
30

� Program properties and communication:

To divide a program into segments so that it can be

executed in parallel, we need to look at various de-

pendence among instructions and the amount of com-

munication among processors.

– Data dependences

Dependence graph: A directed graph

Node: instructions (statements)

Arc: ordered relations among the instructions



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 31

� Flow dependence

The output of S1 is the input of S2, denoted as

S1! S2.

� Antidependence

The output of S2 overwrites the input of S1, de-

noted asS1 ! S2.

� Output dependence

S1 and S2 write to the same variable, denoted

asS1! S2.

� I/O dependence

S1 andS2 access the same file, denoted asS1

I=O
!

S2.

� Unknown dependence, e.g.

� A[B[i]]

� A[i2]

� A[i] where i is a global variable.

� A[i] andA[2i] both appear.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 32

– Examples:

Example 1:
S1: Load R1, A /R1 Memory(A)/

S2: Add R2, R1 /R2 (R1)+(R2)/

S3: Move R1, R3 /R1 (R3)/

S4: Store B, R1 /Memory(B) (R1) /

Example 2:
S1: Read (4), A(I) /Read array A

from tape unit 4/

S2: Rewind(4) /Rewind tape unit 4/

S3: Write (4), B(I) /Write array B

into tape unit 4/

S4: Rewind (4) /Rewind tape unit 4/



1S

1S

1S

1S 2S

1S

1S
I/O

2S

Dependence graph:

antidependence

output dependence

I/O dependence

2S

2S

2S

flow dependence

I/O

O

4S

3S

2S O



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 33

– Control dependence

Execution order can only be determined at run

time.

� Example 1: control-independent loops

Do 20 I = 1, N

A(I) = C(I)

If (A(I) .LT. 0) A(I) = 1

20 Continue

� Example 2: control-dependent loops

Do 10 I = 1, N

If (A(I-1) .EQ. 0) A(I) = 1

10 Continue



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 34

– Resource dependence

Such as using the same ALU or storage

– Bernstein’s conditions (the conditions two processes

can be executed in parallel)

I1 \O2 = �

I2 \O1 = �

O1 \O2 = �

where, Ii (i = 1; 2) is the input set of processPi

andOi (i = 1; 2) is the output set of processPi.

– ProcessesP1; P2; : : : ; Pn can be executed in paral-

lel if PijjPj for any i 6= j.

jj relation is commutative but not transitive.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 35

– Example: schedule the following program

P1 : C = D � E

P2 : M = G + C

P3 : A = B + C

P4 : C = L +M

P5 : F = G=E

Dependences:

P1! P2 data (C)

P1! P3 data (C)

P1! P4 output (C)

P2! P4 data (M)

P2! P4 anti (C)

P3! P4 anti (C)

P1jjP5; P2jjP3; P2jjP5; P5jjP3; P4jjP5:

P2jjP3jjP5





ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 36

– Hardware parallelism

� Determined by machine architecture

� Indicates peak performance

� Characterized by the number of instruction is-

sues per machine cycle

� Instruction issue:

reserve a functional unit, send an op code to it

and reserve the result register.

� k-issue processor: issuesk instructions per ma-

chine cycle.

k � 1: one issue machine (conventional ma-

chine)

k > 1: pipelined computer



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 37

– Software parallelism

� Determined by algorithm, programming style

and compiler

� Maximum parallelism allowed by dependence

� Example: Mismatch between software and hard-

ware parallelism

� The program

� Executed by a two-issue superscalar proces-

sor

� Executed by a dual-processor







ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 38

� Job scheduling on parallel computers

– Grain: a segment of the program executed by a

processor

– Grain size

� Fine grain: at instruction level (about 20 in-

structions)

� Medium grain: at loop level (about 500 instruc-

tions)

� Coarse grain: at procedure level (about 2000

instructions)

– Finer grain has more parallelism, but requires more

communications among processors.





ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 39

– Communication latency:

Time required to communicate between PEs.

– Basic communication patterns

(determined by algorithms and architectures)

� Permutation (one-to-one)

� Broadcast (one-to-all)

� Multicast (one-to-many)

� Conference (many-to-many)

– Grain-size problem:

Determine the number and the size of the grains

in a parallel program to yield the shortest possible

execution time.

The smaller grain size, the more communication

overhead.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 40

– An example of grain packing:

� Program graph:

Node: (n,s)

n: - node name

s: grain size (# machine cycles)

Edge: (v,d)

v: output variable of the source or input vari-

able of the destination

d: communication delay.

� Basic idea: divide the program as fine as possi-

ble to achieve the highest parallelism, then pack

some grains to reduce communication delay to

achieve the shortest execution time.

� Scheduling for fine grain

� Scheduling for coarse grain

� Node duplication









ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 41

– Steps of scheduling a job on parallel machine

� Construct a fine-grain program graph (exploit

the maximum parallelism)

� Schedule the fine-grain computation

� Grain packing (reduce delay)

� Schedule the packed graph.

� Repeat if necessary.

– Example: matrix multiplication.









ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 42

– Three types of computers

� Control-driven: von Neumann machines

� Data-driven: data flow machines, driven by data

availability.

� Demand-driven: reduction machines, start the

computation only when the results are needed.

– Eager evaluation and lazy evaluation

– Comparison of dataflow and control-driven com-

puters






