
1

INTRODUCTION

� A simple example:

– Job: put on socks and shoes

– Processor: a pair of hands

– Sequential algorithm:

put on right sock, right shoe,

put on left sock, left shoe.

Need 4 time units

– Parallel algorithm:

Two processors:

one for left foot and another for right foot.

Need 2 time units.

Question: Can we use four processors to further

speed up to, say, 1 time unit?

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 2

� Parallel computer models

– Physical architecture models

� Multiprocessors

� Uniform memory access (UMA), a single shared

memory space.

� Nonuniform memory access (NUMA), distributed

shared-memory multiprocessors (DSM).

� Multicomputers (distributed memory)

� Hypercube architecture

� Mesh connected architecture

� Networks of workstations (NOW)

An inexpensive way to build parallel comput-

ers.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 3

– Theoretical models

Used to estimate the performance bounds on al-

gorithms.

� Review of time and space complexity

� Time complexity: a function of the problem

size

� Big O notation (worst case complexity):

a time complexity g(n) is said to beO(f(n))

if there exist positive constantsc and n0 so

that g(n) � cf(n) for all nonnegative values

of n > n0.

� Sequential complexity: the complexity of se-

quential algorithm

� Parallel complexity: the complexity of paral-

lel algorithm

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 4

� NP-problems

� An algorithm has time complexity O(f(n))

wheren is the problem size.

� P-class (polynomial):f(n) is a polynomial.

� NP-class (nondeterministic polynomial): poly-

nomial verifiable for a guessed solution, but

f(n) is exponential.

� Examples:

P-class: search max in a list:O(n)

NP-class: Traveling salesman problem

(travel all cities with minimum cost): O(n22n).

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 5

� Parallel complexity

� Sequential complexityO(w(n))

� Parallel complexity of ap-processor machine

O(w(n)p
):

the algorithm is scalable.

� Not every problem can achieve this due to

data dependence

� An example:

putting on socks and shoes

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 6

� Parallel random access machine (PRAM).

Consists of

� p processorsP1; : : : ; Pp

� Processors are connected to a large shared,

random access memoryM .

� Processors have a private or local memory

for their own computation, but all communi-

cation among them takes place via the shared

memory

� Each time step has three phases: read phase,

computation phase and write phase.

� Processors synchronized (write at the same

time)

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 7

� Four subclasses, depending on how concurrent

read/write is handled:

� EREW-PRAM: exclusive read exclusive write.

Allow only one processor to read or write a

memory location

� CREW-PRAM: concurrent read exclusive write.

Allow multiple processors to read the same

memory location, but not allow concurrent

write.

� ERCW-PRAM: exclusive read concurrent write.

� CRCW-PRAM: concurrent read current write.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 8

� How to resolve the write conflicts

� Common: all simultaneous writes store the

same value to that memory location

� Arbitrary: choose one value ignore others

� Minimum: store the value of the processor

with the minimum index

� Priority: some combination of all values, such

as summation or maximum

� In PRAM model, synchronization and memory

access overhead are ignored.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 9

� Example:

An algorithm on a PRAM:

Multiplication of two n�n matrices inO(log n)

time on a PRAM (CREW) with n3= log n pro-

cessors.

A�B = C

A(i; k); B(k; j); C(i; j; k); 0 � i; j; k � n� 1

First assumen3 processors:

PE(i; j; k); 0 � i; j; k � n� 1

Standard algorithm:

C(i; j) =
n�1X

k=0
A(i; k)�B(k; j)

We put the final results inC(i; j; 0) for 0 � i; j �
n� 1.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 10

Step 1:

C(i; j; k) = A(i; k)�B(k; j)

Step 2:

C(i; j; 0) =
n�1X

k=0
C(i; j; k)

Now look at n3= log n processors.

C(i; j; k); 0 � i; j;� n�1; 0 � k � n

log n
�1

Step 1:

C(i; j; 0) =
logn�1X

k=0
A(i; k)�B(k; j)

C(i; j; 1) =
2 logn�1X

k=logn
A(i; k)�B(k; j)

...

C(i; j; n= log n� 1) = � � �

Step 2:

C(i; j; 0) =
n= logn�1X

k=0
C(i; j; k)

Modify the code: l n to l n= log n

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 11

� VLSI complexity model (AT 2 model)

� Set limits on memory, I/O and communica-

tion, for implementing parallel algorithms with

VLSI chips.

� A: chip area (chip complexity)

� T: time for completing a given computation

� s: problem size

� There exists a lower boundf(s) such that

A� T 2 � O(f(s))

� Memory requirement sets a lower bound on

chip area A

� Information flows through the chip for a pe-

riod of time T.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 12

� AT: the amount of information flowing through

the chip during time T. The number of input

bits cannot exceed the volume AT.

� Bisection
p
AT (usually useAT 2): maximum

information exchange between the two halves

of the chip during time T.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 13

� Example:

Matrix multiplication.

n� n matrices,C = A�B

2-D mesh architecture,n2 PE’s

broadcast bus for inter-PE communication

chip area complexity:A = O(n2)

time complexity T = O(n)

AT 2 = O(n2) � (O(n))2 = O(n4)

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 14

�� How to solve a typical computation task sorting us-

ing different types of computation models.

– Problem description:

A sequence

S = fs1; s2; : : : ; sng

A linear order < is defined onS.

Find a new sequence

S 0 = fs01; s02; : : : ; s0ng

such that s0i < s0i+1 for i = 1; 2; : : : ; n� 1.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 15

– Sequential algorithm.

� Lower bound:
(n log n)

� Mergesort (optimal)

Time T (n) = O(n log n)

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 16

– Parallel algorithm on CRCW model.

� Write conflict: storing the sum of all values be-

ing written.

� Sorting by enumeration:

n2 processors.

Two lists in shared memory:

S storess1; s2; : : : ; sn andC storesc1; c2; : : : ; cn

ci is the number of of elements inS smaller than

si.

If si = sj and i > j then si > sj in the sorted

list.

� Each p(i; j) comparessi and sj and storessi in

position 1 + ci of S.

� Time T (n) = O(1)

� Processors:P (n) = n2

� Cost: C(n) = T (n)P (n) = O(n2)

� This algorithm is not optimal.

If c(n) = O(n log n) optimal.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 17

Procedure CRCW sort(S)

Step 1: for i = 1 to n doall

for j = 1 to n doall

if (si > sj) or (si = sj and i > j)

then p(i; j) writes 1 in ci

elsep(i; j) writes 0 in ci

end if

end for

end for

Step 2: for i = 1 to n doall

P (i; 1) storessi in position 1 + ci of S

end for

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 18

– Parallel algorithm on CREW model.

Divide S into p subsets and one processor sorts a

subset.

S = S1 [S2 [� � � [Sp

T (n) = O(log2 n)

P (n) = O(n= log n)

C(n) = O(n log n)

Optimal algorithm.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 19

– A special purpose parallel architecture designed

for sorting (hardware sorter)

Specialized processors+ custom-designed inter-

connection networks

Odd-even sorting network

Very simple processor:2� 2 comparator

Basic idea: merge sort

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 20

(n; n)merging network: merges two length-n sorted

lists into one length2n sorted list.

� (1; 1) merging network = 2� 2 comparator

� (2; 2) merging network

A = fa1; a2g; B = fb1; b2g
a1

a
1c

2

1

2

2

3

4

b

b c

c
c

P

P

P

1

3

2

a1 � a2; b1 � b2

minfa1; b1g = minfa1; a2; b1; b2g = c1

maxfa2; b2g = maxfa1; a2; b1; b2g = c4

One more comparator to comparec2 and c3.

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 21

� (n; n) merging network(n is a power of 2):

Recursive construction using two(n=2; n=2)merg-

ing networks

a1; a3; : : : ; an�1; b1; b3; : : : ; bn�1 connected to the

first merger

a2; a4; : : : ; an; b2; b4; : : : ; bn connected to the sec-

ond merger

Additional n� 1 comparators

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 22

a1

a
1c

2

1

2

2

3

4

b

b c

c
c

P

P

P

1

3

2

c1a1

ei

a2
a3
a4

an

an-1

b1

b2

b3
b4

b
bn

n-1

c2

c3

c4

c5

c2i

c2i+1

c2n

(n/2, n/2)

merging net

merging net

(n/2, n/2)

d1

d2

d3

di+1

e1

e2

en

P1

Pn-1

P2

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 23

Proof of correctness.

Note that subsequencesa1; a3; : : : ; an�1 and b1; b3; : : : ; bn�1

are sorted, and we have

d1 � d2 � � � � � dn

e1 � e2 � � � � � en

d1 is the min of all elements) d1 = c1

en is the max of all elements) en = c2n

Now, we need to prove:

c2i = minfdi+1; eig

c2i+1 = maxfdi+1; eig
Consider sequencefd1; d2; : : : ; di+1g:

fd1; d2; : : : ; di+1g � fa1; a3; : : : ; an�1; b1; b3; : : : ; bn�1g

Supposek elements offd1; d2; : : : ; di+1g are in fa1; a3; : : : ; an�1g

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 24

They must be the firstk elements

fa1; a3; : : : ; a2k�1g

Then i + 1 � k elements infb1; b3; : : : ; bn�1g. These

elements must be the first(i + 1� k) elements

fb1; b3; : : : ; b2(i+1�k)�1g

Look at the largest elementdi+1,

di+1 � fa1; a3; : : : ; a2k�1g

Plug in

fa2; a4; : : : ; a2k�2g
di+1 is greater than2k � 1 ai’s

Similarly, di+1 is greater than2(i + 1� k)� 1 bi’s

2k � 1 + 2(i + 1� k)� 1 = 2i

Then we have

di+1 � c2i

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 25

Similarly, consider fe1; e2; : : : ; eig.
k of fe1; e2; : : : ; eig are in fa2; a4; : : : ; ang.
i� k of fe1; e2; : : : ; eig are in fb2; b4; : : : ; bng.
ei is greater than2k ai’s, andei is greater than2(i�k)
bi’s.

So

ei � c2i

We have

di+1 � c2i

ei � c2i

for i = 1; 2; : : : ; n� 1.

Now let i = n� 1, we have

dn � c2n�2

en�1 � c2n�2

Sinceen = c2n,

fdn; en�1g = fc2n�2; c2n�1g

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 26

Then

c2n�2 = minfdn; en�1g
c2n�1 = maxfdn; en�1g

For i = n� 2,

dn�1 � c2n�4

en�2 � c2n�4

fdn�1; en�2g = fc2n�4; c2n�3g
Then

c2n�4 = minfdn�1; en�2g
c2n�3 = maxfdn�1; en�2g

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 27

Analysis for merger:

– Time:

T (2) = 1, T (2n) = T (n) + 1

T (2n) = 1 + log n

– Processors:

P (2) = 1

P (2n) = 2P (n) + (n� 1)

P (2n) = 1 + n log n.

– Cost:

C(2n) = P (2n)� T (2n) = O(n log2 n)

Not optimal (O(n) is optimal).

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 28

Back to odd-even sorting network:

– Time:

T (n) = T (n=2)+ (1+ log(n=2)) = T (n=2)+ log n =

O(log2 n)

– Processors:

P (n) = 2P (n=2)+ 1+ (n=2) log(n=2) = O(n log2 n)

– Cost:

C(n) = P (n)� T (n) = O(n log4 n)

ESE536/CSE636 Switching and Routing in Parallel and Distributed Systems 29

Summary for sorting

– Odd-even sorting network

� T (n) = O(log2 n)

� P (n) = O(n log2 n)

� C(n) = O(n log4 n)

Not optimal, but a practical network.

– Sequential algorithm

� T (n) = O(n log n)

� P (n) = O(1)

� C(n) = O(n log n)

Optimal.

– The best parallel algorithm: AKS sorting network

(CREW model)

� T (n) = O(log n)

� P (n) = O(n)

� C(n) = O(n log n)

Optimal, but very large hidden constant, com-

plex.

	n1-1
	Binder1
	n1
	tmp2
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	t2
	notes1.pdf

	alg
	Binder2
	n1
	tmp2
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	t2
	notes1.pdf

	n1.pdf
	tmp2
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	t2
	notes1.pdf

	Binder5
	536-figs

	Binder3
	n1
	tmp2
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	t2
	notes1.pdf

	Binder6
	536-figs

	Binder7
	536-figs

	part2
	n1
	tmp2
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3
	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	n1.pdf
	notes1.pdf
	fig1
	fig2
	fig3

	t2
	notes1.pdf

