
Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Chapter 3
Memory Management

•Basic memory management
•Swapping
•Virtual memory
•Page replacement algorithms
•Design issues for paging systems
•Segmentation

2

Memory Management
• Ideally programmers want memory that is

– large
– fast
– non volatile

• Memory hierarchy
– small amount of fast, expensive memory – cache
– some medium-speed, medium price main memory
– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy

Memory Management
Memory manager keeps track of memory usage:

•allocate memory
•deallocate memory
•swapping

•Issues in memory management
Transparency:

owant to let several processes coexist in main
memory.
ono process should need to be aware of the fact that
memory is shared.
oeach must run regardless of the number and/or
location of processes.

Safety:
oprocesses must not be able to corrupt each other.

Efficiency:
oboth CPU and memory should not be degraded badly
by sharing.

No Memory Abstraction

Mono-programming:

•One user process + O.S. are in memory.

•When the user process is waiting for I/O, CPU is idle.

Figure 3-1. Three simple ways of organizing memory with an
operating system and one user process.

No Memory Abstraction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

No Memory Abstraction

Multiprogramming:

•Several user processes are in memory.

•While one process is waiting for I/O, another process can
use CPU. Increase CPU utilization.

•Design issue in multiprogramming:

Decide how many processes should be in memory to
keep CPU busy.

Modeling Multiprogramming
Probabilistic model for multiprogramming

n processes in memory

Each process spends a fraction p of its time in I/O wait
state

Probability of all n processes are waiting for I/O: pn

CPU utilization: 1 - pn.

n is called the degree of multiprogramming.

Approximation of the model

8

Modeling Multiprogramming

CPU utilization as a function of number of processes in
memory

Degree of multiprogramming

Analysis of Multiprogramming System
Performance

• Arrival and work requirements of 4 jobs
• CPU utilization for 1 – 4 jobs with 80% I/O wait
• Sequence of events as jobs arrive and finish
• Note numbers show amount of CPU time jobs get in each

interval

Analysis of Multiprogramming System
Performance

Example: Use this model to analyze the performance of a multiprogramming
system. Four jobs, p = 80%.

1. Only job 1 in memory.
20% of time CPU busy. 2 min CPU time finished within 10 min.

2. Jobs 1 and 2 in memory.
36% of time CPU busy. Using round robin, each process uses CPU time
5 x 0.36/2 = 0.9 min within 5 min.

3. Jobs 1, 2 and 3 in memory.
CPU busy = 0.49. Each process uses CPU 5 x 0.49/3 = 0.8 min.
...
Total time: 31.7 min for all four jobs.

If no multiprogramming, run four jobs one by one.
The total time: (4+3+2+2)/0.2 = 55 min.

Implementation of Multiprogramming

Fixed partitions without swapping

Divide memory into n partitions (may be unequal)
•Multiple input queues
•Single input queue

Relocation and protection

•Relocation: Adjust a program to run in a different location of
the memory

•Protection: Prevent one job from accessing the memory
location of another job

Relocation and Protection
Implementation:

Relocation only:
modify the instructions as the program is loaded into
memory.

Protection only (e.g. IBM 360):
•Divide memory into 2K blocks
•Assign 4-bit protection code to each block
•PSW (Process State Word) contains a 4-bit key
•When key is not equal to protection code, hardware trap
•Only O.S. can change PSW key.

Relocation and Protection
Both relocation and protection

Two special hardware registers: base register and limit register.
Base register: stores the start address of a partition
Limit register: stores the length of a partition

When a process is scheduled, O.S. sends the start address of
this process to base register and the partition length to limit
register.

Physical memory address = (base) + memory adders generated
by program

O.S. checks the physical address against the limit register

After starting execution, still relocatable.

Figure 3-2. Illustration of the relocation problem.

Relocation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-3. Base and limit registers can be used to give each
process a separate address space.

Base and Limit Registers

Base and Limit Registers

Multiprogramming with Variable Partition
Different from fixed partition: the number, location and
size of the partitions vary dynamically.

Concepts:
•Swapping: moving processes between memory and disk.

•Memory compaction: merge all processes together to get
a big hole.

How to deal with processes with growing data segment:
Allocate a little extra memory.

Process grows too large: kill or swap out.

Figure 3-4. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Swapping

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-5. (a) Allocating space for growing data segment. (b)
Allocating space for growing stack, growing data segment.

Swapping

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Keeping Track of Memory Usage

(1) Bit maps

Divide memory into fixed size chunks (allocation units).

Corresponding to each allocation unit is a bit in the bit map:

1: the unit is used
0: the unit is not used

Memory allocation:
Find k consecutive 0 bits in the map for a process that needs k

allocation units of memory.

Major drawback: slow

Figure 3-6. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The
shaded regions (0 in the bitmap) are free. (b) The
corresponding bitmap. (c) The same information as a list.

Memory Management with Bitmaps

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management with Linked Lists

(2) Linked lists

Data structure:

P: process
H: hole
Sorted by address

When a process terminates, four possibilities to merge

P or H Start address Length Next entry

Figure 3-7. Four neighbor combinations
for the terminating process, X.

Memory Management with Linked Lists

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

() (a) First fit
Scan from the beginning and find the first hole that is big
enough.

(b) Next fit
Similar to first fit except that search starts from where it left
off.

(c) Best fit
Search the entire list and take the smallest hole that is
adequate.

(d) Worst fit
Take the largest hole.

Memory Allocation Algorithms

(e) Quick fit
Maintain separate lists of holes for commonly used sizes.
Sorted by hole size.

Finding a hole is fast. What about merging holes? May go
through the entire list.

Memory Allocation Algorithms

4K
8K

12K
16K
20K

Memory Allocation Algorithms

(f) Buddy system
Maintain a list of free blocks of size 2, 2, 2, , …, 2, …, bytes,
up to the size of memory.

Example: 1 MB memory, 21 lists needed from 1 byte to 1 MB.
Process A requests 70K, need 128K hole. 1MB is split into
two 512K blocks (buddies).

Allocation: If the needed size is available, done.
If not, look at the next large size (double size). If available,
split it into two blocks and use one.
If not available, look at next large size
At most log N steps for N bytes memory.

0 1 2 k

Deallocation:

First search the same size queue to see if a merge is possible. If
not, done.

Otherwise merge them and then search next large size queue
until no merge possible.
At most log N steps.

Drawback:
Low memory utilization.
Large internal fragmentation (wasted memory internal to the
allocated segments).

External fragmentation: wasted holes between segments.

Memory Allocation Algorithms

Estimate how much portion of memory is wasted as
holes at any time.

Consider an average process.

Holes can be merged but processes cannot.

Fifty percent rule: At steady state, if there are n
processes then there are n/2 holes.

Analysis of Swapping Systems

Analysis of Swapping Systems
Unused memory rule:

f: faction of memory occupied by holes
s: average size of a process
ks: average size of a hole
m: total memory bytes

Examples:
k = ½: f= 20%
k = ¼: f = 11%
k = 2: f = 50%

sizeprocesssizeholek
kkmkmkmksnf

knsm
nsmksn

/
)2/(/)2/1/()2/(/)2/(

)2/1(
)2/(

=
+=+==

+=
−=

Virtual Memory

•Main idea: allow users to have a large logical address space
without worrying about the small physical memory.

•Goal: try to achieve that access to disk is almost as fast as access
to memory.

•How to do it: when the size of program exceeds the size of
physical memory, O.S. keeps part of the program currently in use in
memory, and the rest on disk, with pieces of the program swapped
between disk and memory as needed.

•Concepts:
Virtual address: program generated address
Physical address: real memory address
Without virtual memory: virtual address = physical address

Paging virtual memory (linear address space)

Memory management unit (MMU):
Maps logical address to physical address with a page table

•Page size is fixed, and must be power of 2

Example:
16 bit virtual address (64K), 32K physical memory
Divide virtual address space into 4K pages
Divide physical address space into the same size page
frames

Virtual Memory – Paging System

Figure 3-8. The position and function of the MMU – shown as
being a part of the CPU chip (it commonly is nowadays).

Logically it could be a separate chip, was in years gone by.

Virtual Memory – Paging

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging

Figure 3-10. The internal operation of the MMU with
16 4-KB pages.

Paging

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-11. A typical page table entry.

Structure of Page Table Entry

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Problems with paging

Efficiency of access:
Even small page tables are generally too large to store in
fast memory. So page table is kept in main memory.
One memory access requires two real memory
accesses.

Table space: smaller pages, larger page table

Internal fragmentation: larger pages, more internal
fragmentation.

General page size: 512-8K bytes

Paging

Paging implementation issues:

• The mapping from virtual address to physical
address must be fast.

• If the virtual address space is large, the page table
will be large.

• Use translation lookaside buffer to store part of
page table

Speeding Up Paging

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-12. A TLB to speed up paging.

Translation Lookaside Buffers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page fault: the page to be accessed is not in memory (a
trap to CPU).

What O.S. to do when a page fault occurs
•Bring a page into memory
•Update page table
•Continue execution of the process

What to do when memory is full:
•Remove one page already in memory.

Page replacement:
When a page fault occurs, O.S. removes a page from
memory to make a room for the page that has to be
brought in.

Page Replacement Algorithms

4

Page Replacement Algorithms
• Page fault forces choice

– which page must be removed
– make room for incoming page

• Modified page must first be saved
– unmodified just overwritten

• Better not to choose an often used page
– will probably need to be brought back in soon

Why virtual memory can be successful: because of
locality of reference. The memory reference tends to
be local. Access the nearby locations, not crossover the
entire memory space.

• Random algorithm (pick up any page at
random)

• Optimal page replacement algorithm
• Not recently used page replacement
• First-In, First-Out page replacement
• Second chance page replacement
• Clock page replacement
• Least recently used page replacement

Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Optimal Page Replacement Algorithm

• Replace the page needed at the farthest point in
future (Select for replacement that page for which the
time to the next reference is the longest)
• Optimal but unrealizable
• Results in the fewest number of page faults
• Impossible to implement
• Good for comparison

• Estimate by …
• logging page use on previous runs of process,

although this is impractical

Based on locality of reference. Use the past to
predict the future.

Need hardware support:

Two bits associated with each page:
R: reference bit. Set by hardware on any memory
read/write to the page.
M: modified bit. Set by hardware when a page is
written.

O.S. can reset these two bits in software.

Not Recently Used Page Replacement Algorithm

Not Recently Used Page Replacement Algorithm

Algorithm:
(1) When a process is started, R and M bits for all its pages
are set to 0.
(2) On each clock tick interrupt, clear the R bit.
(3) When a page fault occurs, choose a page from the lowest
numbered nonempty class:
Class R M
0 0 0 not referenced, not modified
1 0 1 not referenced, modified
2 1 0 referenced, not modified
3 1 1 referenced, modified

Easy to implement. Performance is okay.
No history of how long the page is used.

FIFO Page Replacement Algorithm
• Maintain a linked list of all pages in order they came into

memory
• When page fault occurs, page at beginning of list

replaced
• Disadvantage

may remove a heavily used as a page in memory the
longest may be often used.

Solution:
Inspect R and M bits of all pages. Remove the oldest

page with R = 0.

Two Variants of FIFO

Second chance
Look at the oldest page. if R = 0, replace it. Otherwise, clear
the R bit and put the page at the end of the list.

Clock
Keep all the pages on a circular list.

An interesting thing in FIFO (Belady's Anomaly): More page
frames may lead to more page faults.

Belady's Anomaly

• FIFO with 3 page frames
• FIFO with 4 page frames

• P's show which page references show page faults

Figure 3-15. Operation of second chance.
(a) Pages sorted in FIFO order.
(b) Page list if a page fault occurs at time 20 and A has its R
bit set. The numbers above the pages are their load times.

Second Chance Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

5

The Clock Page Replacement Algorithm

5

Least Recently Used (LRU)

• Assume pages used recently will be used again soon
– throw out page that has been unused for longest time

• Must keep a linked list of pages
– most recently used at front, least at rear
– update this list every memory reference !!

• Alternatively keep counter in each page table entry
– choose page with lowest value counter
– periodically zero the counter

Least Recently Used (LRU)

Replace the page in memory that has not been referenced
for the longest time.

Performance close to optimal algorithm

Implementation is not cheap. Either requires special
hardware or approximatesoftware simulation.

Hardware implementation I (Counter)
•A 64-bit counter, C, automatically incremented after
each instruction
•After each memory reference, the current value of C is
stored in page table for the page just referenced
•Lowest number in the page table is the least recently
used

Least Recently Used (LRU)

Hardware implementation II (Matrix)

•For n page frames, use an n x n bit matrix, initially all 0

•After page frame k is referenced, the hardware first
sets row k to 1 and then sets column k to 0

•The row whose binary value is lowest is the least
recently used

Figure 3-17. LRU using a matrix when pages are referenced in the
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU Page Replacement Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

LRU Page Replacement Algorithm

Software approximation I (Not-Frequently-Used, NFU)

•Associate with each page a software counter, initially 0

•At each clock tick interrupt, O.S. adds each page's R bit
to the counter associated with that page

•When a page fault occurs, replace the page with the
lowest counter

•Problem: never forgets anything

LRU Page Replacement Algorithm

Software approximation II (Aging Algorithm)

Modify NFU as follows:
•Counters are shifted right 1 bit before R bits are added
•R bit is added to the leftmost
•Remove the lowest counter page
•Different from LRU:
Cannot distinguish the references within the same
clock tick
•Counters have a finite number of bits, say, 8 bits, and
can remember only the history of 8 clock ticks.

Figure 3-18. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks

are represented by (a) to (e).

Simulating LRU in Software

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-22. Page replacement algorithms discussed in the text.

Summary of Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Aiming at good performance.

Working set: the set of pages a process is currently using

Thrashing: a program causes page fault every few
instructions

How to control thrashing:
•Keep the entire working set in memory
•Page fault frequency allocation algorithm (PFF)

In most page replacement algorithms, we can choose a
certain number of page frames for each process to keep
a certain page fault rate. Dynamically allocate page
frames to each process.

Design Issues for Paging System

6

Page Fault Rate vs. Page Frames

Page fault rate as a function of the number of page
frames assigned

Figure 3-23. Local versus global page replacement.
(a) Original configuration. (b) Local page replacement.

(c) Global page replacement.

Local versus Global Allocation Policies

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-25. (a) One address space.
(b) Separate I and D spaces.

Separate Instruction and Data Spaces

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• The hardware traps to the kernel, saving the
program counter on the stack.

• An assembly code routine is started to save the
general registers and other volatile information.

• The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page is needed.

• Once the virtual address that caused the fault is
known, the system checks to see if this address
is valid and the protection consistent with the
access

Page Fault Handling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context
switch takes place.

• When page frame is clean, operating system
looks up the disk address where the needed
page is, schedules a disk operation to bring it in.

• When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Page Fault Handling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

• Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

• This routine reloads registers and other state
information and returns to user space to
continue execution, as if no fault had occurred.

Page Fault Handling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

7

Page Size
Small page size
• Advantages

– less internal fragmentation
– better fit for various data structures, code sections
– less unused program in memory

• Disadvantages
– programs need many pages, larger page tables

Page Size
Page size: p bytes
Average internal fragmentation: p /2 bytes

Smaller page -> smaller internal fragmentation
But smaller page -> larger page table

Assume:
n segments (logical units) in memory
Average process size s
Each page entry (in page table) requires e bytes

Memory wasted:
Overhead = (s/p)e + p/2
Optimized when

Example:
s = 32K and e = 8 -> p = 724 bytes.
Take 512 or 1024.

2p se=

Page Size
Overhead due to page table and internal fragmentation

Where

– s = average process size in bytes
– p = page size in bytes
– e = page entry

2
s e poverhead
p
⋅

= +

page table space

internal
fragmentation

Optimized when

2p se=

A compiler has many tables that are built up as
compilation proceeds, possibly including:

• The source text being saved for the printed listing (on
batch systems).

• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point constants

used.
• The parse tree, the syntactic analysis of the program.
• The stack used for procedure calls within the compiler.

Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-31. In a one-dimensional address space with growing
tables, one table may bump into another.

Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation

Segmentation system

– idea: access files using memory address
– two dimension address space: segment and
offset
– divide logical address space into segments. Each
segment is a logical unit, such as data, code,
and file.
– segment size is variable, and often large
– Segment table shows the mapping between logical
addresses and physical addresses.

Figure 3-32. A segmented memory allows each table to grow or
shrink independently of the other tables.

Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-33. Comparison of paging and segmentation.

Implementation of Pure Segmentation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-34. (a)-(d) Development of checkerboarding. (e)
Removal of the checkerboarding by compaction.

Segmentation with Paging: MULTICS (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Segmentation with Paging

Combine segmentation with paging system

– Each segment must start at a page boundary.
Divide each segment into pages and each segment
has a page table.

– Easy to share a file.

Figure 3-35. The MULTICS virtual memory. (a) The
descriptor segment points to the page tables.

Segmentation with Paging: MULTICS (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(a) MULTICS virtual
memory.

(b) A segment
descriptor. The
numbers are the
field lengths.

Segmentation with Paging: MULTICS (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

When a memory reference occurs, the following
algorithm is carried out:

• The segment number used to find segment descriptor.
• Check is made to see if the segment’s page table is in

memory.
– If not, segment fault occurs.
– If there is a protection violation, a fault (trap) occurs.

Segmentation with Paging: MULTICS (6)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Page table entry for the requested virtual page
examined.
– If the page itself is not in memory, a page fault is

triggered.
– If it is in memory, the main memory address of the

start of the page is extracted from the page table entry
• The offset is added to the page origin to give the

main memory address where the word is located.
• The read or store finally takes place.

Segmentation with Paging: MULTICS (7)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-36. A 34-bit MULTICS virtual address.

Segmentation with Paging: MULTICS (8)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-37. Conversion of a two-part MULTICS address into a
main memory address.

Segmentation with Paging: MULTICS (9)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-38. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB more

complicated.

Segmentation with Paging: MULTICS (10)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Systems Calls for Semaphore and Shared Memory

•Semaphore system calls

Get a set of semaphores

semid = semget(key, nsems, permags)

key: a user defined name for the semaphore set
nsems: number of semaphores in the set
permags: permission state (read, write)
semid: semaphore set identifier associated with key, used
by other semaphore operations.

Four ways to use it

Systems Calls for Semaphore and Shared Memory

•Create a private semaphore set
semid = semget(IPC PRIVATE, nsems, 0600|IPC_CREAT|IPC_ EXCL)
Return a unique semid system wide, private to the process.

•Find key if already defined.
semid = semget(key, nsems, 0)
key not equal to IPC PRIVATE, e.g. 0X200.

•Create only if key is not already defined
semid = semget(key, nsems, 0600|IPC_CREAT|IPC_EXCL)
If other processes specify the same key, they will get the same semid.

•Find key if already defines, otherwise create
semid = semget(key, nsems, 0600|IPC_CREAT)

SHELL commands for IPC:
ipcs: check ipc state
ipcrm -s semid: remove a semaphore.

Systems Calls for Semaphore and Shared Memory

Semaphore control operations

semval= semctl(semid, index, GETVAL, val)

Get the value of the semaphore
index: index in the set, e.g. 0 means the first semaphore in
the set.

semval= semctl(semid, index, SETVAL, val)

Set the semaphore value to val.

pid= semctl(semid, 0, GETPID, val)
Return the process id of the last process that performs an
operation on the semaphore.

Systems Calls for Semaphore and Shared Memory
Semaphore operations (up and down)

semop(semid, op_array, somevalue)

op_array: an array of semaphore operations to perform
somevalue: the number of semaphore operation records
struct sembuf op_array[somevalue] has three fields:
sem num: index to semaphore in the set
sem op: -1: down; +1: up
sem ag: usually set to SEM UNDO,
automatically ``undo" all operations after process exits.

Example:
sem num= 0;
sem op = -1;
sem ag = SEM UNDO

Shared memory system calls

Create shared memory segment

shmid = shmget(key, size, 0600|IPC CREAT|IPC_EXCL)

size: number of bytes.

Systems Calls for Semaphore and Shared Memory

Shared memory operations

shmat(shmid, dataptr, flag)
Attach the memory segment identified by shmid to process's logical data
space

dataptr = 0: the segment is attached to the first available address selected
by the system

dataptr nonzero: attach to user specified address, depending on flag:

flag & SHM RND is true. shmat will round dataptr to a page boundary
flag & SHM RND is false. attach to the exact values of dataptr
flag & SHM RDONLY is true. Read only.

Example:
struct databuf *pp;
pp = (struct databuf *) shmat(shmid, 0, 0);

Systems Calls for Semaphore and Shared Memory

Shared memory control operations

shmctl(shmid, command, &shm_stat)

After your are done, remove the shared memory
identifier specified by shmid from the system and
destroy the shared memory segment and data
structures associated to it:

shmctl(shmid, IPC_RMID, (struct shmid_ds *)0)

Systems Calls for Semaphore and Shared Memory

Signals are called ``software interrupts." One process can send
signals to another process.

Signal names: SIGINT, SIGKILL, SIGALRM, ...

What to do with a signal system call?

•Catch a signal: signal(sig, func).
Provide a function that is called whenever a specific type of signal
occurs. Need to re-enable signal catching.

•Ignore a signal: signal(sig, SIG_IGN).
All signasl, other than SIGKILL, can be ignored.

•Allow the default to happen: signal(sig ,SIG_DEF).
Normally, a process is terminated when receiving a signal.

Send a signal: kill(pid, sig).

Systems Calls for Signals

	Slide Number 1
	Memory Management	
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Modeling Multiprogramming
	Modeling Multiprogramming
	Analysis of Multiprogramming System Performance
	Analysis of Multiprogramming System Performance
	Implementation of Multiprogramming
	Relocation and Protection
	Relocation and Protection
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Page Replacement Algorithms
	Slide Number 41
	Optimal Page Replacement Algorithm
	Slide Number 43
	Not Recently Used Page Replacement Algorithm
	FIFO Page Replacement Algorithm
	Two Variants of FIFO�
	Belady's Anomaly
	Slide Number 49
	The Clock Page Replacement Algorithm
	Least Recently Used (LRU)
	Least Recently Used (LRU)
	Least Recently Used (LRU)
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 63
	Slide Number 64
	Page Fault Rate vs. Page Frames
	Slide Number 66
	Slide Number 67
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Page Size
	Slide Number 79
	Page Size
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107

