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Chapter 3
Memory Management

•Basic memory management
•Swapping
•Virtual memory
•Page replacement algorithms
•Design issues for paging systems
•Segmentation
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Memory Management
• Ideally programmers want memory that is

– large
– fast
– non volatile

• Memory hierarchy
– small amount of fast, expensive memory – cache 
– some medium-speed, medium price main memory
– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy



Memory Management
Memory manager keeps track of memory usage:

•allocate memory
•deallocate memory
•swapping

•Issues in memory management
Transparency: 

owant to let several processes coexist in main 
memory.
ono process should need to be aware of the fact that 
memory is shared.
oeach must run regardless of the number and/or 
location of processes.

Safety:
oprocesses must not be able to corrupt each other.

Efficiency:
oboth CPU and memory should not be degraded badly 
by sharing.



No Memory Abstraction

Mono-programming:

•One user process + O.S. are in memory.

•When the user process is waiting for I/O, CPU is idle.



Figure 3-1. Three simple ways of organizing memory with an 
operating system and one user process. 

No Memory Abstraction
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No Memory Abstraction

Multiprogramming:

•Several user processes are in memory.

•While one process is waiting for I/O, another process can    
use CPU. Increase CPU utilization.

•Design issue in multiprogramming:

Decide how many processes should be in memory to 
keep CPU busy.



Modeling Multiprogramming
Probabilistic model for multiprogramming

n processes in memory

Each process spends a fraction p of its time in I/O wait 
state

Probability of all n processes are waiting for I/O: pn

CPU utilization: 1 - pn.

n is called the degree of multiprogramming.

Approximation of the model
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Modeling Multiprogramming

CPU utilization as a function of number of processes in 
memory

Degree of multiprogramming



Analysis of Multiprogramming System 
Performance

• Arrival and work requirements of 4 jobs
• CPU utilization for 1 – 4 jobs with 80% I/O wait
• Sequence of events as jobs arrive and finish
• Note numbers show amount of CPU time jobs get in each 

interval



Analysis of Multiprogramming System 
Performance

Example: Use this model to analyze the performance of a multiprogramming 
system.  Four jobs, p = 80%.

1. Only job 1 in memory.
20% of time CPU busy. 2 min CPU time finished within 10 min.

2. Jobs 1 and 2 in memory.
36% of time CPU busy. Using round robin, each process uses CPU time 
5 x 0.36/2 = 0.9 min within 5 min.

3. Jobs 1, 2 and 3 in memory.
CPU busy = 0.49. Each process uses CPU 5 x 0.49/3 = 0.8 min.
...
Total time: 31.7 min for all four jobs.

If no multiprogramming, run four jobs one by one. 
The total time: (4+3+2+2)/0.2 = 55 min.



Implementation of Multiprogramming 

Fixed partitions without swapping

Divide memory into n partitions (may be unequal)
•Multiple input queues
•Single input queue

Relocation and protection

•Relocation: Adjust a program to run in a different location of 
the memory

•Protection: Prevent one job from accessing the memory 
location of another job



Relocation and Protection
Implementation: 

Relocation only:
modify the instructions as the program is loaded into 
memory.

Protection only (e.g. IBM 360):
•Divide memory into 2K blocks
•Assign 4-bit protection code to each block
•PSW (Process State Word) contains a 4-bit key
•When key is not equal to protection code, hardware trap
•Only O.S. can change PSW key.



Relocation and Protection
Both relocation and protection

Two special hardware registers: base register and limit register.
Base register: stores the start address of a partition
Limit register: stores the length of a partition

When a process is scheduled, O.S. sends the start address of 
this process to base register and the partition length to limit 
register.

Physical memory address = (base) + memory adders generated
by program

O.S. checks the physical address against the limit register

After starting execution, still relocatable.



Figure 3-2. Illustration of the relocation problem. 

Relocation
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Figure 3-3. Base and limit registers can be used to give each 
process a separate address space.

Base and Limit Registers



Base and Limit Registers



Multiprogramming with Variable Partition
Different from fixed partition: the number, location and 
size of the partitions vary dynamically.

Concepts:
•Swapping: moving processes between memory and disk.

•Memory compaction: merge all processes together to get 
a big hole.

How to deal with processes with growing data segment:
Allocate a little extra memory.

Process grows too large: kill or swap out.



Figure 3-4. Memory allocation changes as processes come into 
memory and leave it. The shaded regions are unused memory.

Swapping 
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Figure 3-5. (a) Allocating space for growing data segment. (b) 
Allocating space for growing stack, growing data segment.

Swapping 
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Keeping Track of Memory Usage 

(1) Bit maps

Divide memory into fixed size chunks (allocation units).

Corresponding to each allocation unit is a bit in the bit map:

1: the unit is used
0: the unit is not used

Memory allocation:
Find k consecutive 0 bits in the map for a process that needs k 

allocation units of memory.

Major drawback: slow



Figure 3-6. (a) A part of memory with five processes and three 
holes. The tick marks show the memory allocation units. The 
shaded regions (0 in the bitmap) are free. (b) The 
corresponding bitmap. (c) The same information as a list.

Memory Management with Bitmaps
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Memory Management with Linked Lists

(2) Linked lists

Data structure:

P: process
H: hole
Sorted by address

When a process terminates, four possibilities to merge

P or H   Start address   Length     Next entry



Figure 3-7. Four neighbor combinations 
for the terminating process, X.

Memory Management with Linked Lists
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() (a) First fit
Scan from the beginning and find the first hole that is big 
enough.

(b) Next fit
Similar to first fit except that search starts from where it left  
off.

(c) Best fit
Search the entire list and take the smallest hole that is 
adequate.

(d) Worst fit
Take the largest hole.

Memory Allocation Algorithms 



(e) Quick fit
Maintain separate lists of holes for commonly used sizes. 
Sorted by hole size.

Finding a hole is fast. What about merging holes? May go 
through the entire list.

Memory Allocation Algorithms 

4K
8K

12K
16K
20K



Memory Allocation Algorithms 

(f) Buddy system
Maintain a list of free blocks of size 2,  2, 2, , …, 2, …, bytes, 
up to the size of memory.

Example: 1 MB memory, 21 lists needed from 1 byte to 1 MB.
Process A requests 70K, need 128K hole. 1MB is split into 
two 512K blocks (buddies).

Allocation: If the needed size is available, done.
If not, look at the next large size (double size). If available, 
split it into two blocks and use one.
If not available, look at next large size . . . .
At most log N steps for N bytes memory.

0 1 2 k



Deallocation:

First search the same size queue to see if a merge is possible. If
not, done.

Otherwise merge them and then search next large size queue 
until no merge possible.
At most log N steps.

Drawback:
Low memory utilization.
Large internal fragmentation (wasted memory internal to the 
allocated segments).

External fragmentation: wasted holes between segments.

Memory Allocation Algorithms 



Estimate how much portion of memory is wasted as 
holes at any time.

Consider an average process.

Holes can be merged but processes cannot.

Fifty percent rule: At steady state, if there are n 
processes then there are  n/2 holes.

Analysis of Swapping Systems 



Analysis of Swapping Systems
Unused memory rule:

f: faction of memory occupied by holes
s: average size of a process
ks: average  size of a hole
m: total memory bytes

Examples:
k = ½: f= 20%
k = ¼: f = 11%
k = 2:  f = 50%
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Virtual Memory 

•Main idea: allow users to have a large logical address space 
without worrying about the small physical memory.

•Goal: try to achieve that access to disk is almost as fast as access 
to memory.

•How to do it: when the size of program exceeds the size of 
physical memory, O.S. keeps part of the program currently in use in 
memory, and the rest on disk, with pieces of the program swapped 
between disk and memory as needed.

•Concepts:
Virtual address: program generated address
Physical address: real memory address
Without virtual memory: virtual address = physical address



Paging virtual memory (linear address space)

Memory management unit (MMU):
Maps logical address to physical address with a page table

•Page size is fixed, and must be power of 2

Example:
16 bit virtual address (64K), 32K physical memory
Divide virtual address space into 4K pages
Divide physical address space into the same size page 
frames

Virtual Memory – Paging System



Figure 3-8. The position and function of the MMU – shown as 
being a part of the CPU chip (it  commonly is nowadays). 

Logically it could be a separate chip, was in years gone by.

Virtual Memory – Paging 
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Figure 3-9. Relation between virtual addresses and 
physical memory addresses given by page table. 
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Paging 



Figure 3-10. The internal operation of the MMU with 
16 4-KB pages.

Paging 
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Figure 3-11. A typical page table entry.

Structure of Page Table Entry
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Problems with paging

Efficiency of access:
Even small page tables are generally too large to store in 
fast memory. So page table is kept in main memory. 
One memory access requires two real memory 
accesses.

Table space: smaller pages, larger page table

Internal fragmentation: larger pages, more internal 
fragmentation.

General page size: 512-8K bytes

Paging 



Paging implementation issues:

• The mapping from virtual address to physical 
address must be fast.

• If the virtual address space is large, the page table 
will be large.

• Use translation lookaside buffer to store part of 
page table

Speeding Up Paging
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Figure 3-12. A TLB to speed up paging.

Translation Lookaside Buffers
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Page fault: the page to be accessed is not in memory (a 
trap to CPU).

What O.S. to do when a page fault occurs
•Bring a page into memory
•Update page table
•Continue execution of the process

What to do when memory is full:
•Remove one page already in memory.

Page replacement:
When a page fault occurs, O.S. removes a page from 
memory to make a room for the page that has to be 
brought in.

Page Replacement Algorithms
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Page Replacement Algorithms
• Page fault forces choice 

– which page must be removed
– make room for incoming page

• Modified page must first be saved
– unmodified just overwritten

• Better not to choose an often used page
– will probably need to be brought back in soon

Why virtual memory can be successful: because of 
locality of reference. The memory reference tends to 
be local. Access the nearby locations, not crossover the 
entire memory space.



• Random algorithm (pick up any page at 
random)

• Optimal page replacement algorithm
• Not recently used page replacement
• First-In, First-Out page replacement
• Second chance page replacement
• Clock page replacement 
• Least recently used page replacement

Page Replacement Algorithms
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Optimal Page Replacement Algorithm

• Replace the page needed at the farthest point in 
future (Select for replacement that page for which the 
time to the next reference is the longest)
• Optimal but unrealizable
• Results in the fewest number of page faults
• Impossible to implement
• Good for comparison

• Estimate by …
• logging page use on previous runs of  process, 

although this is impractical



Based on locality of reference. Use the past to 
predict the future.

Need hardware support:

Two bits associated with each page:
R: reference bit. Set by hardware on any memory 
read/write to the page.
M: modified bit. Set by hardware when a page is 
written.

O.S. can reset these two bits in software.

Not Recently Used Page Replacement Algorithm



Not Recently Used Page Replacement Algorithm

Algorithm:
(1) When a process is started, R and M bits for all its pages 
are set to 0.
(2) On each clock tick interrupt, clear the R bit.
(3) When a page fault occurs, choose a page from the lowest 
numbered nonempty class:
Class    R M 
0           0  0    not referenced, not modified
1           0  1    not referenced, modified
2           1  0    referenced, not modified
3 1  1    referenced, modified

Easy to implement. Performance is okay.
No history of how long the page is used.



FIFO Page Replacement Algorithm
• Maintain a linked list of all pages in order they came into 

memory
• When page fault occurs, page at beginning of list 

replaced
• Disadvantage

may remove a heavily used as a page in memory the 
longest may be often used.

Solution:
Inspect R and M bits of all pages. Remove the oldest  

page with R = 0.



Two Variants of FIFO

Second chance
Look at the oldest page. if R = 0, replace it. Otherwise, clear 
the R bit and put the page at the end of the list.

Clock
Keep all the pages on a circular list. 

An interesting thing in FIFO (Belady's Anomaly): More page 
frames may lead to more page faults.



Belady's Anomaly

• FIFO with 3 page frames
• FIFO with 4 page frames

• P's show which page references show page faults



Figure 3-15. Operation of second chance. 
(a) Pages sorted in FIFO order. 
(b) Page list if a page fault occurs at time 20 and A has its R 
bit set. The numbers above the pages are their load times.

Second Chance Algorithm
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The Clock Page Replacement Algorithm



5

Least Recently Used (LRU)

• Assume pages used recently will be used again soon
– throw out page that has been unused for longest time

• Must keep a linked list of pages
– most recently used at front, least at rear
– update this list every memory reference !!

• Alternatively keep counter in each page table entry
– choose page with lowest value counter
– periodically zero the counter



Least Recently Used (LRU)

Replace the page in memory that has not been referenced 
for the longest time.

Performance close to optimal algorithm

Implementation is not cheap. Either requires special 
hardware or approximatesoftware simulation.

Hardware implementation I (Counter)
•A 64-bit counter, C,  automatically incremented after 
each instruction
•After each memory reference, the current value of C is 
stored in page table for the page just referenced
•Lowest number in the page table is the least recently 
used



Least Recently Used (LRU)

Hardware implementation II (Matrix)

•For n page frames, use an n x n bit matrix, initially all 0

•After page frame k is referenced, the hardware first 
sets row k to 1 and then sets column k to 0

•The row whose binary value is lowest is the least 
recently used



Figure 3-17. LRU using a matrix when pages are referenced in the 
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU Page Replacement Algorithm
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LRU Page Replacement Algorithm

Software approximation I (Not-Frequently-Used, NFU)

•Associate with each page a software counter, initially 0

•At each clock tick interrupt, O.S. adds each page's R bit 
to the counter associated with that page

•When a page fault occurs, replace the page with the 
lowest counter

•Problem: never forgets anything



LRU Page Replacement Algorithm

Software approximation II (Aging Algorithm)

Modify NFU as follows:
•Counters are shifted right 1 bit before R bits are added
•R bit is added to the leftmost
•Remove the lowest counter page
•Different from LRU:
Cannot distinguish the references within the same 
clock tick
•Counters have a finite number of bits, say, 8 bits, and 
can remember only the history of 8 clock ticks.



Figure 3-18. The aging algorithm simulates LRU in software. 
Shown are six pages for five clock ticks. The five clock ticks 

are represented by (a) to (e).

Simulating LRU in Software
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Figure 3-22. Page replacement algorithms discussed in the text.

Summary of Page Replacement Algorithms
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Aiming at good performance.

Working set: the set of pages a process is currently using

Thrashing: a program causes page fault every few 
instructions

How to control thrashing:
•Keep the entire working set in memory
•Page fault frequency allocation algorithm (PFF)

In most page replacement algorithms, we can choose a 
certain number of page frames for each process to keep 
a certain page fault rate. Dynamically allocate page 
frames to each process.

Design Issues for Paging System
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Page Fault Rate vs. Page Frames

Page fault rate as a function of the number of page 
frames assigned



Figure 3-23. Local versus global page replacement. 
(a) Original configuration. (b) Local page replacement. 

(c) Global page replacement.

Local versus Global Allocation Policies 
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Figure 3-25. (a) One address space. 
(b) Separate I and D spaces.

Separate Instruction and Data Spaces
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• The hardware traps to the kernel, saving the 
program counter on the stack.

• An assembly code routine is started to save the 
general registers and other volatile information.

• The operating system discovers that a page 
fault has occurred, and tries to discover which 
virtual page is needed.

• Once the virtual address that caused the fault is 
known, the system checks to see if this address 
is valid and the protection consistent with the 
access

Page Fault Handling (1)
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• If the page frame selected is dirty, the page is 
scheduled for transfer to the disk, and a context 
switch takes place.

• When page frame is clean, operating system 
looks up the disk address where the needed 
page is, schedules a disk operation to bring it in.

• When disk interrupt indicates page has arrived, 
page tables updated to reflect position, frame 
marked as being in normal state.

Page Fault Handling (2)
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• Faulting instruction backed up to state it had 
when it began and program counter reset to 
point to that instruction.

• Faulting process scheduled, operating system 
returns to the (assembly language) routine that 
called it.

• This routine reloads registers and other state 
information and returns to user space to 
continue execution, as if no fault had occurred.

Page Fault Handling (3)
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Page Size 
Small page size
• Advantages

– less internal fragmentation 
– better fit for various data structures, code sections
– less unused program in memory

• Disadvantages
– programs need many pages, larger page tables



Page Size
Page size: p bytes
Average internal fragmentation: p /2 bytes

Smaller page -> smaller internal fragmentation
But smaller page -> larger page table

Assume:
n segments (logical units) in memory
Average process size s
Each page entry (in page table) requires e bytes

Memory wasted:
Overhead = (s/p)e + p/2
Optimized when

Example:
s = 32K and e = 8 -> p = 724 bytes.
Take 512 or 1024.

2p se=



Page Size 
Overhead due to page table and internal fragmentation

Where

– s = average process size in bytes
– p = page size in bytes
– e = page entry

2
s e poverhead
p
⋅

= +

page table space

internal 
fragmentation

Optimized when

2p se=



A compiler has many tables that are built up as 
compilation proceeds, possibly including:

• The source text being saved for the printed listing (on 
batch systems).

• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point constants 

used.
• The parse tree, the syntactic analysis of the program.
• The stack used for procedure calls within the compiler.

Segmentation 
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Figure 3-31. In a one-dimensional address space with growing 
tables, one table may bump into another.

Segmentation 
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Segmentation 

Segmentation system

– idea: access files using memory address
– two dimension address space: segment and
offset
– divide logical address space into segments. Each
segment is a logical unit, such as data, code,
and file.
– segment size is variable, and often large
– Segment table shows the mapping between logical
addresses and physical addresses.



Figure 3-32. A segmented memory allows each table to grow or 
shrink independently of the other tables.

Segmentation 
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Figure 3-33. Comparison of paging and segmentation.

Implementation of Pure Segmentation
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Figure 3-34. (a)-(d) Development of checkerboarding. (e) 
Removal of the checkerboarding by compaction.

Segmentation with Paging: MULTICS (1)
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Segmentation with Paging

Combine segmentation with paging system

– Each segment must start at a page boundary.
Divide each segment into pages and each segment
has a page table.

– Easy to share a file.



Figure 3-35. The MULTICS virtual memory. (a) The 
descriptor segment points to the page tables.

Segmentation with Paging: MULTICS (2)
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(a) MULTICS virtual 
memory. 

(b) A segment 
descriptor. The 
numbers are the 
field lengths.

Segmentation with Paging: MULTICS (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



When a memory reference occurs, the following 
algorithm is carried out:

• The segment number used to find segment descriptor.
• Check is made to see if the segment’s page table is in 

memory. 
– If not, segment fault occurs. 
– If there is a protection violation, a fault (trap) occurs.

Segmentation with Paging: MULTICS (6)
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• Page table entry for the requested virtual page 
examined.
– If the page itself is not in memory, a page fault is 

triggered.
– If it is in memory, the main memory address of the 

start of the page is extracted from the page table entry
• The offset is added to the page origin to give the 

main memory address where the word is located.
• The read or store finally takes place.

Segmentation with Paging: MULTICS (7)
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Figure 3-36. A 34-bit MULTICS virtual address.

Segmentation with Paging: MULTICS (8)
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Figure 3-37. Conversion of a two-part MULTICS address into a 
main memory address.

Segmentation with Paging: MULTICS (9)
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Figure 3-38. A simplified version of the MULTICS TLB. The 
existence of two page sizes makes the actual TLB more 

complicated.

Segmentation with Paging: MULTICS (10)
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Systems Calls for Semaphore and Shared Memory

•Semaphore system calls

Get a set of semaphores

semid = semget(key, nsems, permags)

key: a user defined name for the semaphore set
nsems: number of semaphores in the set
permags: permission state (read, write)
semid: semaphore set identifier associated with key, used 
by other semaphore operations.

Four ways to use it



Systems Calls for Semaphore and Shared Memory

•Create a private semaphore set
semid = semget(IPC PRIVATE, nsems, 0600|IPC_CREAT|IPC_ EXCL)
Return a unique semid system wide, private to the process.

•Find key if already defined.
semid = semget(key, nsems, 0)
key not equal to IPC PRIVATE, e.g. 0X200.

•Create only if key is not already defined
semid = semget(key, nsems, 0600|IPC_CREAT|IPC_EXCL)
If other processes specify the same key, they will get the same semid.

•Find key if already defines, otherwise create
semid = semget(key, nsems, 0600|IPC_CREAT)

SHELL commands for IPC:
ipcs: check ipc state
ipcrm -s semid: remove a semaphore.



Systems Calls for Semaphore and Shared Memory

Semaphore control operations

semval= semctl(semid, index, GETVAL, val)

Get the value of the semaphore
index: index in the set, e.g. 0 means the first semaphore in 
the set.

semval= semctl(semid, index, SETVAL, val)

Set the semaphore value to val.

pid= semctl(semid, 0, GETPID, val)
Return the process id of the last process that performs an 
operation on the semaphore.



Systems Calls for Semaphore and Shared Memory
Semaphore operations (up and down)

semop(semid, op_array, somevalue)

op_array: an array of semaphore operations to perform
somevalue: the number of semaphore operation records
struct sembuf op_array[somevalue] has three fields:
sem num: index to semaphore in the set
sem op: -1: down; +1: up
sem ag: usually set to SEM UNDO,
automatically ``undo" all operations after process exits.

Example:
sem num= 0;
sem op = -1;
sem ag = SEM UNDO



Shared memory system calls

Create shared memory segment

shmid = shmget(key, size, 0600|IPC CREAT|IPC_EXCL)

size: number of bytes.

Systems Calls for Semaphore and Shared Memory



Shared memory operations

shmat(shmid, dataptr, flag)
Attach the memory segment identified by shmid to process's logical data 
space

dataptr = 0: the segment is attached to the first available address selected 
by the system

dataptr nonzero: attach to user specified address, depending on flag:

flag & SHM RND is true. shmat will round dataptr to a page boundary
flag & SHM RND is false. attach to the exact values of dataptr
flag & SHM RDONLY is true. Read only.

Example:
struct databuf *pp;
pp = (struct databuf *) shmat(shmid, 0, 0);

Systems Calls for Semaphore and Shared Memory



Shared memory control operations

shmctl(shmid, command, &shm_stat)

After your are done, remove the shared memory 
identifier specified by shmid from the system and 
destroy the shared memory segment and data 
structures associated to it:

shmctl(shmid, IPC_RMID, (struct shmid_ds *)0)

Systems Calls for Semaphore and Shared Memory



Signals are called ``software interrupts." One process can send 
signals to another process.

Signal names: SIGINT, SIGKILL, SIGALRM, ...

What to do with a signal system call?

•Catch a signal: signal(sig, func).
Provide a function that is called whenever a specific type of signal 
occurs. Need to re-enable signal catching.

•Ignore a signal: signal(sig, SIG_IGN).
All signasl, other than SIGKILL, can be ignored.

•Allow the default to happen: signal(sig ,SIG_DEF).
Normally, a process is terminated when receiving a signal.

Send a signal: kill(pid, sig).

Systems Calls for Signals
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