to print in Slot 7.
5. B increments its local variable to 8.
6. B stores 8 into in.
7. A is scheduled to run again.
8. A puts file name to print into Slot 7.
9. A increments its local variable to 8.
10. A stores 8 into in.

Race condition: Several processes access and manipulate the same 
data concurrently, and the outcome of the execution depends on the 
particular access order.



Another example:
Bookkeeping application. Need to maintain data coherence, i.e. keep 
a = b.

Process 1: a = a + 1; b = b + 1
Process 2: b = 2 x b; a = 2 x a
Initially a = b
Execution sequence:
a = a + 1
b = 2 x b
b = b + 1
a = 2 x a
At the end a ≠ b.

Critical section (region):  Portion of a program that accesses shared 
variables
Mutual exclusion:  Mechanism which makes sure that two or more 
processes do not access a common resource at the same time.

Race Conditions



Four conditions required to avoid race condition:

• No two processes may be simultaneously inside their 
critical regions.

• No assumptions may be made about speeds or the 
number of CPUs.

• No process running outside its critical region may 
block other processes.

• No process should have to wait forever to enter its 
critical region.

Critical Regions (1)
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Figure 2-22. Mutual exclusion using critical regions.

Critical Regions (2)
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Proposals for achieving mutual exclusion:

• Disabling interrupts
• Lock variables
• Strict alternation
• Peterson's solution
• The TSL instruction

Mutual Exclusion with Busy Waiting
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Disabling Interrupts

A hardware solution:

1. Disable interrupts
2. Enter critical section
3. Do something in critical section
4. Exit critical section
5. Re-enable interrupts

Give too much power to user processes.
Only works for single CPU.



Lock Variables
A binary shared variable lock.
lock = 1: critical region occupied
lock = 0: critical region unoccupied

The code for entering critical section:
1. loop: if lock == 1 then goto loop;
2. lock = 1;
3. critical-section();
4. lock =0;

A possible execution sequence:

1. Process A executes (1) and finds lock = 0. Drops from loop.
2. Process A is switched out.
3. Process B checks lock and sees lock = 0 and drops from loop.
4. Process B sets lock = 1 and enters critical section.
5. Process A wakes up, sets lock = 1 (again) and enters critical section.



Strict Alternation

Processes take turns to enter critical section

For two processes, use a variable turn:
turn = 0: process 0 can enter critical section
turn = 1: process 1 can enter critical section

Limitations: 

1. The faster process has to adapt to the pace of the 
slower process
2. Two processes have to take turns to enter their critical 
section. No one can enter twice in a  row.



Figure 2-23. A proposed solution to the critical region problem. 
(a) Process 0. (b) Process 1. In both cases, be sure to note 

the semicolons terminating the while statements.

Strict Alternation
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Peterson's Solution
Combine lock and take turns

Four possibilities for condition:
(turn=process && interested[other]=true)
from the point of view of process 0.
Case 1: turn = 0, interested[1] = false
Process 1 is not in critical region.
Process 0 enters critical region.
Case 2: turn = 0, interested[1] = true
Process 1 is in critical region.
Process 0 waits.
Case 3: turn = 1, interested[1]=false
Impossible.
Case 4: turn = 1, interested[1]=true
Process 1 is trying to enter critical region, but process 0's turn first. 
Process 0 enters critical region.



Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Peterson's Solution
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The TSL Instruction

Need hardware support (machine must have this special 
instruction)

TSL: combine
(Mem) -> R and 1 -> Mem into an atomic operation.



Figure 2-25. Entering and leaving a critical region 
using the TSL instruction.

The TSL Instruction 
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Sleep and Wakeup 

Avoid busy waiting. Use sleep and wakeup.

Sleep: a system call that causes the caller to block until 
another process wakes it up.

Wakeup(p): wakeup process p.

How to handle wakeup if sent to a process not asleep:

•Ignore
•Queue



The Producer-Consumer Problem

A circular buffer has n slots. Producer puts an item into buffer each time. 
Consumer takes an item out of the buffer each time.

Use sleep and wakeup to write procedures for producer and consumer.

0

1

2

N-1



Figure 2-27. The producer-consumer problem 
with a fatal race condition.

The Producer-Consumer Problem
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The Producer-Consumer Problem
Problem: wakeup sent to a process that has not gone to sleep.

Example:
•Buffer empty.
•Consumer reads count = 0 and is switched out (not sleep yet).
•Producer enters an item in buffer and increments the counter.
• Producer sends wakeup.  Wakeup lost.
•Consumer is scheduled to run again.
•Consumer goes to sleep.
•Producer eventually fills buffer and goes to sleep.

Quick fix:
Set wakeup waiting bit if wakeup is sent to a non-sleeping process.
If a process tries to go sleep and the bit is on, clears the bit and stays 
awake.

More than one wakeup ?



Semaphores
A synchronization integer variable.
Two atomic operations: down and up
A queue for blocking
Implementation of semaphores

type semaphore = record
value : integer
l: queue of processes
end;

down(s): If s.value >= 1 then
s.value = s.value - 1
else block the process on the semaphore queue s.l
(i.e. add the process to queue s.l)

up(s): If some processes are blocked on s
then unblock a process (remove a process from queue s.l)
else s.value = s.value + 1



Semaphores

Two types of semaphores

Binary semaphore:
Two values 0 and 1, used for mutual exclusion (i.e. to ensure that 
only one     process is accessing shared information at a time)
semaphore mutex = 1
down(mutex);
critical-section();
up(mutex);

Counting semaphore:
Used for synchronizing access to a shared resource by several 
concurrent processes (i.e. to control how many processes can 
concurrently perform operations on the shared resource).



Semaphores

Semaphores are not supported by hardware, but can be 
easily implemented using TEST and SET LOCK 
instruction
and enable/disable interrupts.

Example: Solving the producer consumer problem by 
semaphores



Figure 2-28. The producer-consumer problem using semaphores.

Semaphores
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Semaphores
The sequence of down and up operations matters.

Reverse the sequence of downs in producer:

1. Buffer empty.
2. Run producer through while loop n times.
3. Buffer full.
4. Run producer again.
5. Producer sleeps on semaphore empty.
6. Run consumer.
7. Consumer sleeps on semaphore mutex.
8. Deadlock.



Semaphores

Reverse the sequence of downs in consumer:

1. Buffer empty.
2. Run consumer.
3. Consumer sleeps on semaphore full.
4. Run producer.
5. Down(empty), ok.
6. Producer sleeps on semaphore mutex.
7. Deadlock again.



Semaphores

Although semaphores provide a simple and sufficiently 
general scheme for IPC, they suffer from the following 
drawbacks:

1. A process that uses a semaphore has to know WHICH 
other processes use these semaphore. May also have to 
know HOW
these processes are using the semaphore.
2. Semaphore operations must be carefully installed in a 
process. The OMISSION of an up or down may result 
inconsistencies or deadlocks.
3. Programs using semaphores can be extremely hard to 
verify for correctness.



Monitors

Monitor is a high-level synchronization primitive

Combine three features:
1. Shared data
2. Operations on the data
3. Synchronization

Programming constructs, implemented by compiler.
Only one process active in a monitor at a time (implicitly 
controlled by monitor lock)
Easier and safer to use.



Monitors
<Monitor name>: monitor
begin
Declaration of data local to the monitor
...
procedure <name> (<formal parameters>);
begin
procedure body
end;

Declaration of other procedures.
...
begin
Initialization of local data of the monitor
end;
end;



Monitors 
Need some way to wait, two choices:

(1) Busy-wait inside monitor
(2) Put the process to sleep insider monitor

Condition variables (things to wait on):

•wait(condition): release monitor lock, and put the process to sleep. 
When process wakes up again, re-acquire monitor lock immediately.

•signal(condition): wake up one process waiting on condition variable 
(FIFO).
If no body is waiting, do nothing (no history).

•broadcast(condition): wake up all processes waiting on the condition 
variable.



Monitors 

Need to decide who gets the monitor lock after a signal:

•On signal, signaler keeps monitor lock. Awakened process waits for 
monitor lock with no special priority.

•On signal, awakened process gets the monitor lock. Signaler exits 
from monitor immediately.



Figure 2-33. A monitor.

Monitors 
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Monitors 

Outline of producer-consumer problem with monitors



Message Passing 
Why use message passing

•Two parts of communication can be totally separated (no shared data)
•No invisible side effects
•No need to know the other part

Message:
A piece of information that is passed from one process to another.

Mailbox: 
A shared data structure where messages are stored between the time they 
are sent and the time they are received.



Message Passing 
Operations:

send: copy a message into mailbox. If the mailbox is full 
wait until there is enough space in the mailbox.

Format: send(destination, message)

receive: copy a message out of mailbox, and delete from 
mailbox. If the mailbox is empty, then wait until a message 
arrives.

Format: receive(source, message)



Message Passing 
Design issues of message system

Addressing: how to specify the sending and receiving processes.

Direct addressing: sender and receiver communicate directly.
send: a specific identification of the destination process, such as
process@machine.domain
receive:
(a) explicit addressing
(b) implicit addressing

Indirect addressing: messages are sent to a shared data structure called 
mailboxes (queues that can temporarily hold messages)

Relationship between mailboxes and processes
(a) One mailbox per process. Use process name in send, no name in
receive.
(b) No strict mailbox-process association, use mailbox name.



Message Passing 
Extent of buffering

Buffering
None  - rendezvous protocol

Blocking vs. non-blocking operations
Blocking receive:
receive message if mailbox is not empty, otherwise wait until message 
arrives
Non-blocking receive:
receive message if mailbox is not empty, otherwise return.
Blocking send:
wait until mailbox has space.
Nonblocking send:
return “full" if no space in mailbox.

Four possible send and receive combinations.



Message Passing

Source

Destination
Message length

Control info

Message type
Message contents



Message Passing

Queueing discipline:

First in first out (FIFO)

Priority



Message Passing

Empty message Full message

(1)
(2) (3)

(4)

N slots N slots

Producer’s mailbox Consumer's mailbox



Message Passing

(1) Consumer sends empty message to producer's mailbox.

(2) Producer takes empty message and builds full message.

(3) Producer sends full message to consumer's mailbox.

(4) Consumer takes full message out and consumes it.



Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem 
with Message Passing 
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Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem 
with Message Passing 
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Semaphores, monitors and messages are equivalence. 
Each of these methods can be used to implement the 
other methods.

1. Implement monitors with semaphores
Associate with each monitor a binary semaphore mutex
(monitor lock), initially 1.
Associate with each condition variable a semaphore, 
initially 0.
Translate:
wait(c)                   up(mutex); down(c); down(mutex)

signal(c)                up(c)

Equivalence of Primitives



Monitors 

Outline of producer-consumer problem with monitors



Equivalence of Primitives

2. Implement message passing with semaphores.

•Associate with each process a semaphore, initially 0, on which it will 
block.

•A shared buffer area holds mailboxes. Each mailbox contains:
# full slots
# empty slots
send queue (those processes which cannot send their messages 

to the mailbox
receive queue (those processes which cannot receive their 

message from the mailbox
messages linked together

•A semaphore, mutex, to protect the shared buffer area.



Equivalence of Primitives

Full slots

Empty slots

Send queue

Receive queue

Message

Message

Full slots

Empty slots

Send queue

Receive queue

Message

2

Mailboxes

S S S
… …

S Mutex
Message



Equivalence of Primitives
send/receive operations:

Case 1. Mailbox has at least one empty or full slot:
down(mutex)
insert/remove message
update counters and links
up(mutex)

Case 2. Process i does receive on an empty mailbox:
down(mutex)
enter receive queue
up(mutex)
down(Pi)
down(mutex)

Case 3. Process i does send on a full mailbox:
down(mutex)
enter send queue
up(mutex)
down(Pi)
down(mutex)



Equivalence of Primitives

How to wake up sleeping processes?

•If a receiver receives a message from the full mailbox, 
wakes up (does up) the first process in the send queue.

•If a sender sends a message to the empty mailbox, wakes 
up the first process in the receive queue.



Equivalence of Primitives
3. Implement semaphore with monitors

Associate with each semaphore a counter and a linked list.
•Counter stores the value of the semaphore
•Linked list stores the processes sleeping on the semaphore

Associate with each process a condition variable

Operations:

down(s) : If counter_s > 0, then counter_s --
else {enter linked list of s; wait (Pi)}

up(s) : If linked list not empty, then {remove one process from the list, 
say, Pi; signal(Pi)}
else counter_s++;



Equivalence of Primitives

4. Implement messages with monitors.

•Associate with each process a condition variable for 
blocking

•A shared buffer

•Similar to semaphores except no mutex necessary.



Equivalence of Primitives

5. Implement semaphores with messages.

For mutual exclusion, introduce a new process, 
synchronization process.

Associate each semaphore with a counter and a linked list 
of waiting processes.

Operations:
To do up or down on a semaphore, call the corresponding 
library procedure up or down.



Equivalence of Primitives



Equivalence of Primitives

Synchronization process does:

down: If count > 0 {counter--; send back empty message}
else  {enter caller into queue and does not send reply;}

up: If counter = 0 {move one process out of queue; send 
this process a reply }
else counter++;



Equivalence of Primitives

6. Implement monitor with message passing

Combine (5) and (1). That is, using messages to implement 
semaphores first, then using semaphores to implement 
monitors.



Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. 
(b) All processes but one blocked at the barrier. (c) When the 
last process arrives at the barrier, all of them are let through.

Barriers
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Classical IPC Problems
The dining philosophers problem

Problem description:
Five philosopher sit around a round table, and each of them 
has one fork.

Activities: eating and thinking.
To eat, need two adjacent forks.

Goal: no starvation.

Useful for modeling processes that are competing for 
exclusive access to a limited number of resources, such as 
tape drive or other I/O devices.



Figure 2-44. Lunch time in the Philosophy Department.

Dining Philosophers Problem 
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Figure 2-45. A nonsolution to the dining philosophers problem.

Dining Philosophers Problem 
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Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem 
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Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem 
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Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem 
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Dining Philosophers Problem 
Problems with solution 2:
Assume Philosophers 1 and 4 eat for a long time and 
Philosophers 2 and 3 eat for ashort time. A possible 
execution sequence:
1. 4 and 1 eating.
2. 0 and 3 become hungry (blocked).
3. 4 finishes eating and checks neighbors.
4. 0 IS NOT ALLOWED TO EAT, but 3 is allowed to eat.
5. 4 becomes hungry again.
6. 3 finishes eating and allows 4 to eat again.
7. 1 finishes, 0 IS STILL NOT ALLOWEDTO EAT because of 
4.
8. 2 is allowed to eat.
9. 1 becomes hungry again.
10. 2 finishes and allows 1 to eat.
11. repeat, 0 IS NEVER ALLOWED TO EAT.



Dining Philosophers Problem 

A working solution:
#define N 5
typedef int semaphore;
semaphore fork[N]; /* initially 1; */
semaphore room = 4; /* allow 4 in the dining room */
philosopher(i)
int i;
while (TRUE) {
think();
down(room); /* get into dining room */
down(fork[i]); /* get left fork */
down(fork[(i+1)%5)]); /* get right fork */
eat();
up(fork[(i+1)%5)]); /*put back right fork*/
up(fork[i]); /* put back left fork */
up(room); /* get out of dining room */
}
}



The Readers and Writers Problem

Problem description:

A data area (file or memory) shared among a number of processes.
Some processes (readers) only read the data area.
Other processes (writers) only write to the data area.

Conditions must be satisfied:
1. Any number of readers may simultaneously read the data area.
2. Only one writer at a time may write to the data area.
3. If a writer is writing to the data area, no readers may read it.



The Readers and Writers Problem

Special type of mutual exclusion problem. A special solution 
can do better than a general solution.
•Solution one:
Readers have priority. Unless a writer is currently writing,   
readers can always read the data.
•Solution two:
Writers have priority. Guarantee no new readers are allowed 
when a writer wants to write.
•Other possible solutions:
Weak reader's priority or weak writer's priority.
Weak reader's priority: An arriving reader still has priority 
over waiting writers. However, when a writer departs, both 
waiting readers and waiting writers have equal priority.



Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem
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Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem 
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The Sleeping Barber Problem 



The Sleeping Barber Problem

Problem description:

When no customer, barber sleeps. If no waiting chair, 
customer leaves.



1

The Sleeping Barber Problem 

Solution to sleeping barber problem.



CPU Scheduling
Resources: the things operated on by processes. 
Resources ranges from CPU time to disk space, to I/O channel 
time.

Resources fall into two classes:

(1) Preemptive: 
OS can take resource away. Use it for something else, and then 
give it back later.
Examples: processor or I/O channel.

(2) Non-preemptive:
Once given, it cannot be reused until the process gives it back.
Examples: file space and terminal.

Anything is preemptive if it can be saved and restored.



CPU Scheduling

O.S. makes two related kinds of decisions about resources:

(1) Allocation: 
Who gets what? Given a set of requests for resources, which 
process should be given which resources in order to make 
most efficient use of the resources?

(2) Scheduling: How long can they keep it? When more resources 
are requested than can be granted immediately, in which order 
should hay be served?

Examples: processor scheduling and memory scheduling (virtual 
memory).

Resource # 1: the processor.
Processes may be in any one of three general scheduling states: 
Running, ready and blocked.



CPU Scheduling

Criteria for a good scheduling algorithm:

1. Fairness: every process gets its fair share of CPU.
2. Efficiency (utilization): keep CPU busy.
3. Response time: minimize response time for interactive users.
4. Throughput: maximize jobs per hour.
5. Minimize overhead (context swaps).

Context switch: changing process. Include save and load registers 
and memory maps and update misc tables and lists.

Clock interrupt: Clock interrupt occurs at fixed time interval (for 60 
Hertz AC frequency, 60 times per second) and O.S. scheduler can 
run. Every interrupt is called a clock tick (a basic time unit in 
computer systems).



Figure 2-38. Bursts of CPU usage alternate with periods of waiting 
for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

Scheduling – Process Behavior
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• Batch
• Interactive
• Real time

Categories of Scheduling Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Figure 2-39. Some goals of the scheduling algorithm under 
different circumstances.

Scheduling Algorithm Goals
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• First-come first-served (FCFS)
• Shortest job first
• Shortest remaining time next

Scheduling in Batch Systems
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First IN First Out (FIFO or FCFS)

Run until finished, usually “finished" means “blocked." 
Process goes to the back of run queue when ready.

Problem: one process can dominate the CPU.

Solution: limit the maximum time that a process can run 
without a context switch. The time is called quantum or time 
slice.



Shortest Job First (SJF)

•Suitable to batch system. 
•Non-preemptivepolicy.

•Must know the runtime or estimate runtime of each
process.
•All jobs are available at system start-up time.

•Schedule the jobs according to their runtimes.

•Optimal with respect to average turnaroundtime.



Figure 2-40. An example of shortest job first scheduling. 
(a) Running four jobs in the original order. (b) Running them 

in shortest job first order.

Shortest Job First
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Shortest Job First

The runtimes of jobs A B C D (min):  8, 4 , 4, 4

1. Run in order A B C D:
Jobs Turnaround times
A: 8
B: 8 + 4 = 12
C: 8 + 4 + 4 = 16
D: 8 + 4 + 4 + 4 = 20
Average Turnaround Time
ATT = (8+12+16+20)/4 = 14 (min)

2. Run in the order B C D A:
Jobs Turnaround times
B: 4
C: 4 + 4 = 8
D: 4 + 4 + 4 = 12
A: 4 + 4 + 4 + 8 = 20
Average Turnaround Time
ATT = (4+8+12+20)/4 = 11 (min)



Shortest Job First
Shortest job first achieves the shortest average turnaround time.

General proof:

1. For four jobs.

Suppose the runtimes for jobs A, B, C and D are a; b; c and d respectively.

Run in the order A B C D.

Average Turnaround Time:

ATT = [a + (a + b) + (a + b + c) + (a + b + c + d)]/4 = (4a + 3b + 2c + d)/4

a has the largest coefficient and must be the smallest. B must the second 
smallest,…



Shortest Job First
2. For n jobs.

n jobs J1 J2 . . . Jn
Runtimes T1, T2, . . ., Tn
Run in order J1; J2; …, Jn.

Jobs Turnaround times
J1:  T1
J2:  T1 + T2
J3:  T1 + T2 + T3
...
Ji:   T1 + T2 + … + Ti
...
Jn:  T1 + T2 + … + Tn

Average Turnaround Time:
ATT = [nT1 + (n -1)T2 + (n - 2)T3 + … +(n -i + 1)Ti + … + 2 Tn-1 + Tn]/n



Shortest Job First
We want to prove:
if T1 <= T2  <= … <= Tn, then ATT is optimal (smallest).

Prove it by contradiction.
Suppose for some 1 <= i < j <= n, we have Ti > Tj .

Note that we have (n - i + 1)Ti and (n -j + 1)Tj in ATT, but
N - i + 1 > n - j + 1.
We can always reduce the ATT by exchanging the running order of Ji
and Jj. That is,

(n-i+1)Tj+(n-j+1)Ti < (n-i+1)Ti+(n-j+1)Tj

Thus, shortest job first is optimal.



Shortest Job First
If jobs are not available at the beginning, the shortest job first may not be 
optimal.

A counterexample.

Five jobs: A B C D E
Runtimes: 2, 4, 1, 1, 1
Arrive times: 0, 0, 3, 3, 3

•Run in order A B C D E (shortest job first).

Jobs Turnaround times
A: 2
B: 2 + 4 = 6
C: 6 - 3 + 1 = 4
D: 4 + 1 = 5
E: 5 + 1 = 6
ATT = (2+6+4+5+6)/5 = 23/5



Shortest Job First

Run in order B C D E A.

Jobs Turnaround times

B: 4
C: 4 - 3 + 1 = 2
D: 2 + 1 = 3
E: 3 + 1 = 4
A: 4 + 3 + 2 = 9

ATT = (4+2+3+4+9)/5 = 22/5



Shortest Remaining Time First

•A preemptive version of shortest job first

•Scheduler always chooses the process whose 
remaining run time is the shortest.

•Allows new short jobs to get good service



• Round-robin scheduling
• Priority scheduling
• Multiple queues
• Shortest process next
• Guaranteed scheduling

Scheduling in Interactive Systems
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Round-Robin Scheduling
•Maintain a list of runnable processes.

•Run a process for one quantum then move to the back of 
queue. Each process gets equal share of the CPU.

•If process blocks (say, for I/O or semaphore) then remove it 
from the queue and start to run the next process in queue.

•If a process becomes runnable, add it to the end of queue.

•Length of quantum:
•Short: too much overhead
•Long: poor response time

•In general: about 100 ms (or about 10K -100K instructions)



Figure 2-41. Round-robin scheduling. 
(a) The list of runnable processes. (b) The list of runnable

processes after B uses up its quantum.

Round-Robin Scheduling
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Round-Robin Scheduling
Round robin may produce bad results:

Example: Ten processes, each requires100 quantum.

In round robin: each takes about 1000 (10*100) quantum 
to finish.

In FIFO, they would require average 500 quantum to
finish.

How can we minimize the average response time (or 
turnaround time)?

Use shortest job first.



Priority Scheduling
Assign each process a priority. Run the runnable process 
with the highest priority.

How to assign priority:
I/O bound jobs have higher priority
CPU bound jobs have lower priority
If a job uses 1/f of the quantum, then Priority = f.

Unix command “nice" allows a user to lower the job priority 
voluntarily.

Problem: high priority job may dominate CPU.

Solution: decrease priority of the running process at each 
clock tick (dynamic priority).



Priority Class Scheduling (Multiple Queues)

Combine round robin and priority.

Group processes into priority classes.

Use priority scheduling among the classes.
Use round robin within each class.

Classes may have different quantum.

Adaptively change quantum: exponential queue

Give a newly runnable process a high priority and a very short quantum.

If the process uses up the quantum without blocking then decrease priority 
by 1 and double quantum for next time.



Figure 2-42. A scheduling algorithm with four priority classes.

Priority Class Scheduling
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Priority Class Scheduling

Example:
Two processes P1 and P2.
P1: doing 1 ms computation followed by 10 ms I/O.
P2: doing all computation.

Initial quantum = 100 ms.
•P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then 
becomes ready again.
•P2: priority 100 uses 100 ms CPU, switched out.
•P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then 
becomes ready again.
•P2: priority 99 uses 200 ms CPU, switched out.
…



Shortest Process Next (Aging Algorithm)
How to use shortest job first in an interactive system?

Consider each command as a job
Estimate the runtime for a command (job) based on past runtime.

T0: estimated runtime per command for some terminal
Ti: runtime for the ith command (i >=1)
Si: predicted runtime for the ith (i >=1) command

Recurrence:

Closed form:
1 n  1; a  0 ;a)S-(1  aT  S

T  S
nn1n

01

><=<=+=
=
+

Sn+1 = aTn + (1- a)aTn-1 + … +(1-a) aTn-i + … +(1-a)     aT1 + (1-a) T0
i 1-n n



Shortest Process Next (Aging Algorithm)

Let a = ½

Sn+1 = ½ Tn+ ½ Tn-1 + … + ½   Tn-i + …+ ½  T1 + ½  T0

Aging algorithm:

Estimate the next value in a series by taking the weighted 
average of the current measured value and previous 
estimate.

Possibility of starvation of longer jobs.

2 1i+ n n



Guaranteed Scheduling

Also called fair share scheduling
n users logged in, each user receives about 1/n of the CPU time.

(1) Keep track of:

How long each user logged in
How much time a user used

(2) Compute:
CPU time entitled for a user = logged in time/n

Ratio = used time/ entitled time

(3) Choose the lowest ratio process to run until its ratio has moved above         
its closest competitor.



Two Level Scheduling

Lower-level: scheduling among the processes in memory

Higher-level: scheduling between disk and memory

Criteria for higher-level scheduling:

1. Time the process stays in memory
2. CPU time of the process
3. Size of the process
4. Priority of the process



Scheduling in Real-Time Systems

Real-Time Systems:

• Hard real-time systems: The deadlines must be met.
• Soft real-time systems: The deadlines should be met 

most of the time.

Periodic events: Events occur at regular intervals 
Aperiodic events: Events occur unpredicatably



1

Scheduling in Real-Time Systems

Schedulable real-time system
Given

– m periodic events
– event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1
1

m
i

i i

C
P=

≤∑

A real-time system that meets this criteria is said 
schedulable.



Scheduling in Real-Time Systems

Example:

P1 = 100, P2 = 200, P3 = 500, P4 = 1000
C1 = 50,   C2= 30,   C3 = 100, C4 = ?

50/100 +  30/200 + 100/500 + C4/1000 <= 1

C4 <= 150



Figure 2-43. (a) Possible scheduling of user-level threads with a 
50-msec process quantum and threads that run 5 msec per 

CPU burst. 

Thread Scheduling (1)
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Figure 2-43. (b) Possible scheduling of kernel-level threads with 
the same characteristics as (a).

Thread Scheduling (2)
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Summary of Scheduling Algorithms

In principle, scheduling algorithm can be arbitrary, since the 
system should produce the same results in any event (get 
the job done).

However, the algorithms have strong effects on the system's 
overhead, efficiency and response time.

The best schemes are adaptive. To do absolutely best, we 
have to be able to predict the future.

Best scheduling algorithms tend to give highest priority to 
the process that needs the least!
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