
Chapter 2
Processes and Threads

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes
Threads
Interprocess communication
Classical IPC problems
Scheduling

The Process Model
•Process: an abstraction of a running program.

•All runnable software is organized into a number of
sequential processes.

•Each process has its own flow of control (i.e. program
counter, registers and variables).

•In a multiprogramming environment, processes switch back
and forth.

•No built-in assumption about timing in programs (use
interrupts instead).

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only

one program is active at once.

The Process Model

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process creation:

• System initialization.
• Execution of a process creation system call by a

running process (e.g., fork() in unix).
• A user request to create a new process (shell

command or click an icon).
• Initiation of a batch job.

Process Creation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process termination:

• Normal exit (voluntary).
• Error exit (voluntary).
• Fatal error (involuntary).
• Killed by another process (involuntary).

Process Termination

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

6

Process Hierarchies

• Parent creates a child process, child processes can
create its own child process

• Forms a hierarchy
– UNIX calls this a "process group"

• Windows has no concept of process hierarchy
– all processes are created equal

Process States

Three state model:
1. Running: using CPU currently.
2. Blocked: unable to run until some external event (e.g. I/O
completes) happens.
3. Ready: runnable, temporarily stopped to let another process
run.

Four possible transitions:
1. Process blocked for input.
2. Scheduler picks another process.
3. Scheduler picks this process.
4. Input becomes available.

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Process States

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Process States

What happens when all processes in memory are
blocked for I/O?
•Swapping: move a process from memory to disk
(suspend) and bring another process on disk to memory.

•Five state model, add two more states:
1. Blocked/Suspend: the process is in secondary
memory and waiting an event.
2. Ready/Suspend: the process is in secondary memory
but is available for execution as soon as it is loaded into
memory.
•Transitions among states:

Five State Model

Figure 2-3. The lowest layer of a process-structured operating
system handles interrupts and scheduling. Above that layer

are sequential processes.

Implementation of Processes (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-4. Some of the fields of a typical process table entry.

Implementation of Processes (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.

Implementation of Processes (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-7. A word processor with three threads.

Thread Usage (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-8. A multithreaded Web server.

Thread Usage (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher
thread. (b) Worker thread.

Thread Usage (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-10. Three ways to construct a server.

Thread Usage (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-11. (a) Three processes each with one thread. (b) One
process with three threads.

The Classical Thread Model (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private

to each thread.

The Classical Thread Model (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-13. Each thread has its own stack.

The Classical Thread Model (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-14. Some of the Pthreads function calls.

POSIX Threads (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-16. (a) A user-level threads package. (b) A threads
package managed by the kernel.

Implementing Threads in User Space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-17. Multiplexing user-level threads
onto kernel-level threads.

Hybrid Implementations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-18. Creation of a new thread when a message arrives.
(a) Before the message arrives.
(b) After the message arrives.

Pop-Up Threads

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes communicate through shared memory

Spooling: Simultaneous Peripheral Operation On Line

Possible problems (race condition)

Example: a print spooler.
•To print a file, a process enters the file name in a designated Spooler
directory (an array implemented with circular queue).
•Another process, printer daemon, prints the files and removes them
from the directory.
•Shared variables: in, out.
•Print procedure:
1. in ->next-free-slot (local variable)
2. Put the file name to print in the array location indexed by next-free-
slot
3. Increment next-free-slot
4. next-free-slot ->in.

Inter-process Communication (IPC)

Figure 2-21. Two processes want to access
shared memory at the same time.

Race Conditions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Race Conditions
Assume two processes A & B and processes can be switched out
during execution.
A sequence of actions which can cause problems:

1. Process A: in(= 7) -> next-free-slot
2. A is switched out and B is running.
3. Process B: in(=7) -> next-free-slot
4. B puts fie name to print in Slot 7.
5. B increments its local variable to 8.
6. B stores 8 into in.
7. A is scheduled to run again.
8. A puts file name to print into Slot 7.
9. A increments its local variable to 8.
10. A stores 8 into in.

Race condition: Several processes access and manipulate the same
data concurrently, and the outcome of the execution depends on the
particular access order.

Another example:
Bookkeeping application. Need to maintain data coherence, i.e. keep
a = b.

Process 1: a = a + 1; b = b + 1
Process 2: b = 2 x b; a = 2 x a
Initially a = b
Execution sequence:
a = a + 1
b = 2 x b
b = b + 1
a = 2 x a
At the end a ≠ b.

Critical section (region): Portion of a program that accesses shared
variables
Mutual exclusion: Mechanism which makes sure that two or more
processes do not access a common resource at the same time.

Race Conditions

Four conditions required to avoid race condition:

• No two processes may be simultaneously inside their
critical regions.

• No assumptions may be made about speeds or the
number of CPUs.

• No process running outside its critical region may
block other processes.

• No process should have to wait forever to enter its
critical region.

Critical Regions (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-22. Mutual exclusion using critical regions.

Critical Regions (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Proposals for achieving mutual exclusion:

• Disabling interrupts
• Lock variables
• Strict alternation
• Peterson's solution
• The TSL instruction

Mutual Exclusion with Busy Waiting

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Disabling Interrupts

A hardware solution:

1. Disable interrupts
2. Enter critical section
3. Do something in critical section
4. Exit critical section
5. Re-enable interrupts

Give too much power to user processes.
Only works for single CPU.

Lock Variables
A binary shared variable lock.
lock = 1: critical region occupied
lock = 0: critical region unoccupied

The code for entering critical section:
1. loop: if lock == 1 then goto loop;
2. lock = 1;
3. critical-section();
4. lock =0;

A possible execution sequence:

1. Process A executes (1) and finds lock = 0. Drops from loop.
2. Process A is switched out.
3. Process B checks lock and sees lock = 0 and drops from loop.
4. Process B sets lock = 1 and enters critical section.
5. Process A wakes up, sets lock = 1 (again) and enters critical section.

Strict Alternation

Processes take turns to enter critical section

For two processes, use a variable turn:
turn = 0: process 0 can enter critical section
turn = 1: process 1 can enter critical section

Limitations:

1. The faster process has to adapt to the pace of the
slower process
2. Two processes have to take turns to enter their critical
section. No one can enter twice in a row.

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note

the semicolons terminating the while statements.

Strict Alternation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Peterson's Solution
Combine lock and take turns

Four possibilities for condition:
(turn=process && interested[other]=true)
from the point of view of process 0.
Case 1: turn = 0, interested[1] = false
Process 1 is not in critical region.
Process 0 enters critical region.
Case 2: turn = 0, interested[1] = true
Process 1 is in critical region.
Process 0 waits.
Case 3: turn = 1, interested[1]=false
Impossible.
Case 4: turn = 1, interested[1]=true
Process 1 is trying to enter critical region, but process 0's turn first.
Process 0 enters critical region.

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The TSL Instruction

Need hardware support (machine must have this special
instruction)

TSL: combine
(Mem) -> R and 1 -> Mem into an atomic operation.

Figure 2-25. Entering and leaving a critical region
using the TSL instruction.

The TSL Instruction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Sleep and Wakeup

Avoid busy waiting. Use sleep and wakeup.

Sleep: a system call that causes the caller to block until
another process wakes it up.

Wakeup(p): wakeup process p.

How to handle wakeup if sent to a process not asleep:

•Ignore
•Queue

The Producer-Consumer Problem

A circular buffer has n slots. Producer puts an item into buffer each time.
Consumer takes an item out of the buffer each time.

Use sleep and wakeup to write procedures for producer and consumer.

0

1

2

N-1

Figure 2-27. The producer-consumer problem
with a fatal race condition.

The Producer-Consumer Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

The Producer-Consumer Problem
Problem: wakeup sent to a process that has not gone to sleep.

Example:
•Buffer empty.
•Consumer reads count = 0 and is switched out (not sleep yet).
•Producer enters an item in buffer and increments the counter.
• Producer sends wakeup. Wakeup lost.
•Consumer is scheduled to run again.
•Consumer goes to sleep.
•Producer eventually fills buffer and goes to sleep.

Quick fix:
Set wakeup waiting bit if wakeup is sent to a non-sleeping process.
If a process tries to go sleep and the bit is on, clears the bit and stays
awake.

More than one wakeup ?

Semaphores
A synchronization integer variable.
Two atomic operations: down and up
A queue for blocking
Implementation of semaphores

type semaphore = record
value : integer
l: queue of processes
end;

down(s): If s.value >= 1 then
s.value = s.value - 1
else block the process on the semaphore queue s.l
(i.e. add the process to queue s.l)

up(s): If some processes are blocked on s
then unblock a process (remove a process from queue s.l)
else s.value = s.value + 1

Semaphores

Two types of semaphores

Binary semaphore:
Two values 0 and 1, used for mutual exclusion (i.e. to ensure that
only one process is accessing shared information at a time)
semaphore mutex = 1
down(mutex);
critical-section();
up(mutex);

Counting semaphore:
Used for synchronizing access to a shared resource by several
concurrent processes (i.e. to control how many processes can
concurrently perform operations on the shared resource).

Semaphores

Semaphores are not supported by hardware, but can be
easily implemented using TEST and SET LOCK
instruction
and enable/disable interrupts.

Example: Solving the producer consumer problem by
semaphores

Figure 2-28. The producer-consumer problem using semaphores.

Semaphores

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Semaphores
The sequence of down and up operations matters.

Reverse the sequence of downs in producer:

1. Buffer empty.
2. Run producer through while loop n times.
3. Buffer full.
4. Run producer again.
5. Producer sleeps on semaphore empty.
6. Run consumer.
7. Consumer sleeps on semaphore mutex.
8. Deadlock.

Semaphores

Reverse the sequence of downs in consumer:

1. Buffer empty.
2. Run consumer.
3. Consumer sleeps on semaphore full.
4. Run producer.
5. Down(empty), ok.
6. Producer sleeps on semaphore mutex.
7. Deadlock again.

Semaphores

Although semaphores provide a simple and sufficiently
general scheme for IPC, they suffer from the following
drawbacks:

1. A process that uses a semaphore has to know WHICH
other processes use these semaphore. May also have to
know HOW
these processes are using the semaphore.
2. Semaphore operations must be carefully installed in a
process. The OMISSION of an up or down may result
inconsistencies or deadlocks.
3. Programs using semaphores can be extremely hard to
verify for correctness.

Monitors

Monitor is a high-level synchronization primitive

Combine three features:
1. Shared data
2. Operations on the data
3. Synchronization

Programming constructs, implemented by compiler.
Only one process active in a monitor at a time (implicitly
controlled by monitor lock)
Easier and safer to use.

Monitors
<Monitor name>: monitor
begin
Declaration of data local to the monitor
...
procedure <name> (<formal parameters>);
begin
procedure body
end;

Declaration of other procedures.
...
begin
Initialization of local data of the monitor
end;
end;

Monitors
Need some way to wait, two choices:

(1) Busy-wait inside monitor
(2) Put the process to sleep insider monitor

Condition variables (things to wait on):

•wait(condition): release monitor lock, and put the process to sleep.
When process wakes up again, re-acquire monitor lock immediately.

•signal(condition): wake up one process waiting on condition variable
(FIFO).
If no body is waiting, do nothing (no history).

•broadcast(condition): wake up all processes waiting on the condition
variable.

Monitors

Need to decide who gets the monitor lock after a signal:

•On signal, signaler keeps monitor lock. Awakened process waits for
monitor lock with no special priority.

•On signal, awakened process gets the monitor lock. Signaler exits
from monitor immediately.

Figure 2-33. A monitor.

Monitors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monitors

Outline of producer-consumer problem with monitors

Message Passing
Why use message passing

•Two parts of communication can be totally separated (no shared data)
•No invisible side effects
•No need to know the other part

Message:
A piece of information that is passed from one process to another.

Mailbox:
A shared data structure where messages are stored between the time they
are sent and the time they are received.

Message Passing
Operations:

send: copy a message into mailbox. If the mailbox is full
wait until there is enough space in the mailbox.

Format: send(destination, message)

receive: copy a message out of mailbox, and delete from
mailbox. If the mailbox is empty, then wait until a message
arrives.

Format: receive(source, message)

Message Passing
Design issues of message system

Addressing: how to specify the sending and receiving processes.

Direct addressing: sender and receiver communicate directly.
send: a specific identification of the destination process, such as
process@machine.domain
receive:
(a) explicit addressing
(b) implicit addressing

Indirect addressing: messages are sent to a shared data structure called
mailboxes (queues that can temporarily hold messages)

Relationship between mailboxes and processes
(a) One mailbox per process. Use process name in send, no name in
receive.
(b) No strict mailbox-process association, use mailbox name.

Message Passing
Extent of buffering

Buffering
None - rendezvous protocol

Blocking vs. non-blocking operations
Blocking receive:
receive message if mailbox is not empty, otherwise wait until message
arrives
Non-blocking receive:
receive message if mailbox is not empty, otherwise return.
Blocking send:
wait until mailbox has space.
Nonblocking send:
return “full" if no space in mailbox.

Four possible send and receive combinations.

Message Passing

Source

Destination
Message length

Control info

Message type
Message contents

Message Passing

Queueing discipline:

First in first out (FIFO)

Priority

Message Passing

Empty message Full message

(1)
(2) (3)

(4)

N slots N slots

Producer’s mailbox Consumer's mailbox

Message Passing

(1) Consumer sends empty message to producer's mailbox.

(2) Producer takes empty message and builds full message.

(3) Producer sends full message to consumer's mailbox.

(4) Consumer takes full message out and consumes it.

Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem
with Message Passing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem
with Message Passing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Semaphores, monitors and messages are equivalence.
Each of these methods can be used to implement the
other methods.

1. Implement monitors with semaphores
Associate with each monitor a binary semaphore mutex
(monitor lock), initially 1.
Associate with each condition variable a semaphore,
initially 0.
Translate:
wait(c) up(mutex); down(c); down(mutex)

signal(c) up(c)

Equivalence of Primitives

Monitors

Outline of producer-consumer problem with monitors

Equivalence of Primitives

2. Implement message passing with semaphores.

•Associate with each process a semaphore, initially 0, on which it will
block.

•A shared buffer area holds mailboxes. Each mailbox contains:
full slots
empty slots
send queue (those processes which cannot send their messages

to the mailbox
receive queue (those processes which cannot receive their

message from the mailbox
messages linked together

•A semaphore, mutex, to protect the shared buffer area.

Equivalence of Primitives

Full slots

Empty slots

Send queue

Receive queue

Message

Message

Full slots

Empty slots

Send queue

Receive queue

Message

2

Mailboxes

S S S
… …

S Mutex
Message

Equivalence of Primitives
send/receive operations:

Case 1. Mailbox has at least one empty or full slot:
down(mutex)
insert/remove message
update counters and links
up(mutex)

Case 2. Process i does receive on an empty mailbox:
down(mutex)
enter receive queue
up(mutex)
down(Pi)
down(mutex)

Case 3. Process i does send on a full mailbox:
down(mutex)
enter send queue
up(mutex)
down(Pi)
down(mutex)

Equivalence of Primitives

How to wake up sleeping processes?

•If a receiver receives a message from the full mailbox,
wakes up (does up) the first process in the send queue.

•If a sender sends a message to the empty mailbox, wakes
up the first process in the receive queue.

Equivalence of Primitives
3. Implement semaphore with monitors

Associate with each semaphore a counter and a linked list.
•Counter stores the value of the semaphore
•Linked list stores the processes sleeping on the semaphore

Associate with each process a condition variable

Operations:

down(s) : If counter_s > 0, then counter_s --
else {enter linked list of s; wait (Pi)}

up(s) : If linked list not empty, then {remove one process from the list,
say, Pi; signal(Pi)}
else counter_s++;

Equivalence of Primitives

4. Implement messages with monitors.

•Associate with each process a condition variable for
blocking

•A shared buffer

•Similar to semaphores except no mutex necessary.

Equivalence of Primitives

5. Implement semaphores with messages.

For mutual exclusion, introduce a new process,
synchronization process.

Associate each semaphore with a counter and a linked list
of waiting processes.

Operations:
To do up or down on a semaphore, call the corresponding
library procedure up or down.

Equivalence of Primitives

Equivalence of Primitives

Synchronization process does:

down: If count > 0 {counter--; send back empty message}
else {enter caller into queue and does not send reply;}

up: If counter = 0 {move one process out of queue; send
this process a reply }
else counter++;

Equivalence of Primitives

6. Implement monitor with message passing

Combine (5) and (1). That is, using messages to implement
semaphores first, then using semaphores to implement
monitors.

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the
last process arrives at the barrier, all of them are let through.

Barriers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Classical IPC Problems
The dining philosophers problem

Problem description:
Five philosopher sit around a round table, and each of them
has one fork.

Activities: eating and thinking.
To eat, need two adjacent forks.

Goal: no starvation.

Useful for modeling processes that are competing for
exclusive access to a limited number of resources, such as
tape drive or other I/O devices.

Figure 2-44. Lunch time in the Philosophy Department.

Dining Philosophers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-45. A nonsolution to the dining philosophers problem.

Dining Philosophers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Dining Philosophers Problem
Problems with solution 2:
Assume Philosophers 1 and 4 eat for a long time and
Philosophers 2 and 3 eat for ashort time. A possible
execution sequence:
1. 4 and 1 eating.
2. 0 and 3 become hungry (blocked).
3. 4 finishes eating and checks neighbors.
4. 0 IS NOT ALLOWED TO EAT, but 3 is allowed to eat.
5. 4 becomes hungry again.
6. 3 finishes eating and allows 4 to eat again.
7. 1 finishes, 0 IS STILL NOT ALLOWEDTO EAT because of
4.
8. 2 is allowed to eat.
9. 1 becomes hungry again.
10. 2 finishes and allows 1 to eat.
11. repeat, 0 IS NEVER ALLOWED TO EAT.

Dining Philosophers Problem

A working solution:
#define N 5
typedef int semaphore;
semaphore fork[N]; /* initially 1; */
semaphore room = 4; /* allow 4 in the dining room */
philosopher(i)
int i;
while (TRUE) {
think();
down(room); /* get into dining room */
down(fork[i]); /* get left fork */
down(fork[(i+1)%5)]); /* get right fork */
eat();
up(fork[(i+1)%5)]); /*put back right fork*/
up(fork[i]); /* put back left fork */
up(room); /* get out of dining room */
}
}

The Readers and Writers Problem

Problem description:

A data area (file or memory) shared among a number of processes.
Some processes (readers) only read the data area.
Other processes (writers) only write to the data area.

Conditions must be satisfied:
1. Any number of readers may simultaneously read the data area.
2. Only one writer at a time may write to the data area.
3. If a writer is writing to the data area, no readers may read it.

The Readers and Writers Problem

Special type of mutual exclusion problem. A special solution
can do better than a general solution.
•Solution one:
Readers have priority. Unless a writer is currently writing,
readers can always read the data.
•Solution two:
Writers have priority. Guarantee no new readers are allowed
when a writer wants to write.
•Other possible solutions:
Weak reader's priority or weak writer's priority.
Weak reader's priority: An arriving reader still has priority
over waiting writers. However, when a writer departs, both
waiting readers and waiting writers have equal priority.

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

1

The Sleeping Barber Problem

The Sleeping Barber Problem

Problem description:

When no customer, barber sleeps. If no waiting chair,
customer leaves.

1

The Sleeping Barber Problem

Solution to sleeping barber problem.

CPU Scheduling
Resources: the things operated on by processes.
Resources ranges from CPU time to disk space, to I/O channel
time.

Resources fall into two classes:

(1) Preemptive:
OS can take resource away. Use it for something else, and then
give it back later.
Examples: processor or I/O channel.

(2) Non-preemptive:
Once given, it cannot be reused until the process gives it back.
Examples: file space and terminal.

Anything is preemptive if it can be saved and restored.

CPU Scheduling

O.S. makes two related kinds of decisions about resources:

(1) Allocation:
Who gets what? Given a set of requests for resources, which
process should be given which resources in order to make
most efficient use of the resources?

(2) Scheduling: How long can they keep it? When more resources
are requested than can be granted immediately, in which order
should hay be served?

Examples: processor scheduling and memory scheduling (virtual
memory).

Resource # 1: the processor.
Processes may be in any one of three general scheduling states:
Running, ready and blocked.

CPU Scheduling

Criteria for a good scheduling algorithm:

1. Fairness: every process gets its fair share of CPU.
2. Efficiency (utilization): keep CPU busy.
3. Response time: minimize response time for interactive users.
4. Throughput: maximize jobs per hour.
5. Minimize overhead (context swaps).

Context switch: changing process. Include save and load registers
and memory maps and update misc tables and lists.

Clock interrupt: Clock interrupt occurs at fixed time interval (for 60
Hertz AC frequency, 60 times per second) and O.S. scheduler can
run. Every interrupt is called a clock tick (a basic time unit in
computer systems).

Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

Scheduling – Process Behavior

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Batch
• Interactive
• Real time

Categories of Scheduling Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Scheduling Algorithm Goals

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• First-come first-served (FCFS)
• Shortest job first
• Shortest remaining time next

Scheduling in Batch Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

First IN First Out (FIFO or FCFS)

Run until finished, usually “finished" means “blocked."
Process goes to the back of run queue when ready.

Problem: one process can dominate the CPU.

Solution: limit the maximum time that a process can run
without a context switch. The time is called quantum or time
slice.

Shortest Job First (SJF)

•Suitable to batch system.
•Non-preemptivepolicy.

•Must know the runtime or estimate runtime of each
process.
•All jobs are available at system start-up time.

•Schedule the jobs according to their runtimes.

•Optimal with respect to average turnaroundtime.

Figure 2-40. An example of shortest job first scheduling.
(a) Running four jobs in the original order. (b) Running them

in shortest job first order.

Shortest Job First

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shortest Job First

The runtimes of jobs A B C D (min): 8, 4 , 4, 4

1. Run in order A B C D:
Jobs Turnaround times
A: 8
B: 8 + 4 = 12
C: 8 + 4 + 4 = 16
D: 8 + 4 + 4 + 4 = 20
Average Turnaround Time
ATT = (8+12+16+20)/4 = 14 (min)

2. Run in the order B C D A:
Jobs Turnaround times
B: 4
C: 4 + 4 = 8
D: 4 + 4 + 4 = 12
A: 4 + 4 + 4 + 8 = 20
Average Turnaround Time
ATT = (4+8+12+20)/4 = 11 (min)

Shortest Job First
Shortest job first achieves the shortest average turnaround time.

General proof:

1. For four jobs.

Suppose the runtimes for jobs A, B, C and D are a; b; c and d respectively.

Run in the order A B C D.

Average Turnaround Time:

ATT = [a + (a + b) + (a + b + c) + (a + b + c + d)]/4 = (4a + 3b + 2c + d)/4

a has the largest coefficient and must be the smallest. B must the second
smallest,…

Shortest Job First
2. For n jobs.

n jobs J1 J2 . . . Jn
Runtimes T1, T2, . . ., Tn
Run in order J1; J2; …, Jn.

Jobs Turnaround times
J1: T1
J2: T1 + T2
J3: T1 + T2 + T3
...
Ji: T1 + T2 + … + Ti
...
Jn: T1 + T2 + … + Tn

Average Turnaround Time:
ATT = [nT1 + (n -1)T2 + (n - 2)T3 + … +(n -i + 1)Ti + … + 2 Tn-1 + Tn]/n

Shortest Job First
We want to prove:
if T1 <= T2 <= … <= Tn, then ATT is optimal (smallest).

Prove it by contradiction.
Suppose for some 1 <= i < j <= n, we have Ti > Tj .

Note that we have (n - i + 1)Ti and (n -j + 1)Tj in ATT, but
N - i + 1 > n - j + 1.
We can always reduce the ATT by exchanging the running order of Ji
and Jj. That is,

(n-i+1)Tj+(n-j+1)Ti < (n-i+1)Ti+(n-j+1)Tj

Thus, shortest job first is optimal.

Shortest Job First
If jobs are not available at the beginning, the shortest job first may not be
optimal.

A counterexample.

Five jobs: A B C D E
Runtimes: 2, 4, 1, 1, 1
Arrive times: 0, 0, 3, 3, 3

•Run in order A B C D E (shortest job first).

Jobs Turnaround times
A: 2
B: 2 + 4 = 6
C: 6 - 3 + 1 = 4
D: 4 + 1 = 5
E: 5 + 1 = 6
ATT = (2+6+4+5+6)/5 = 23/5

Shortest Job First

Run in order B C D E A.

Jobs Turnaround times

B: 4
C: 4 - 3 + 1 = 2
D: 2 + 1 = 3
E: 3 + 1 = 4
A: 4 + 3 + 2 = 9

ATT = (4+2+3+4+9)/5 = 22/5

Shortest Remaining Time First

•A preemptive version of shortest job first

•Scheduler always chooses the process whose
remaining run time is the shortest.

•Allows new short jobs to get good service

• Round-robin scheduling
• Priority scheduling
• Multiple queues
• Shortest process next
• Guaranteed scheduling

Scheduling in Interactive Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Round-Robin Scheduling
•Maintain a list of runnable processes.

•Run a process for one quantum then move to the back of
queue. Each process gets equal share of the CPU.

•If process blocks (say, for I/O or semaphore) then remove it
from the queue and start to run the next process in queue.

•If a process becomes runnable, add it to the end of queue.

•Length of quantum:
•Short: too much overhead
•Long: poor response time

•In general: about 100 ms (or about 10K -100K instructions)

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable

processes after B uses up its quantum.

Round-Robin Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Round-Robin Scheduling
Round robin may produce bad results:

Example: Ten processes, each requires100 quantum.

In round robin: each takes about 1000 (10*100) quantum
to finish.

In FIFO, they would require average 500 quantum to
finish.

How can we minimize the average response time (or
turnaround time)?

Use shortest job first.

Priority Scheduling
Assign each process a priority. Run the runnable process
with the highest priority.

How to assign priority:
I/O bound jobs have higher priority
CPU bound jobs have lower priority
If a job uses 1/f of the quantum, then Priority = f.

Unix command “nice" allows a user to lower the job priority
voluntarily.

Problem: high priority job may dominate CPU.

Solution: decrease priority of the running process at each
clock tick (dynamic priority).

Priority Class Scheduling (Multiple Queues)

Combine round robin and priority.

Group processes into priority classes.

Use priority scheduling among the classes.
Use round robin within each class.

Classes may have different quantum.

Adaptively change quantum: exponential queue

Give a newly runnable process a high priority and a very short quantum.

If the process uses up the quantum without blocking then decrease priority
by 1 and double quantum for next time.

Figure 2-42. A scheduling algorithm with four priority classes.

Priority Class Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Priority Class Scheduling

Example:
Two processes P1 and P2.
P1: doing 1 ms computation followed by 10 ms I/O.
P2: doing all computation.

Initial quantum = 100 ms.
•P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then
becomes ready again.
•P2: priority 100 uses 100 ms CPU, switched out.
•P1: priority 100 uses 1 ms CPU, blocked for 10 ms and then
becomes ready again.
•P2: priority 99 uses 200 ms CPU, switched out.
…

Shortest Process Next (Aging Algorithm)
How to use shortest job first in an interactive system?

Consider each command as a job
Estimate the runtime for a command (job) based on past runtime.

T0: estimated runtime per command for some terminal
Ti: runtime for the ith command (i >=1)
Si: predicted runtime for the ith (i >=1) command

Recurrence:

Closed form:
1 n 1; a 0 ;a)S-(1 aT S

T S
nn1n

01

><=<=+=
=
+

Sn+1 = aTn + (1- a)aTn-1 + … +(1-a) aTn-i + … +(1-a) aT1 + (1-a) T0
i 1-n n

Shortest Process Next (Aging Algorithm)

Let a = ½

Sn+1 = ½ Tn+ ½ Tn-1 + … + ½ Tn-i + …+ ½ T1 + ½ T0

Aging algorithm:

Estimate the next value in a series by taking the weighted
average of the current measured value and previous
estimate.

Possibility of starvation of longer jobs.

2 1i+ n n

Guaranteed Scheduling

Also called fair share scheduling
n users logged in, each user receives about 1/n of the CPU time.

(1) Keep track of:

How long each user logged in
How much time a user used

(2) Compute:
CPU time entitled for a user = logged in time/n

Ratio = used time/ entitled time

(3) Choose the lowest ratio process to run until its ratio has moved above
its closest competitor.

Two Level Scheduling

Lower-level: scheduling among the processes in memory

Higher-level: scheduling between disk and memory

Criteria for higher-level scheduling:

1. Time the process stays in memory
2. CPU time of the process
3. Size of the process
4. Priority of the process

Scheduling in Real-Time Systems

Real-Time Systems:

• Hard real-time systems: The deadlines must be met.
• Soft real-time systems: The deadlines should be met

most of the time.

Periodic events: Events occur at regular intervals
Aperiodic events: Events occur unpredicatably

1

Scheduling in Real-Time Systems

Schedulable real-time system
Given

– m periodic events
– event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1
1

m
i

i i

C
P=

≤∑

A real-time system that meets this criteria is said
schedulable.

Scheduling in Real-Time Systems

Example:

P1 = 100, P2 = 200, P3 = 500, P4 = 1000
C1 = 50, C2= 30, C3 = 100, C4 = ?

50/100 + 30/200 + 100/500 + C4/1000 <= 1

C4 <= 150

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per

CPU burst.

Thread Scheduling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Thread Scheduling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Summary of Scheduling Algorithms

In principle, scheduling algorithm can be arbitrary, since the
system should produce the same results in any event (get
the job done).

However, the algorithms have strong effects on the system's
overhead, efficiency and response time.

The best schemes are adaptive. To do absolutely best, we
have to be able to predict the future.

Best scheduling algorithms tend to give highest priority to
the process that needs the least!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Process Hierarchies
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Monitors
	Message Passing �
	Message Passing �
	Message Passing �
	Message Passing �
	Message Passing
	Message Passing
	Message Passing
	Message Passing
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Monitors
	Equivalence of Primitives�
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Equivalence of Primitives
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	The Sleeping Barber Problem
	The Sleeping Barber Problem
	The Sleeping Barber Problem
	CPU Scheduling
	CPU Scheduling
	CPU Scheduling
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Scheduling in Real-Time Systems
	Slide Number 136
	Slide Number 137
	Slide Number 138

