30

e Program properties and communication:

To divide a program into segments so that it can be
executed in parallel, we need to look at various de-
pendence among instructions and the amount of com-

munication among processors.

— Data dependences
Dependence graph: A directed graph
Node: instructions (statements)

Arc: ordered relations among the instructions



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 31

+ Flow dependence
The output of S; is the input of S,, denoted as
S| — 9s.

+ Antidependence
The output of S, overwrites the input of S;, de-
noted asS; — 5,.

x OQutput dependence

S: and S, write to the same variable, denoted

assS; — 9o.
* 1/O dependence
S1 and S, access the same file, denoted &% I/—(Q
S.
+ Unknown dependence, e.g.
- A[BI]

i7]

A
- Ali] where is a global variable.
A

7] and A[2:] both appear.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems

— Examples:

Example 1:
Sl: Load R1,A /R1+ Memory(A)/

S2: Add R2,R1 /R2+ (R1)+(R2)/
S3: Move R1, R3 /R1+ (R3)/
S4: Store B, R1  /Memory(B)<+ (R1)/

Example 2:
S1: Read (4), A(l) /Read array A

from tape unit 4/
S2: Rewind(4) /Rewind tape unit 4/
S3: Write (4), B(I) /Write array B

Into tape unit 4/
S4: Rewind (4) /Rewind tape unit 4/

32



Dependence graph:

S ——=S, flow dependence
S1 Aﬁ S, antidependence

S 9. S, output dependence

S e, S, /O dependence

©

o



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 33

— Control dependence
Execution order can only be determined at run

time.

x Example 1: control-independent loops
Do201=1,N
Al =C(I)
If (A(l) .LT. 0) A() =1
20 Continue
x Example 2: control-dependent loops
Do10I=1,N
If (A(l-1) .EQ.0) A() =1
10 Continue



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 34

— Resource dependence

Such as using the same ALU or storage

— Bernstein’s conditions (the conditions two processes

can be executed in parallel)

LNOy = ¢
ILNO, = ¢
O1N0y = ¢

where, I; (i = 1,2) is the input set of processF,
and O; (i = 1, 2) is the output set of process’,.

— Processes’, P, ..., P, can be executed in paral-
lel if P||P; forany i # j.

| relation is commutative but not transitive.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 35

— Example: schedule the following program

P,: C=DxE
P:M=G+C
Py A=B+C
P:C=L+M
Ps: F = G/E

Dependences:

P, — P, data (
P, — Ps data (
P, — Py output (C)
P, — P, data (M)
P, — Py anti (O)
Py — Py anti (C)

C)
C)

Py\||Ps5, By|| P3, Py|| Ps, Ps|| Ps, Py|| Ps.
B|| P3| P



(a) A dependence graph showing both data dependence (solid arrows)
and resource dependence (dashed arrows)

D
E Time
L-’i%' Py
C

G p4M
E C
Ps
F A 4

(b) Sequential execution in five (c) Parallel execution in three steps,
steps, assuming one step per state- assuming two adders are available
ment (no pipelining) per step

Figure 2.2 Detection of parallelism in the program of Example 2.2.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 36
— Hardware parallelism

x Determined by machine architecture

* Indicates peak performance

+ Characterized by the number of instruction is-
sues per machine cycle

* [nstruction issue:
reserve a functional unit, send an op code to it

and reserve the result register.

* k-ISSue processor: issuekinstructions per ma-
chine cycle.
k < 1. one issue machine (conventional ma-
chine)
k > 1. pipelined computer



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 37
— Software parallelism
x Determined by algorithm, programming style

and compiler

+x Maximum parallelism allowed by dependence

+x Example: Mismatch between software and hard-
ware parallelism

- The program

- Executed by a two-issue superscalar proces-
sor

- Executed by a dual-processor



Cycte +
/o
0 Cycle 3
Cycte 1
Q9Q @ o
Cycte 2 ° 9 @ Cyoes
Cycie 3 | I ° Cycie &
1
A s
’ Cycle?
‘Lﬂdw::".;"w 8
(a) Software parallelism (b) Hardware parallelism

Figure 2.3 Executing an example program by a two-issue superscalar processor.



Cycle 1

L/8: Lesdfacre aperstion
X: Multigly eperstion
Cyde 3 +/-: AdiSubevract epesstica

Cycle ¢
Added
for PC

Cyce s

Cycle 6

Figure 2.4 Dual-processor execution of the pregram in Fig. 2.3a.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 38

e Job scheduling on parallel computers

— Grain: a segment of the program executed by a

processor
— Grain size
x Fine grain: at instruction level (about 20 in-
structions)
+x Medium grain: at loop level (about 500 instruc-
tions)
x Coarse grain: at procedure level (about 2000

Instructions)

— Finer grain has more parallelism, but requires more

communications among processors.



\
Level 5 Jobs or programs
Coarse grain
Subprograms, job )
Level 4 stegs or related
pans of a program J
Medium grain
Increasing Level 3 | Procedures, subroutines, Higher d
communication tasks, or coroutines igher degree
demand and Y, of parallelism
scheduling
overhead
\
Nonrecursive loops or
Levg! 2 unfolded iterations
rFine grain
Instructions or
¢ Level 1 stalements J 1A

Figure 2.5 Levels of parallelism in program execution on modern computers,
(Reprinted from Hwang, Proc. /EEE, October 1987)



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 39

— Communication latency:

Time required to communicate between PEs.

— Basic communication patterns
(determined by algorithms and architectures)
+x Permutation (one-to-one)
+ Broadcast (one-to-all)
+ Multicast (one-to-many)
x Conference (many-to-many)
— Grain-size problem:
Determine the number and the size of the grains

In a parallel program to yield the shortest possible

execution time.

The smaller grain size, the more communication

overhead.



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 40
— An example of grain packing:

*x Program graph:
Node: (n,s)
n: - node name
S: grain size (# machine cycles)
Edge: (v,d)
V. output variable of the source or input vari-
able of the destination
d: communication delay.

x Basic idea: divide the program as fine as possi-
ble to achieve the highest parallelism, then pack
some grains to reduce communication delay to

achieve the shortest execution time.
x Scheduling for fine grain
+ Scheduling for coarse grain

+* Node duplication



(a) Fine-grain program graph before packing

{n.s) = (node. grain size)
(x.i) = (input. delay)
ed (u.X) = output, delay)

uk

{b) Coarse-grain program graph
after packing

Figure 2.6 A program graph before and after grain packing in Example 2.4. (Mod-
ified from Kruatrachue and Lewis, [EEE Software, Jan. 1938)

Begin

End

0o NS DR W

T T | T T
O VY b W

.

10.
11.
12.
13.
14.
15.
16.
17.

.

QW o3 F A
i
.
o
X
—



—
-0

%

-

oy

-
o

8230 ~

724

-

o
-t
o~

>
[ ———]

14

L]
3
12 '™
Tnmew§ :§\§ w% ;
1
222.;_ 2’§ 22§ 22\
24$ 2450 bl : I
\ 26 , I
28] 28\: ‘
I 2N |
o 6 E
L
o KL
(a) Fine grain (Fig. 2.6a) (b) Coarse grain (Fig. 2.6b)

Figure 2.7 Scheduling of the fine-grain and coarse-grain programs. (I: idle time;
shaded areas: communication delays)



conecenyroovvan

wi N

12
13 14
16
21 20
d.4 : e4 2

B

(b) Schedule with node duplication (A— A
and A’; C — C and C)

(a) Schedule without node duplication

Figure 2.8 Node-duplication scheduling to eliminate communication delays be-
tween processors. (I: idle time; shaded areas: communication delays)



ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 41
— Steps of scheduling a job on parallel machine
« Construct a fine-grain program graph (exploit
the maximum parallelism)
x Schedule the fine-grain computation
x Grain packing (reduce delay)
x Schedule the packed graph.

+x Repeat if necessary.

— Example: matrix multiplication.



A A } < { By, B2 } _ [ Cn Cr2
As Ax B>y Bxn Ca1 Caz

-

By Aj1xBy; AgxBy;

k=1 o0r2 ‘Grain size 101 Grain size 8
AyxBy Gi--A,‘xB“«oA‘szzi
CPU CYCLE CPU CYCLE
Move W Axx, L1 15 Move L PARL,D1 20
Move W Bxx, D2 15 Move L PAR2,D2 20
MPTY D1, D2 71 ADD L o1, B2 8
MOVE L D2, PAR 20 MOVE L p2, pPSUM 20

(a) Grain size calculation in M68000 assembly code at 20-MHz cycle

o d = TI1+T2+TI +T4+TS+T6
P1. (Serial link) P2
B 3 = 20420432420+ 20+ 100
T1 2 MA >t DMA T5 =212
T23 O = T4 212 cycles
Y T3 = 32-bit transmission time at 20 Mbps
normalized to M68000 cycle at 20 MHz.
Memory Memory | 1o - delay due to software protocols (3s-

sume § Move instructions, 100)

(b) Calculation of communication delay d

(c) Fine-grain program graph

Figure 2.9 Calculation of grain size and communication delay for the progra®
graph in Example 2.5. (Courtesy of Kruatrachue and Lewis; reprinted with,
permission from JEEE Software, 1988)



101
202

313} W Y| | ¢

Time sg05

Tio|(nImlolo|lw]»]v
]
b
3

1£3
808 L 5‘1 las) l

| 856
" 864

(a) A sequential schedule (b) A parallel schedule

Figure 2.10 Sequential versus parallel scheduling in Example 2.5.



Py
— 0
G
101 v w X
202
[}

77Nk

22
430
Communication delay: Gruin size: z 438
V=W=X=Y=101+101+8=210 446
d=21Q. Z=8+8+8=24

v

(a) Grain packing of 15 small nodes into 5 bigger nodes (b) Parallel schedule for the packed progns

Figure 2.11 Parallel scheduling for Example 2.5 after grain packing to reduce com-
munication delays.




ESE 536/ CSE 636 Switching and Routing in Parallel and Distributed Systems 42
— Three types of computers

x Control-driven: von Neumann machines

x Data-driven: data flow machines, driven by data
availability.

x Demand-driven: reduction machines, start the
computation only when the results are needed.

— Eager evaluation and lazy evaluation

— Comparison of dataflow and control-driven com-

puters



inputd, e, f d, ey d, e, d; e3d, €4 ds es dg e d; e; dg eg
=0

forifromito§ do ;
begin ' ‘
3 :=d; +e -1 2 a3 g, a5 ds a7 g
bii=a, *f | h—® 129 112§ 1,4 ¢ fo+@ f@ 1,
= bi + Ci-1 D h h h D 8 h iy
end 1 2 3 4 5 6 8
output a, b, ¢ Co (o Co C3 C4 Cs Cg Cy Cg

(a) A sample program ang its dataflow graph

1 4 6 7 10 12 43 48 48
a, by |c, a by |c, soee ag [be Cg

(b) Sequentia] execution on g uniprocessor in 48 cycles

1 4 789?011121314
a, a5 [ci]c,]es Ca]cs|ce]c; [cg

32 b1 b2 b4 bs bs

ag ag ]bsfbs bﬂ

a4 az ] g ]

(c) Data-driven execution on a 4-processor dataflow computer in 14 cycles

1 4 7 9 1112 13 14
a, 3 | b ' bs |s,|t, Cyfcs $,=b3+b,.ll=b3+s,.c1=b,+c0.c5=b5+c4
a, ag ] b, bg |so t2]ca]ce S;=by+by, (2=8 1452, €=s)4¢, C6=534C,
aj as b3 b; [s3 t3/c3)cy $3=bg+bs, t3=by+s;, C3=t+€0. cy=ty4c,
__ 34 ag by bg |sq]t, C4|Cg $4=bg+b-, 14754453, cy=ty+c,, Cg=ty+cy

1) Paralle] €xecution on a shared—memory 4-processor System in 14 cycles

“omparison between dataflow and control-low Computers, (Adapted

om Gajski, Padua, Kuck, and Kuhn, 1982; reprinted with Permission from
EEE Computer, Feb. 1982)





