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AbstractÐAll-to-all personalized exchange is one of the most dense collective communication patterns and occurs in many important

applications in parallel computing. Previous all-to-all personalized exchange algorithms were mainly developed for hypercube and

mesh/torus networks. Although the algorithms for a hypercube may achieve optimal time complexity, the network suffers from

unbounded node degrees and thus has poor scalability in terms of I/O port limitation in a processor. On the other hand, a mesh/torus

has a constant node degree and better scalability in this aspect, but the all-to-all personalized exchange algorithms have higher time

complexity. In this paper, we propose an alternative approach to efficient all-to-all personalized exchange by considering another

important type of networks, multistage networks, for parallel computing systems. We present a new all-to-all personalized exchange

algorithm for a class of unique-path, self-routable multistage networks. We first develop a generic method for decomposing all-to-all

personalized exchange patterns into some permutations which are realizable in these networks, and then present a new all-to-all

personalized exchange algorithm based on this method. The newly proposed algorithm has O�n� time complexity for an n� n network,

which is optimal for all-to-all personalized exchange. By taking advantage of fast switch setting of self-routable switches and the

property of a single input/output port per processor in a multistage network, we believe that a multistage network could be a better

choice for implementing all-to-all personalized exchange due to its shorter communication latency and better scalability.

Index TermsÐParallel computing, interprocessor communication, collective communication, all-to-all communication, all-to-all

personalized exchange, routing, multistage interconnection networks, Latin Square, permutation.
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1 INTRODUCTION

COLLECTIVE communication [1], [2] involves global data
movement and global control among a group of

processors in a parallel/distributed computing system.
Many scientific applications exhibit the need of such
communication patterns. Efficient support for collective
communication can significantly reduce the communication
latency and simplify the programming of parallel compu-
ters. Collective communication has received much attention
in parallel processing community in recent years; see,
for example, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15].

Among all collective communication operations, all-to-
all communication is one of the most dense operations. In
all-to-all communication, every processor in a processor
group sends a message to all other processors in the
group. Depending on the nature of the message to be
sent, all-to-all communication can be further classified as
all-to-all broadcast and all-to-all personalized exchange. In all-
to-all broadcast, every node sends the same message to
all other nodes, and in all-to-all personalized exchange,
every node sends a distinct message to every other node.
Clearly, all-to-all broadcast can be viewed as a special
case of all-to-all personalized exchange. Both all-to-all

broadcast and all-to-all personalized exchange are used in
many parallel applications. For example, all-to-all broad-
cast is needed in matrix multiplication, LU-factorization
and Householder transformations, and all-to-all persona-
lized exchange is needed in matrix transposition and Fast
Fourier Transform (FFT) [16], [17]. In this paper, we will
be mainly interested in efficient algorithms for all-to-all
personalized exchange.

There has been much work for all-to-all personalized
exchange in various networks; see, for example [8], [9],
[10], [11], [12], [13], [14], [15], [16]. Johnsson and Ho [8]
proposed optimal all-to-all personalized exchange algo-
rithms on an n-node hypercube with O�n logn� and O�n�
time complexity for one-port model and all-port model,
respectively. However, a drawback of high-dimensional
networks such as hypercubes is their poor scalability due
to the unbounded node degree, which corresponds to the
number of I/O ports needed for interprocessor commu-
nication in a processor. On the other hand, meshes and
tori have a simple, regular topology and a bounded node
degree, and become more and more popular for inter-
connecting processors in parallel/distributed computing
systems due to their better scalability in terms of I/O
port limitation in a processor. Typical all-to-all persona-
lized exchange algorithms on a two dimensional mesh
and torus [11], [12], [13], [14], [15], [16] have time
complexity O�n3

2�, where n is the number of nodes in the
network. In general, for a k dimensional mesh and torus,
the algorithms have time complexity O�nk�1

k � (see, for
example, Suh and Shin [15]). Apparently, using a mesh
or a torus for all-to-all personalized exchange suffers a
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longer communication delay than hypercubes due to the
limitations of the network topologies themselves.

In this paper, we consider another important type of
interconnecting scheme of parallel computing systems,
multistage interconnection networks (MINs). In particular,
we focus on a class of unique-path, self-routable MINs (for
example, baseline, omega, indirect binary n-cube (or
banyan) network, and the reverse networks of these
networks, etc.). Due to their easy routing capability and
uniform communication latency between any network
inputs and outputs, this type of MIN has been used in
several parallel computers, such as NEC Cenju-3 and IBM
SP. There has been some work in the literature on collective
communication in self-routable MINs. For example, [4], [5],
[6] proposed different approaches for multicast/broadcast
in wormhole routed MINs. However, to our knowledge, no
one has studied all-to-all personalized exchange in this type
of MINs, which is the main focus of this paper. As can be
seen later, the newly proposed all-to-all scheme is suitable
for both packet switched and wormhole routed MINs.

Given n processors P0; P1; . . . ; Pnÿ1, an n� n multistage
network can be used for interprocessor communication as
depicted in Fig. 1. Each processor can send messages
through an input of the network, and receive messages
from an output of the network. Generally, the multistage
network used can be chosen from a variety of networks,
such as crossbar, Clos [18], Benes [19], baseline, omega [20],
indirect binary n-cube [21], etc. Although a crossbar and a
Clos network both can realize all possible permutations
between the network inputs and outputs and have a
constant communication latency, the network costs of an
n� n crossbar and a three-stage Clos network are O�n2�
and O�n3

2�, respectively, which are generally considered too
high for a large system. A Benes network, which has a
network cost O�n logn�, also can realize all permutations,
but not all permutations can be easily routed [22] through
the network and some rearrangements of existing connec-
tions may be needed. In addition, the Benes network can be
viewed as a concatenation of a baseline network and a
reverse baseline network with the center stages overlapped,
and thus has the network cost as well as the communication
latency almost twice of those of a baseline network.

Baseline, omega, indirect binary n-cube, etc. are a class of
self-routable networks with a unique path between each
input/output pair in the network. Although this type of
network can realize only a proper subset of permutations, a
full permutation capability may not be necessary for all-to-
all personalized exchange. In this paper, we develop a
generic method for decomposing all-to-all personalized
exchange patterns into some permutations which are
realizable in these networks, and present a new all-to-all
personalized exchange algorithm based on this method. The
newly proposed algorithm has O�n� time complexity for an
n� n network, which is optimal for all-to-all personalized
exchange. By taking advantage of fast switch setting of self-
routable switches and the property of single input/output
port per processor in a multistage network, we believe that
a multistage network could be better a choice for imple-
menting all-to-all personalized exchange due to its shorter
communication latency and better scalability.

The remainder of this paper is organized as follows.
Section 2 reviews the definitions of the class of multistage
networks under consideration and discusses some relevant
properties of permutations. Section 3 presents a new all-to-
all personalized exchange algorithm for a multistage net-
work based on a Latin Square, whose each row corresponds
to an admissible permutation of the network. Section 4
describes two methods of constructing the Latin Squares
closely related to the class of multistage networks and used
in the new algorithm. Section 5 discusses how to generate
admissible permutations which can form the Latin Square
in a generic way for all-to-all personalized exchange in the
class of multistage networks. Section 6 summarizes the time
complexity of the algorithm, and compares this new
algorithm with the existing algorithms for other network
topologies. Section 7 concludes the paper. Finally, the
appendix gives some detailed proofs of theorems.

2 NETWORK STRUCTURES AND PERMUTATIONS

Multistage interconnection networks such as baseline,
omega, and indirect binary n-cube networks, have been
proposed and widely used in parallel processing systems
[20]. A typical network structure for this class of
networks is that each network has n�� 2m� inputs and
outputs and logn�� m� stages, with each stage consisting
of n

2 2� 2 switches and any two adjacent stages
connected by n interstage links. Fig. 2a, Fig. 2b and
Fig. 2c illustrate an 8� 8 baseline network, omega
network and indirect binary n-cube network, respectively.

A permutation is a one-to-one mapping between the
network inputs and outputs. For an n� n network, suppose
there is a one-to-one mapping � which maps input i to
output ai (i.e. ��i� � ai), where ai 2 f0; 1; . . . ; nÿ 1g for
0 � i � nÿ 1, and ai 6� aj for i 6� j. Let

� � 0 1 . . . nÿ 1
a0 a1 . . . anÿ1

� �
denote this permutation. In particular, when ��i� � i for
0 � i � nÿ 1, we refer to this permutation as an identity
permutation and denote it as I.
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We now briefly review some properties and notations of

permutations which will be used in this paper. Given two

permutations �1 and �2, a composition �1�2 of the two

permutations is also a permutation, which maps i to

�1��2�i��. Clearly, �I � I� � �, but in general �1�2 6� �2�1.

However, the associative law does apply here. That is,

�1��2�3� � ��1�2��3. Let �i denote the composition of i

permutations �s. Also, if �1�2 � I, we call �1 the inverse of

�2 and vice versa, and denote them as �1 � �ÿ1
2 and

�2 � �ÿ1
1 . A permutation can also be expressed as a cycle

or a composition of several cycles. For example, in a 4� 4

mapping, a cycle �0; 3; 2� represents a permutation in which

0; 3; and 2 are mapped to 3; 2; and 0, respectively, while 1 is

kept unchanged. In addition, for representational conve-

nience, we use the following notation to represent a

mapping ��a� � b

a!� b:

In the context of a multistage network, each stage in the

network can be viewed as a shorter n� n network, and so

does each set of interstage links. Let �i �0 � i � mÿ 1�
denote the permutation represented by stage i, and �i

�0 � i � mÿ 2� denote the permutation represented by

the set of interstage links between stage i and stage i� 1.

We refer to the permutation �i as stage permutation, the

permutation �i as interstage permutation, and the permuta-

tion realized by the entire multistage network as admissible

permutation of the network. Clearly, an admissible permuta-

tion can be expressed by a composition of stage permuta-

tions and interstage permutations. For example, the

admissible permutation of a baseline network can be

expressed as

�mÿ1�mÿ2�mÿ2 . . .�0�0: �1�
In general, interstage permutations �i's are fixed by the

network topology. For a baseline network, suppose the

binary representation of a number a 2 f0; 1; . . . ; nÿ 1g is

pmÿ1pmÿ2 . . . p1p0. Then the interstage permutation �i of

baseline network represents the following mapping:

pmÿ1pmÿ2 . . . p1p0 !�i pmÿ1pmÿ2 . . . pmÿip0pmÿiÿ1 . . . p2p1 �2�

This mapping corresponds to a 1-bit circular-right-shift
among the mÿ i least significant bits while keeping the i
most significant bits unchanged.

However, stage permutation �is are not fixed since
each switch can be set to either parallel or cross. Thus �i
can be a composition of any subset of cycles
f�0; 1�; �2; 3�; . . . ; �nÿ 1; n�g, which implies that there are a
total of 2

n
2 possible choices for each �i. It follows that by (1)

the number of all admissible permutations of a baseline
network is 2

n
2

ÿ �logn� nn
2.

To avoid confusions in the rest of the paper, �is are used
to represent the interstage permutations only for baseline
network.

For an n� n omega network, each of the logn interstage
permutations is a shuffle function which is exactly �ÿ1

0 ,
where �0 is defined in (2). In fact, �ÿ1

0 is a 1-bit circular-left-
shift operation, that is,

pmÿ1pmÿ2 . . . p1p0 !
�ÿ1

0
pmÿ2pmÿ3 . . . p1p0pmÿ1: �3�

The overall admissible permutation of an omega network is
�mÿ1�

ÿ1
0 �mÿ2�

ÿ1
0 . . .�1�

ÿ1
0 �0�

ÿ1
0 .

For an indirect binary n-cube network, let �i denote the
interstage permutation between stage i and stage i� 1 for
0 � i � mÿ 2. �i represents the following mapping

pmÿ1pmÿ2 . . . pi�2pi�1pi . . .

p1p0 !�i pmÿ1pmÿ2 . . . pi�2p0pi . . . p1pi�1;
�4�

which is the function of swapping bit 1 for bit i� 2. Similar
to a baseline network, the overall admissible permutation of
an indirect binary n-cube network is �mÿ1�mÿ2�mÿ2 . . . �0�0.

Now let's look at an example of a baseline network
shown in Fig. 3. We have stage permutations �0 � �2; 3�,
�1 � �0; 1��4; 5�, and �2 � �0; 1��2; 3��4; 5��6; 7�, and inter-
stage permutations (in both binary and decimal)

�0 � 000 001 010 011 100 101 110 111
000 100 001 101 010 110 011 111

� �
� 0 1 2 3 4 5 6 7

0 4 1 5 2 6 3 7

� �

�1 � 000 001 010 011 100 101 110 111
000 010 001 011 100 110 101 111

� �
� 0 1 2 3 4 5 6 7

0 2 1 3 4 6 5 7

� �
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For input 0, we can obtain the following transformation

0!�0
0!�0

0!�1
1!�1

2!�2
3;

that is,

0 ÿ!�2�1�1�0�0
3:

After computing the transformation for every input, we

can obtain the overall permutation for the switch settings in

the network

�2�1�1�0�0 � 0 1 2 3 4 5 6 7
3 7 5 1 0 4 2 6

� �
:

Finally, we review the self-routable property of this class

of MINs. Self-routing is a fast routing scheme in which the

routing decision at a switch depends only on the addresses

of source and destination, which form the routing tags. We

still take a baseline network as an example. Suppose the

destination address is dmÿ1dmÿ2 � � � d1d0 in binary format. At

stage i (0 � i � mÿ 1) the message is routed from an input

of a switch to the upper or lower output of the switch

depending on the routing tag dmÿiÿ1 being 0 or 1. We can

see that in Fig. 3, to route a message from input 5 to output 4

(100), the switch settings for three stages are ªdown,º ªup,º

and ªup,º respectively. Clearly, the time complexity of

switch setting at each stage is a small constant. The self-

routing algorithms for other networks in this class are

slightly different but similar, which can be found in many

books on interconnection networks such as [1].

3 REALIZING ALL-TO-ALL PERSONALIZED

EXCHANGE IN MULTISTAGE NETWORKS

As mentioned earlier, we intend to realize all-to-all

personalized exchange in a multistage network of logn

stages. In this section, we first discuss the lower bound on

the communication time for all-to-all personalized exchange

in such a network, and then propose an optimal algorithm

for realizing all-to-all personalized exchange.

3.1 Lower Bound for All-to-All Personalized
Exchange

We have the following lemma concerning the lower
bound on the maximum communication delay of all-to-all
personalized exchange in a multistage network.

Lemma 1. The maximum communication delay of all-to-all
personalized exchange in an n� n network of logn stages is at
least 
�n� logn�.

Proof. The lemma holds because each processor must
receive one message from all other nÿ 1 processors,
which takes 
�n� time, and each message must go
through logn stages from its source processor to its
destination processor, which takes 
�logn� time. Since
there is only one input port for each processor, it must
take at least 
�n� logn� time to receive all the messages
sent to it. tu

3.2 All-to-All Personalized Exchange Algorithm
Using a Latin Square

A Latin Square [23] is defined as an n� n matrix

a0;0 a0;1 � � � a0;nÿ1

a1;0 a1;1 � � � a1;nÿ1

..

. ..
. ..

. ..
.

anÿ1;0 anÿ1;1 � � � anÿ1;nÿ1

26664
37775

in which the entries ai;js are numbers in f0; 1; 2; . . . ; nÿ 1g
and no two entries in a row (or a column) have the same
value. We can also describe a Latin Square in a different
way: for all i and j, 0 � i; j � nÿ 1, the entries of each row
in the matrix, ai;0; ai;1; . . . ; ai;nÿ1, form a permutation

0 1 2 � � � nÿ 1
ai;0 ai;1 ai;2 � � � ai;nÿ1

� �
and the entries of each column in the matrix,

a0;j; a1;j; . . . ; anÿ1;j;

also form a permutation

0 1 2 � � � nÿ 1
a0;j a1;j a2;j � � � anÿ1;j

� �
:

In this paper, we say two Latin Squares are equivalent if
one can be transformed into another by swapping rows of
its matrix. This concept is useful when we consider
different approaches to constructing a Latin Square.

In this section, we assume that for a self-routable
multistage network under consideration, there exists a
Latin Square such that any permutation formed by each
row of the matrix is admissible to the network; that is, this
permutation is self-routable from the inputs to the outputs
of the network. Under this assumption, we can design an
all-to-all personalized exchange algorithm (ATAPE) which
is generic for the class of multistage networks, with details
of self-routing being omitted. We also assume that every
message has the same length so that the message
transmission at each stage is synchronized. A higher-level
description of the algorithm ATAPE is given in Table 1.

In algorithm ATAPE, processor j sends distinct mes-
sages to all destinations in the order of a0;j, a1;j, . . . , anÿ1;j,
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which corresponds to column j of the Latin Square. On the
other hand, in time frame i, all n processors send their
messages simultaneously to destinations ai;0; ai;1; . . . ; ai;nÿ1,
which corresponds to row i of the Latin Square. Thus, in
algorithm ATAPE, all-to-all personalized exchange is
achieved by realizing n permutations which correspond
to the n rows of the Latin Square, since under the
assumption that each permutation represented by a row
of the Latin Square is admissible to the network.

Note that the network under consideration is a self-

routable network, where each switch is set automatically by

the routing tag contained in the message passing that

switch. Since we are considering admissible permutations,

at any time two messages entering from the two inputs of a

switch can pass the switch simultaneously without any

conflicts. In addition, once the previous n messages leave

the switches of the current stage, the next n messages can

enter the switches of this stage. Thus, the sequential

steps of 2.1 are actually performed in a pipelined fashion,

which achieves a form of parallelism. Therefore, the time

complexities of Step 1 and Step 2 are O�n� and O�n� logn�,
respectively. The total time delay for the all-to-all

personalized exchange algorithm is O�n� logn�.
From the description of the above algorithm, we can see

that proposed approach is suitable for both packet switched

and wormhole switched MINs.
Now, the only problem remains unsolved is how to

construct the special Latin Square the all-to-all personalized
exchange algorithm for this class of multistage networks is
based on, which is the main focus of the rest of the paper.

4 TWO METHODS FOR CONSTRUCTING A LATIN

SQUARE

Although in general there are many ways to construct a

Latin Square, in this section we describe two methods of

constructing the Latin Squares suitable to the class of

multistage networks we consider in this paper. The first

method will be used in the next section to prove that a

special set of admissible permutations of a multistage

network does form a Latin Square, and the second method

will be used to efficiently generate such admissible

permutations.
First, we introduce a set of basic permutations used

for constructing a Latin Square. For an n� n mapping,

where n � 2m, we define m basic permutations �i
(1 � i � m) as follows. Let the binary representation of
a number a 2 f0; 1; . . . ; nÿ 1g be pmÿ1pmÿ2 . . . p1p0. Then

pmÿ1pmÿ2 . . . pipiÿ1piÿ2 . . . p1p0 !�i pmÿ1pmÿ2 . . .

pi�piÿ1piÿ2 . . . p1p0:
�5�

The permutation �i is actually the operation flipping bit i
of a binary number. �i can also be expressed as a
composition of n

2 2-cycles. For example, the three basic
permutations for n � 8 are

�1 � �0; 1��2; 3��4; 5��6; 7�
�2 � �0; 2��1; 3��4; 6��5; 7�
�3 � �0; 4��1; 5��2; 6��3; 7�;

which are also shown in Fig. 4. Although we can obtain
a similar expression for the composition of 2-cycles for a
general n, we would rather give an intuitive description
of the basic permutations. The mapping of n numbers
0; 1; 2; . . . ; nÿ 1 by the basic permutation

�i �1 � i � m � logn�
is performed as follows (illustrated in Fig. 5): First divide
the entire segment containing all n numbers into 2mÿi�1

subsegments with each subsegment containing 2iÿ1 con-
secutive numbers; then starting from subsegment 0, group
two consecutive subsegments into a pair; finally, swap two
subsegments in each pair. Take �2 in Fig. 4 as an example.
We divide eight numbers into four subsegments: jj0; 1jj,
jj2; 3jj, jj4; 5jj, and jj6; 7jj. Then swap the first pair of
consecutive subsegments jj0; 1jj and jj2; 3jj, and also swap
the second pair of consecutive subsegments jj4; 5jj and
jj6; 7jj. Thus, �2 maps 0; 1; 2; 3; 4; 5; 6; 7 to 2; 3; 0; 1; 6; 7; 4; 5.

Before we use the basic permutations in constructing
Latin Squares, we discuss some nice properties of them.

Lemma 2. The set of basic permutations �i (1 � i � m)
defined in (5) has the properties that the composition of any
two basic permutations is exchangeable, and the composition
of two identical basic permutations equals the identity
permutation. That is,

�i�j � �j�i; for 1 � i; j � m �6�

and

�i�i � I; for 1 � i � m; �7�
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Proof. The exchangeability (6) can be easily seen from the
definition of the basic permutations. In fact, any
binary number pmÿ1pmÿ2 . . . piÿ1 . . . pjÿ1 . . . p1p0 can be
mapped to pmÿ1pmÿ2 . . . �piÿ1 . . . �pjÿ1 . . . p1p0 by either
permutation �i�j or permutation �j�i. Similarly, we
can see (7) holds. This is because applying the
composition of two �is implies first flipping bit i
and then flipping it back. tu

Both properties in Lemma 2 are very useful in our later
discussions. We are now in the position to give the
construction of a Latin Square by using the basic
permutations.

4.1 The First Construction of a Latin Square

Given m basic permutations �1; �2; . . . ; �m, we construct a
permutation set as follows

	 � f�i1�i2 � � ��ik jm � i1 > i2 > � � �
> ik � 1 and 1 � k � mg: �8�

For example, for n � 8, we have

	 � f�1; �2; �3; �2�1; �3�1; �3�2; �3�2�1g:
Based on the properties (6) and (7) in Lemma 2, we can see
that any composition of one or more basic permutations
equals one of the permutations in 	. Take the composition
�1�2�1 as an example. Since

�1�2�1 � ��1�2��1 � ��2�1��1 � �2��1�1� � �2I � �2;

this composition equals �2 which belongs to 	.
It is easy to see how many permutations are in set 	. In

fact, there are m
1

ÿ �
permutations which are composed of one

basic permutation, m
2

ÿ �
permutations which are composed

of two basic permutations, and so on. Since

m

1

� �
� m

2

� �
� � � � � m

m

� �
� 2m ÿ 1 � nÿ 1;

it follows that j	j � nÿ 1. Based on the permutation set 	,
we can construct Latin Squares as described in the
following theorem.

Theorem 1. Let �1; �2; . . . ; �nÿ1 be the nÿ 1 permutations in 	,

and a0; a1; . . . ; anÿ1 be a list of numbers such that

fa0; a1; . . . ; anÿ1g � f0; 1; . . . ; nÿ 1g. Then the following

matrix is a Latin Square.

a0 a1 a2 � � � anÿ1

�1�a0� �1�a1� �1�a2� � � � �1�anÿ1�
�2�a0� �2�a1� �2�a2� � � � �2�anÿ1�

..

. ..
. ..

. ..
. ..

.

�nÿ1�a0� �nÿ1�a1� �nÿ1�a2� � � � �nÿ1�anÿ1�

2666664

3777775: �9�

Proof. See Appendix. tu

The above construction of a Latin Square is intuitive and

easy to understand, and is especially useful in the proof of

the existence of a Latin Square for the self-routable

multistage networks in the next section. However, the time

complexity of generating a Latin Square this way is high

since each permutation in 	 may contain up to m basic

permutations. Although the time complexity of such an off-

line and run-once-and-use-forever algorithm is not of our

greatest concern, a more practical construction, which takes

a minimum possible time effort, is nevertheless appreciated

and will be presented in the next subsection.

4.2 The Second Construction of a Latin Square

We first briefly describe the basic idea of our second

method. We generate a list of nÿ 1 basic permutations

(some of which may be identical), and build the Latin

Square row by row in an iterative fashion, in the sense that

the current row is obtained by applying a basic permutation

in the list to the previously generated row. Since there are a

total of nÿ 1 basic permutations in the list and each of them

is applied to n entries of a row, the time complexity of this

construction is O�n2�, which is minimum because a Latin

Square has n2 entries. The detailed algorithm is given in

Table 2, where LatinSquare is the main program,

BuildBasicList is a recursive function to generate the basic
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Fig. 4. Basic permutations for an 8� 8 mapping. Each arc represents a

mapping between two numbers.

Fig. 5. �i swaps the two subsegments in a pair.



permutation list, and BuildLatinSquare is the function

which actually constructs a Latin Square row by row.

Theorem 2. The matrix constructed by algorithm LatinSquare

in Table 2 is a Latin Square.

Proof. See Appendix. tu

Fig. 6b shows a Latin Square generated by algorithm
LatinSquare.

Proof. Let the basic permutation list in algorithm
LatinSquare be f�k1

; �k2
; . . . ; �knÿ1

g. Then the set of
permutations which are applied to the original number
list fa0; a1; . . . ; anÿ1g in the algorithm is

	0 � f�k1
; �k2

�k1
; �k3

�k2
�k1

; . . . ; �knÿ1
�knÿ2

� � ��k2
�k1
g:

By Theorem 2, we know that no two permutations in 	0

are the same, which yields

j	0j � nÿ 1 � j	j:
Also, using the properties (6) and (7) of basic permuta-
tions, any permutation in 	0 can be transformed to the
format of 	 in (8). That is,

	0 � 	:

Thus, the Latin Squares in Theorem 2 and Theorem 1 are
equivalent. tu
Now we give an example to illustrate the proof of

Theorem 3. For n � 8, the basic permutation list is

f�1; �2; �1; �3; �1; �2; �1g. We can list the following one-to-

one correspondence between 	0 and 	:

	0 	
�1 � �1

�2�1 � �2�1

�1�2�1 � �2

�3�1�2�1 � �3�2

�1�3�1�2�1 � �3�2�1

�2�1�3�1�2�1 � �3�1

�1�2�1�3�1�2�1 � �3:

5 GENERATING PERMUTATIONS FOR ALL-TO-ALL

PERSONALIZED EXCHANGE IN A CLASS oF

MULTISTAGE NETWORKS

The set of basic permutations �i (1 � i � m) and the Latin
Square described in the last section are closely related to the
class of self-routable multistage networks under considera-
tion. In fact, we can generate admissible permutations for
the class of networks in a generic way to form the Latin
Square needed in all-to-all personalized exchange algorithm
in Table 1. To do this, we can simply let each stage
permutation �i (defined in Section 2) be �1 or I. Recall that
�1 is the permutation �0; 1��2; 3� . . . �nÿ 2; nÿ 1� and I is the
identity permutation. Accordingly, all switches in each
stage of the network are set to either cross or parallel.

Now we highlight the general approach we will use in
this section. We will first prove all such admissible
permutations forms a Latin Square by using Theorem 1.
Then we will apply the algorithm LatinSquare described in

last section to actually construct this Latin Square. Notice

that the off-line Latin Square construction algorithm needs

to be run only once at the time a network is built.
In the next few subsections, we will show this approach

is valid for baseline, omega and indirect binary n-cube

networks. In fact, from the method we adopt, one can easily

see this approach can be generally applied to the entire class

of self-routable multistage networks under consideration.
Finally, it should be pointed out that although C.-L. Wu

and T.-Y. Feng [20] proved that baseline, omega, and

indirect binary n-cube networks are topologically equiva-

lent, from their proofs one cannot directly find a generic

and efficient way to construct the Latin Square for each

individual network which is needed in our all-to-all

personalized exchange algorithm. Therefore, each network

must be discussed separately.

5.1 Baseline Networks

Recall from Section 2, the overall permutation of a baseline

network is �mÿ1�mÿ2�mÿ2 . . .�0�0, where interstage permu-

tations �is are defined in (2) and the stage permutations �is

now take either �1 or I. We have the following lemmas

concerning the properties of the compositions of �is and

�js.

Lemma 3. The composition of i (1 � i � mÿ 1) consecutive

interstage permutations �mÿ2; �mÿ3, . . . , �mÿiÿ1 is the

following permutation:

pmÿ1pmÿ2 . . . pi�1pi . . . p1p0 ÿ!�mÿ2�mÿ3����mÿiÿ1
pmÿ1pmÿ2 . . .

pi�1p0p1 . . . pi:
�10�

Proof. Applying �mÿiÿ1; �mÿi; . . . ; �mÿ3; �mÿ2 one by one to a

binary number pmÿ1pmÿ2 . . . p1p0, we have

pmÿ1 . . . pi�1pi . . . p1p0 ÿ!�mÿiÿ1
pmÿ1 . . . pi�1p0pi . . .

p1 ÿ!�mÿi pmÿ1 . . . pi�1p0p1pi . . .

p3p2 ÿ!�mÿi�1 � � � ÿ!�mÿ3
pmÿ1 . . . pi�1p0p1 . . .

piÿ2pipiÿ1 ÿ!�mÿ2
pmÿ1 . . . pi�1p0p1 . . . piÿ1pi:

tu
Let

� � �mÿ2�mÿ3 � � ��1�0; �11�
which is the composition of all �is. � can also be viewed as

the overall permutation of a baseline network in which all

switches are set to parallel.
The following Corollary gives a special case of Lemma 3,

which indicates that � maps a binary number to its reversal.

Corollary 1.

pmÿ1pmÿ2 . . . p1p0 !� p0p1 . . . pmÿ2pmÿ1: �12�

Corollary 2. The composition of the i (1 � i � mÿ 1)

consecutive �js, �1, and �i�1 satisfies the following equation:

��mÿ2�mÿ3 � � ��mÿiÿ1��1 � �i�1��mÿ2�mÿ3 � � ��mÿiÿ1�: �13�

YANG AND WANG: OPTIMAL ALL-TO-ALL PERSONALIZED EXCHANGE IN SELF-ROUTABLE MULTISTAGE NETWORKS 267



Proof. From Lemma 3 and mapping (5), we can see that the

permutations on both sides of (13) map pmÿ1pmÿ2 . . . p1p0

to pmÿ1pmÿ2 . . . pi�1�p0p1 . . . pi. tu
Theorem 4. Let the stage permutation of each stage in a baseline

network take either �1 or I (i.e., the switches in this stage are

either all set to cross or all set to parallel). The matrix

consisting, as its rows, of all the admissible permutations

obtained by all possible such switch settings is a Latin Square.

Proof. Since each stage permutation �i takes either �1

or I, the overall permutation �mÿ1�mÿ2�mÿ2 . . . �0�0

has the following general form for k � 1 and

0 � i1 < i2 < � � � < ik � mÿ 1:

�mÿ2 � � ��mÿi1ÿ1�1�mÿi1ÿ2 � � �
�mÿi2ÿ1�1�mÿi2ÿ2 � � ��mÿikÿ1�1�mÿikÿ2 � � ��1�0

�14�

By repeatedly using Corollary 2, we can see that (14)

becomes

��i1�1�i2�1 . . .�ik�1���mÿ2�mÿ3 � � ��1�0�
� ��i1�1�i2�1 . . .�ik�1��
� ��ik�1�ikÿ1�1 . . .�i1�1��:

Comparing the set

f�ik�1�ikÿ1�1 . . .�i1�1jk � 1; 0 � i1 < i2 < � � � < ik � mÿ 1g
with the definition of 	 in (8), we can see they are exactly

the same. Letting
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Fig. 6 (a) The 3-bit Gray code sequence generated by applying the basic

permutation list to number 0. (b) An 8� 8 Latin Square generated by the

algorithm in Table 2.



a0 � ��0�; a1 � ��1�; . . . ; anÿ1 � ��nÿ 1�;
and using Theorem 1, we have that all permutations of
form (14) forms a Latin Square. In addition, we can see
that � corresponds to the first row of the Latin Square. tu

We can actually use algorithm

LatinSquare�List f��0�; ��1�; . . . ; ��nÿ 1�g�
to construct the Latin Square for a baseline network. For
example, for an 8� 8 network, we first compute by
Corollary 1 the first row, ��0�; ��1�; . . . ; ��nÿ 1�, which is
0; 4; 2; 6; 1; 5; 3; 7, and then call LatinSquare to generate the
rest nÿ 1 rows of the Latin Square. In Fig. 7, we list all
possible switch settings in an 8� 8 baseline network, and
the corresponding Latin Square is L1 in (15). L2 and L3 in
(15) will be used in the next two subsections.

L1 �

0 4 2 6 1 5 3 7

1 5 3 7 0 4 2 6

3 7 1 5 2 6 0 4

2 6 0 4 3 7 1 5

6 2 4 0 7 3 5 1

7 3 5 1 6 2 4 0

5 1 7 3 4 0 6 2

4 0 6 2 5 1 7 3

266666666666664

377777777777775

L2 �

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

3 2 1 0 7 6 5 4

2 3 0 1 6 7 4 5

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

5 4 7 6 1 0 3 2

4 5 6 7 0 1 2 3

266666666666664

377777777777775

L3 �

0 2 4 6 1 3 5 7

1 3 5 7 0 2 4 6

3 1 7 5 2 0 6 4

2 0 6 4 3 1 7 5

6 4 2 0 7 5 3 1

7 5 3 1 6 4 2 0

5 7 1 3 4 6 0 2

4 6 0 2 5 7 1 3

266666666666664

377777777777775

: �15�

5.2 Omega Networks

An omega network is depicted in Fig. 2b. As stated in
Section 2, The overall permutation of an n� n omega
network is �mÿ1�

ÿ1
0 �mÿ2�

ÿ1
0 . . .�1�

ÿ1
0 �0�

ÿ1
0 , where the map-

ping �ÿ1
0 is shown in (3). Let �ÿi0 denote the composition of i

permutations �ÿ1
0 s. We have the following lemma.

Lemma 4.

�ÿi0 �1 � �i�1�
ÿi
0 for 0 � i � mÿ 1: �16�

�ÿm0 � I: �17�

Proof. When repeatedly applying �ÿ1
0 to a binary number

pmÿ1pmÿ2 . . . p1p0, we obtain

pmÿ1pmÿ2 . . . p1p0 !
�ÿ1

0
pmÿ2pmÿ3 . . .

p1p0pmÿ1 !
�ÿ1

0
pmÿ3 . . . p1p0pmÿ1pmÿ2 !

�ÿ1
0 � � � :

In general, for 0 � i � mÿ 1, we have

pmÿ1pmÿ2 . . . p1p0 !
�ÿi0
pmÿiÿ1pmÿiÿ2 . . . p1p0pmÿ1 . . . pmÿi: �18�

Letting i � mÿ 1 and applying �ÿ1
0 one more time, we

can see that (17) holds. To prove (16), on one hand, we

have

pmÿ1pmÿ2 . . . p1p0 ÿ!
�ÿi0 �1

pmÿiÿ1pmÿiÿ2 . . . p1�p0pmÿ1 . . . pmÿi:

On the other hand, by applying

�i�1�
ÿi
0 to pmÿ1pmÿ2 . . . p1p0;

we can also obtain

pmÿiÿ1pmÿiÿ2 . . . p1�p0pmÿ1 . . . pmÿi:

Therefore, equation �ÿi0 �1 � �i�1�
ÿi
0 holds. tu

Note that �ÿm0 is the overall permutation of an omega

network with all switches set to parallel. By (17), this

permutation is equal to the identity permutation. We can

obtain a similar theorem for omega networks to that for

baseline networks.

Theorem 5. Let the stage permutation of each stage in an omega

network take either �1 or I (i.e., the switches in this stage are

either all set to cross or all set to parallel). The matrix

consisting, as its rows, of all the admissible permutations

obtained by all possible such switch settings is a Latin Square.

Proof. Since each stage permutation �i takes either �1 or I,

the overall permutation takes the following format for

k � 2, i1 � 0, i2; . . . ; ik � 1, and i1 � i2 � � � � � ik � m

�ÿi10 �1�
ÿi2
0 �1 � � ��ÿikÿ1

0 �1�
ÿik
0 : �19�

By repeatedly using Lemma 4, we can have

�ÿi10 �1�
ÿi2
0 �1 � � ��ÿikÿ1

0 �1�
ÿik
0 �by�16�

�i1�1��i1�i2��1��i1�i2�i3��1

� � ��Pkÿ1

j�1
ij�1

�ÿm0

�by�17�
�i1�1��i1�i2��1��i1�i2�i3��1

� � ��Pkÿ1

j�1
ij�1

�by�6�
�Pkÿ1

j�1
ij�1

�Pkÿ2

j�1
ij�1

� � ���i1�i2��1�i1�1

It can be verified that the set

f�Pkÿ1

j�1
ij�1

�Pkÿ2

j�1
ij�1
� � ���i1�i2��1�i1�1jk � 2;

i1 � 0; i2; . . . ; ik � 1; i1 � i2 � � � � � ik � mg
is equal to 	 in (8). Letting
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a0 � 0; a1 � 1; . . . ; anÿ1 � nÿ 1;

and using Theorem 1, we can see that all permutations of

form (19) forms a Latin Square. tu

The generic algorithm

LatinSquare�Listf0; 1; 2; . . . ; nÿ 1g�
can be used to construct the Latin Square for an omega

network. In Fig. 8, we list all possible switch settings in an

8� 8 omega network, and the corresponding Latin Square

is L2 in (15).

5.3 Indirect Binary n-cube Networks

An indirect binary n-cube network is shown in Fig. 2c and

as described in Section 2, �i, defined in (4) is the interstage

permutation between stage i and i� 1 for 0 � i � mÿ 2 in

the network, and the overall permutation of the indirect

binary n-cube network is �mÿ1�mÿ2�mÿ2 . . . �0�0. Similar to

baseline network and omega network, the stage permuta-

tions �is are now taking either �1 or I. Let

� � �mÿ2�mÿ3 . . . �1�0; �20�
which is the overall permutation corresponding to that all

switches in the network are set to parallel.

Lemma 5. The composition of i (1 � i � mÿ 1) consecutive

interstage permutations �mÿ2; �mÿ3, . . . , �mÿiÿ1 is the

following permutation:

pmÿ1pmÿ2 . . . pmÿi�1pmÿipmÿiÿ1 . . . p1p0 ÿ!�mÿ2�mÿ3����mÿiÿ1

pmÿ2 . . . pmÿi�1pmÿip0pmÿiÿ1 . . . p2p1pmÿ1:
�21�

Proof. Applying �mÿiÿ1; �mÿi; . . . ; �mÿ3; �mÿ2 one by one to a

binary number pmÿ1pmÿ2 . . . p1p0, we have

pmÿ1 . . . pmÿi�1pmÿipmÿiÿ1 . . . p1p0 ÿ!�mÿiÿ1
pmÿ1 . . .

pmÿi�1p0pmÿiÿ1 . . . p1pmÿi ÿ!�mÿi pmÿ1 . . .

pmÿi�2pmÿip0pmÿiÿ1 . . . p1pmÿi�1 ÿ!�mÿi�1 � � �
ÿ!�mÿ3

pmÿ1pmÿ3 . . . pmÿi�1pmÿip0pmÿiÿ1 . . . p1pmÿ2 ÿ!�mÿ2
pmÿ2 . . .

pmÿi�1pmÿip0pmÿiÿ1 . . . p1pmÿ1: tu

The following Corollary indicates that � defined in (20) is

actually a 1-bit circular-left-shift operation, that is, � � �ÿ1
0 .

Corollary 3.

pmÿ1pmÿ2 . . . p1p0 !� pmÿ2 . . . p2p1p0pmÿ1: �22�

Proof. Letting i � mÿ 1 in Lemma (5). tu
Corollary 4. The composition of the i (1 � i � mÿ 1)

consecutive �js, �1 and �mÿi�1 satisfies the following equation:

��mÿ2�mÿ3 � � � �mÿiÿ1��1

� �mÿi�1��mÿ2�mÿ3 � � � �mÿiÿ1�:
�23�

Proof. By Lemma 5 and the definition of �i in (5), we

can see both permutations map pmÿ1pmÿ2 . . . p1p0 to

pmÿ2 . . . pmÿi�1pmÿi�p0pmÿiÿ1 . . . p1pmÿ1: tu
Theorem 6. Let the stage permutation of each stage in an indirect

binary n-cube network take either �1 or I (i.e., the switches in

this stage are either all set to cross or all set to parallel). The

matrix consisting, as its rows, of all the admissible permuta-

tions obtained by all possible such switch settings is a Latin

Square.

Proof. Since each stage permutation �i takes either �1 or I,

the overall permutation �mÿ1�mÿ2�mÿ2 . . . �0�0 has the

following general form for k � 1 and
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Fig. 7. All possible switch settings, in which each stage is set to either �1 or I, in an 8� 8 baseline network and the corresponding overall
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0 � i1 < i2 < � � � < ik � mÿ 1;

�mÿ2 . . . �mÿi1ÿ1�1�mÿi1ÿ2 . . .

�mÿi2ÿ1�1�mÿi2ÿ2 . . . �mÿikÿ1�1�mÿikÿ2 . . . �1�0:
�24�

Notice that when i1 � 0, (24) becomes

�1�mÿ2 . . . �mÿi2ÿ1�1�mÿi2ÿ2 . . . �mÿikÿ1�1�mÿikÿ2 . . . �1�0:

By repeatedly using Corollary 4, (24) becomes

��mÿi1�1�mÿi2�1 . . .�mÿik�1���mÿ2�mÿ3 � � � �1�0�
� ��mÿi1�1�mÿi2�1 . . .�mÿik�1�� for i1 � 1

or

��1�mÿi2�1 . . .�mÿik�1�� � ��mÿi2�1 . . .�mÿik�1�1�� for i1

� 0:

Comparing the set

f�mÿi1�1�mÿi2�1 . . .�mÿik�1jk � 1;

1 � i1i2 � � � ik � mÿ 1g;
[
f�mÿi2�1 . . .

�mÿik�1�1jk � 1; 0 � i1 < i2 < � � � < ik � mÿ 1g
with the definition of 	 in (8), we know that they are
exactly the same. Letting

a0 � ��0�; a1 � ��1�; . . . ; anÿ1 � ��nÿ 1�;
and using Theorem 1, we can see that all permutations of
form (24) forms a Latin Square. Moreover, � corresponds
to the first row of the Latin Square. tu
We can use algorithm

LatinSquare�Listf��0�; ��1�; . . . ; ��nÿ 1�g�
to construct the Latin Square for an indirect binary n-cube
network. For example, for an 8� 8 network, we first
compute by Corollary 3 the first row, ��0�; ��1�; . . . ; ��7�,
which is 0; 2; 4; 6; 1; 3; 5; 7, and then call LatinSquare to
generate the rest rows of the Latin Square. In Fig. 9, we
list all possible switch settings in an 8� 8 indirect binary

n-cube network, and the corresponding Latin Square is
L3 n (15).

6 TIME COMPLEXITY AND COMPARISONS

In this section, we first summarize the time complexity of

the proposed all-to-all personalized exchange algorithm for

the class of multistage networks. As pointed out in Section 3,

the on-line algorithm for an all-to-all personalized exchange

takes O�n� logn� � O�n� time, which matches the lower

bound for this type of networks within a constant factor. On

the other hand, constructing a Latin Square using the off-

line algorithm LatinSquare described in Section 4 takes

O�n2�, which is also optimal for this problem. Note that the

off-line Latin Square construction algorithm needs to be run

only once at the time a network is built, and the Latin

Square associated with the network can be viewed as one of

the system parameters. Thus, the time complexity of this

algorithm is not included in the communication delay.

As this is the first result on all-to-all personalized

exchange in self-routable multistage networks, we compare

it with existing results in other topologies including

hypercube, mesh, and torus networks with both packet

switching and wormhole routing. For a meaningful

comparison among different topologies which use different

switching techniques, we list only asymptotic communica-

tion delays here. In fact, due to the fast switch setting in a

self-routable multistage network, the delay of passing a

switch in a MIN should be shorter than the delay of passing

a node in a direct network such as a hypercube, mesh, and

torus. However, for an easy comparison, in the following

we simply count the delay of a switch in a MIN the same as

the delay of a node in a direct network.
In Table 3, we compare the time complexity of our

all-to-all personalized exchange algorithm with the

existing algorithms for other network topologies, in-

cluding hypercube and mesh/torus networks. In addi-
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tion, we also compare the node degree which reflects

the number of I/O ports per processor, the number of

links used in network which corresponds to network

hardware cost, and the diameter which is related to

maximum data transmission time.
From Table 3, we can see that the newly proposed

algorithm for the class of self-routing multistage networks

achieves the minimum time complexity for all-to-all

personalized exchange, which is as good as the algorithm

for a hypercube in all-port model. On the other hand, in

terms of node degree, which reflects the scalability of a

network in terms of I/O port limitation, the networks

considered in this paper are comparable to (in fact, better

than) a mesh or a torus, while a hypercube has a node

degree of logn. Thus, a multistage network could be a better

choice for implementing all-to-all personalized exchange

due to its shorter communication delay and better scal-

ability.

7 CONCLUSIONS

In this paper, we have presented an optimal all-to-all
personalized exchange algorithm for a class of unique-path,
self-routable multistage networks, such as baseline, omega,
and indirected binary n cube networks. The new algorithm
is based on a special Latin Square, which corresponds to a
set of admissible permutations of a multistage network and
can be viewed as a system parameter of the network. We
have given two methods for constructing the Latin Square
used in the algorithm. The first one is useful in the proof of
existence of such a Latin Square for each individual
multistage network. The second one provides an efficient
way to construct the Latin Square. We have also developed
a generic method for decomposing all-to-all personalized
exchange patterns into admissible permutations to form the
Latin Square for the class of multistage networks. The
newly proposed algorithm has O�n� time complexity for an
n� n network, which is optimal for all-to-all personalized

exchange. By taking advantage of fast setting of self-

routable switches and the property of single input/output

port per processor in a multistage network, we believe that

a multistage network could be a better choice for imple-

menting all-to-all personalized exchange due to its shorter

communication latency and better scalability. Our future

work will focus on generalizing the idea to other types of

MINs and extending the results to optical MINs where

some special properties of optics must be considered.

8 APPENDIX

Proof of Theorem 1. Since

fa0; a1; . . . ; anÿ1g � f0; 1; . . . ; nÿ 1g
and each �i is a permutation, we know that the set of

numbers in row i of the matrix,

f�i�a0�; �i�a1�; . . . ; �i�anÿ1�g � f0; 1; . . . ; nÿ 1g:
That is, each row of the matrix forms a permutation.

Now consider the set of numbers in column j of
the matrix, faj; �1�aj�; �2�aj�; . . . ; �nÿ1�aj�g. By the defi-
nition of 	 in (8) and the definition of �i in (5), if
we have some �i, say, �i � �4�2�1, then �i�aj� is
the number obtained by flipping bit 4, bit 2, and bit 1
of the binary representation of number aj. That is,
given i 6� k, �i�aj� 6� �k�aj�. Therefore, �1; �2; . . . ; �nÿ1

represent distinct non-identity permutations, and
aj; �1�aj�; �2�aj�; . . . ; �nÿ1�aj� are n distinct numbers
which cover all numbers in f0; 1; . . . ; nÿ 1g. Thus,
the column of the matrix also forms a permutation.
Hence, the matrix is a Latin Square. tu

Proof of Theorem 2. First we need to show that

the number of basic permutations generated by

function BuildBasicList�k� is 2k ÿ 1 so that there

are 2m ÿ 1 � nÿ 1 basic permutations in the list

passed to function BuildLatinSquare in main program
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Fig. 9. All possible switch settings, in which each stage of set to either �1 or I, in an 8� 8 indirect binary n-cube network and the corresponding

overall permutations realized. (a) III 02461357 (b) II�1 13570246 (c) I�1�1 57134602 (d) I�1I 46025713 (e) �1�1I 64207531 (f) �1�1�1 75316420

(g) �1I�1 31752064 (h) �1II 20643175.



LatinSquare. Letting this number be P �k�, we can

establish the following recurrence:

P �k� � 2P �kÿ 1� � 1 and P �1� � 1 �25�
It turns out that the solution to the recurrence (25) is

2k ÿ 1.
The algorithm LatinSquare generates an n� n matrix

by applying the basic permutation list to the original
row, a0; a1; . . . ; anÿ1, in an iterative way. To prove the
matrix generated is a Latin Square, let us first focus on
the case of applying the basic permutation list to a
number aj iteratively. We apply the first permutation in
the list to number aj and obtain a new number; then
apply the second permutation to this new number and
obtain another number; and so on. After exhausting all
basic permutations in the list, we obtain a list of numbers
which form a column of the matrix.

Now lets look at the basic permutation list itself. It
actually contains the operations which generate a Gray
code sequence [24]. A k-bit Gray code sequence contains
2k binary codewords, each of length k bits, in which
two adjacent codewords differ in exactly one bit. For
example, for n � 8 the basic permutation list is
f�1; �2; �1; �3; �1; �2; �1g. Applying this list to number
0, as shown in Fig. 6a, we obtain

f000; 001; 011; 010; 110; 111; 101; 100g
in binary.

We now generally prove the following claim by
induction: Applying the basic permutation list outputed
by BuildBasicList�k� to an m-bit binary number,
pmÿ1pmÿ2 . . . p1p0, generates a list of all numbers of form

pmÿ1pmÿ2 . . . pk xx . . . x
z����}|����{k

;

whose k rightmost bits form a k-bit Gray code sequence.
First, notice that given a binary number b and a basic

permutation �i, b and �i�b� differ only in bit i. When
k � 1, we have only permutation �1, and the rightmost
bit of all numbers generated, pmÿ1pmÿ2 . . . p1x, form a list
f0; 1g which is a 1-bit Gray code sequence. Assume the
claim holds for kÿ 1. Now consider BuildBasicList�k�.
After the first call of BuildBasicList�kÿ 1�, we have a
permutation list which can generate all numbers of form

pmÿ1pmÿ2 . . . pkpkÿ1 xx . . . x
z����}|����{kÿ1

;

whose �kÿ 1� rightmost bits form a �kÿ 1�-bit Gray code

sequence. Then we add �k to the permutation list. We

can apply �k to the previous number by flipping bit k of

the number to obtain a new number. Next, by calling

BuildBasicList�kÿ 1� again, we add to the permutation

list those permutations which can generate all numbers

of form

pmÿ1pmÿ2 . . . pk�pkÿ1 xx . . . x
z����}|����{kÿ1

;

whose �kÿ 1� rightmost bits form a �kÿ 1�-bit Gray code

sequence. Thus, the resulting permutation list can

generate all numbers of form

pmÿ1pmÿ2 . . . pk xx . . . x
z����}|����{k

;

whose k rightmost bits form a k-bit Gray code sequence.
Since in algorithm LatinSquare, we apply the basic

permutation list outputed by BuildBasicList�m� to any
aj (0 � aj � nÿ 1) in the original row, the resulting
number list, which is column j of the matrix obtained by
the algorithm, consists of all numbers of an m-bit Gray
code sequence which covers f0; 1; . . . ; nÿ 1g.

On the other hand, the original row a0; a1; . . . ; anÿ1

covers f0; 1; . . . ; nÿ 1g, so does each of the other
nÿ 1 rows of the matrix. Hence, the resulting matrix is
a Latin Square. tu
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