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Abstract—The economic viability of battery energy storage
systems (BESS) for residential consumers with rooftop solar is
studied. Hourly BESS charging/discharging decisions are opti-
mized in a stochastic model predictive control (MPC) framework:
as time progresses, a) hourly decisions are continuously made; b)
forecasts of future solar generation are continuously updated, and
¢) based on the updated forecasts, scenarios of solar generation
in the prediction horizon are repeatedly generated and used as
input to the stochastic MPC. Based on the entire trajectory of the
optimized BESS charging/discharging decisions, realistic BESS
degradation models are employed to accurately evaluate the
degradation impact of these decisions. Based on both the entire
revenue/payments stream and the degradation process until the
end-of-life of a BESS, Internal Rate of Return (IRR) is employed
as a universal metric to evaluate the return on investment
of the BESS, which fairly compares BESS with different a)
specifications and b) lifetimes resulting from its decision history.
Based on simulations of optimized BESS operations with real-
world data, an accurate and comprehensive economic analysis
of a wide variety of BESS specifications is conducted. Optimal
BESS sizing that achieves the highest IRR is identified.

Index Terms—Battery, energy storage, degradation, solar en-
ergy, economics, return on investment, simulation, stochastic
model predictive control

I. INTRODUCTION

There have been a rapidly increasing number of rooftop
solar energy systems in power distribution systems around the
world [1]. As the cost of battery energy storage system (BESS)
continues to decrease, an important question arises: Does it
make economic sense to pair rooftop solar with a BESS?
Notably, the economic viability for BESS with solar energy
heavily depends on the pricing mechanisms for electricity from
the grid, for which a wide variety exist (see, e.g., [2]). With
Time-of-Use (TOU) prices, for example, excess solar energy
during off-peak hours could potentially be stored in BESS for
peak-hour usage later, thereby reducing the electricity drawn
from the grid during peak hours. While debates on BESS’s
economic viability in the presence of solar energy have existed
for at least a decade since the introduction of Tesla Powerwall,
there is still a lack of clarity in answering this question.
To provide an accurate answer, realistic and comprehensive
simulations of battery operations with solar energy and loads
are essential, for which a key factor is to precisely characterize
the degradation of BESS in the simulations.
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Energy storage control in the presence of renewable energies
has attracted significant research attention. Given the uncer-
tainties of renewables, a popular approach is stochastic model
predictive control [3]-[5], and a variety of renewable energy
scenario generation methods have been proposed [6]. However,
existing frameworks often do not adequately capture BESS
degradation effects in an accurate fashion, especially due to
the complex nature of the BESS degradation mechanisms. As
such, existing economic analysis of energy storage systems
has mainly focused on operational revenue optimization with
limited consideration of long-term degradation costs and their
impact on economic viability [7]. Comprehensive frameworks
that integrate both short-term control decision optimization
and long-term economic viability analysis are absent.

In this paper, we study the return on investment and hence
the economic viability of BESS for a residential consumer
with rooftop solar. Notably, BESS charging/discharging is the
only control decision to make: based on such decisions, solar
generation and loads, the electricity bought from or sold to
the grid can then be determined from the power balance.
Importantly, we consider the charging/discharging decisions
of BESS to be continuously optimized and executed every
hour. In particular, solar energy forecast in the near future,
which are continuously updated, are used as part of the input
to the optimization program. As such, a stochastic MPC frame-
work is developed for solving BESS changing/discharging
decisions: at every hour, a) scenarios of solar generation in
a look-ahead window (e.g., 24 hours) are generated based on
the solar energy forecast and a stochastic model of forecast
errors in this window, b) loads in this look-ahead window are
assumed to be known, as near-term load forecast is typically
much more accurate than solar energy forecast, and c) prices
for buying/selling electricity from/to the grid in all hours are
assumed to be known, which is a typical situation for residen-
tial energy consumers. A linear cost function is employed in
the optimization program to represent the long-term impact of
charging/discharging decisions on BESS degradation.

After the BESS charging/discharging decisions are solved
and implemented, to precisely evaluate their impact on the
BESS degradation, we employ an accurate degradation model
of BESS which captures both the cycle degradation and calen-
dar degradation from the entire charging/discharging decision
history. Finally, to evaluate the overall life-time return on



investment of BESS, we establish a comprehensive simulation
environment based on a) real-world data of loads, prices,
and solar generation traces, and b) realistically simulated and
continuously updated solar energy forecast based on real-world
forecast error statistics. We then simulate the entire lifetime of
BESS with the optimized hourly charging/discharging deci-
sions. Among all the relevant metrics we observe for BESS’s
performance, we highlight the internal rate of return (IRR)
[8] as the key indicator of return on investment and hence
economic viability. Through the optimization-and-simulation-
based evaluation, an accurate economic analysis of BESS is
conducted for a wide range of BESS sizing choices.

II. SYSTEM MODEL

We consider a residential home with solar energy and
BESS. The system model consists of four components: solar
generation, electrical load, BESS, and grid interactions through
buying or selling electricity.

A. Solar Generation and Electric Load

Let S; represent the solar power generation at time ¢. The
solar energy system has a maximum generation of Sy,
according to its rated capacity. We thus have
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Notably, the uncertainty in future solar generation, manifested
in errors in its forecast, presents the primary challenge for op-
timal system operation, as solar generation cannot be directly
controlled but depends on weather conditions.

The electrical load of the consumer at time ¢ is denoted by
L;. In this study, we assume accurate knowledge of the future
loads in the look-ahead window (e.g., 24 hours) in the MPC.

B. Battery Energy Storage System

The BESS is characterized by several key parameters that
define its operational capabilities and constraints.

1) BESS Specifications: The BESS model is as follows:

« Energy capacity E.,, (kWh): The maximum amount of

energy that could be stored.

o Power capacity P,q, (kW): Maximum charging and dis-

charging rate.

o Charging efficiency 7).: Energy conversion efficiency dur-

ing charging.

« Discharging efficiency 74: Energy conversion efficiency

during discharging.

o State of charge bounds: minimum SOC,,;, and maxi-

mum SOC,,qz.
The duration of the BESS can be calculated as %

2) State of Charge Dynamics: The battery state of charge
changes according to the charging and discharging decisions.
We denote the BESS charging/discharging decision variable at
time ¢ by PP%'': When PP < (0, the battery is charging with
power |PPatt|; when PP* > 0, the battery is discharging with
power P?**. We also have,

Plap < P < Ploy, )

ch dis : :
where P, and Pg,; represent the maximum charging and

discharging power limits, respectively.

We denote the state of charge at time ¢t by SOC}. The SOC
dynamics are governed by:

SOCysa = SOC,+
max(PPatt. )

Md
where At is the duration of the time step. The state of charge
satisfies the operational constraints:

SOChin < SOC: < SOCh4z, V. 4)

3) Battery Degradation Model: Battery degradation occurs
through two primary mechanisms: cycle-based degradation
from charging and discharging operations, and calendar-based
degradation from aging over time [9].

Similar to the material fatigue under stress cycles, the
battery degradation exhibits cycle-based characteristics where
cycle depth affects degradation in a nonlinear way. Deeper
cycles usually cause a higher battery degradation rate. This
can be modeled in a polynomial relationship [10]:
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where AD,yqe is a battery degradation indicator, normalized
between O (indicating new battery at an initial capacity of
100%) and 1 (indicating battery at 0% capacity). DoDy, is the
depth of discharge at a discretized level k, and Ny is the cycle
count at that depth. These cycles and counts can be extracted
by the Rainflow cycle-counting algorithm [11] based on the
entire SOC trajectory over time. Notably, this algorithm does
not lend itself to closed-form expressions. On the other hand,
Calendar-based degradation accumulates as a function of time:

ADcalendar = Qcglendar * Ata (6)

ne- max(— PP 0) - At — At (3)

A-Dcycle

where Qcgiendar 1S the calendar degradation rate. A total
battery degradation indicator is then defined as:

Al)total = ADcycle + ADcalendar- (7)

Furthermore, in multi-year operations, the battery experi-
ences higher degradation in the early stages of its life than
later. This phenomenon is the result of the formation of the
Solid Electrolyte Interphase (SEI) film [9]. Empirically, it
is observed that actual BESS’s loss of life has a non-linear
relationship with the above defined A D41, modeled by

—BseiADiota —AD:ota
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where Chremaining 15 the remaining battery life in percentage of
its initial capacity. aise; and B,e; are parameters related to solid
electrolyte interphase formation, and can be obtained by fitting
empirical test data. The battery is considered to have reached
the end of life when the remaining capacity Cremaining drops
below a certain threshold, e.g., 70%.

4) Battery Cost: We denote the capital cost of BESS by
Cpatt- 1t consists of the energy component and the power
inverter component:

Chatt = CE +Cp = Ecap TR+ Pcap “Tp, &)

where 7 and 7p are the costs of the energy storage compo-
nent per kWh and the power inverter component per kW.



C. Grid Interaction and Pricing Mechanism

The system interacts with the electrical grid through buying
and selling electricity. Let Ptb“y represent the power purchased
from the grid and P7¢! the power sold to the grid at time .
We define the following notations:

« Buying price 7°"Y: Cost of purchasing a unit of electricity
from the grid at time ¢.

« Selling price 73¢!: Revenue from selling a unit of elec-
tricity to the grid at time ¢.

b .
7" and 75¢! can vary over hours and days. As such, this

model is a general one that encompasses a variety of real-
world pricing mechanisms such as flat rates and time-of-
use (TOU) pricing. In summary, Figure 1 depicts the overall
structure of the system model and how energy flows between
the solar energy system, load, BESS, and grid.

R

Fig. 1. Interactions between solar energy, load, BESS, and grid.

III. METHODOLOGY

In this section, we present our methodology for both a)
optimizing BESS charging/discharging under uncertainties,
and b) evaluating BESS’s return on investment based on such
optimized control.

A. Stochastic Model Predictive Control

We employ a two-stage stochastic MPC approach with
a 24-hour prediction horizon that rolls forward hourly. At
each hour, the controller solves an optimization problem over
multiple solar generation scenarios of the next 24 hours, and
implements only the first hour’s decision. Importantly, at each
hour, new solar generation scenarios are generated based on
the latest forecast information available at that hour. As time
progresses, the optimization problem is solved repeatedly. The
details of solar scenario generation in our simulations are
presented later in Section III-C.

Specifically, in the stochastic MPC program, the first stage
decisions are for the current hour, and are denoted by Pé"m,
P(I)’“y, and P;°!'. The second stage decisions are for scenarios
of future hours, and are denoted by PP%**, P*Y, and Py¢l,
where ¢ denotes the scenario index. '

The objective is to minimize the expected operational costs:

1 T-1
>N Costyi| (10)
1

i t=

min |Costy +
Nscen

where the cost includes energy cost via grid interactions and
battery degradation cost (in which we omit the scenario index
for brevity):

___buy pbuy sell psell batt
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(1)

Notably, the actual long-term degradation impact of the de-
cisions at time t is approximated by employing the above
linear battery degradation cost model agq| PP?%|. This ensures
that the optimization problem remains efficiently solvable. The
linear cost coefficient argeq is a tunable parameter.

In addition, the optimization has the following constraints,

Sy 4+ max (P, 0) + PV = Ly 4+ max(—P**,0) + Pyl

(12)
batt
SOCy 41 = SOC; + n. max(— PP 0) — me(l;t,())
d
(13)
SOC,in < SOC; < S0OC 01 (14)
< A < Rl 0

where (12) ensures that energy supply equals demand; (13)
captures the BESS SOC evolution; (14) ensures that the SOC
remains within safe operating bounds; and (15) limits the
charging and discharging rates to be feasible.

B. Economic Analysis and Internal Rate of Return

As the BESS charging/discharging decisions are continu-
ously made via the stochastic MPC program, the resulting
stream of revenue/payments is calculated and recorded. Mean-
while, the decisions’ impact on battery degradation is accu-
rately calculated based on the cycle-based and calendar-based
BESS degradation model (cf. Section II-B3). In our evaluation,
we perform a full-year’s simulation of BESS operations. At the
end of the year, we calculate a) the total revenue over the year
and b) the degradation impact of this year’s BESS operations.
We then extrapolate these results into future years until the
end of the life of BESS. Notably, the BESS degradation from
prior years will impact the revenue/payments of future years
due to the cumulative loss of BESS capacity from prior years’
degradation. More details follow.

1) First Year’s BESS Net Revenue and Degradation: As we
are interested in the economic return of BESS, we compute
the first year’s net revenue of BESS as the difference between
the revenue with optimized BESS operations and that without
any BESS in the system (the baseline):

(16)

Rannual = Roptimized - Rbaseline-

We also compute the BESS degradation indicator at the end
of the first year based on (7), denoted by AD,nuai-

2) Projected BESS Net Revenue to the End of Battery Life:
Based on the first year’s net revenue of BESS and the capacity
degradation, we project the net revenue over the entire life of
the BESS. Specifically, at the start of year y,

o We first compute the cumulative BESS degradation indi-

cator as ADyopq1 = (y - 1) * Dannual-

o We next compute the remaining battery life, denoted by

C(y), based on (8).



o The BESS net revenue of year y is then estimated as
Rannual : C(y)
« The BESS end-of-life is reached after year y — 1 when
C(y) reaches the end-of-life threshold, e.g., 70%.
The projection of the net revenues in all the years until BESS’s
end-of-life provides the foundation for computing the return
on investment of BESS.

3) Internal Rate of Return: Given different a) BESS spec-
ifications and b) operation strategies, the revenue streams and
BESS lifetimes can vary significantly. For example, aggressive
charging/discharging of BESS may boost the annual revenue
but reduce its lifetime. To fairly compute and compare the
return on investment of BESS under all possible revenue
streams and lifetimes, we employ the Internal Rate of Return
(IRR) as a universal metric [8]. Specifically, the IRR of a
BESS is calculated based on the cash flow stream over the
entire BESS lifetime, by solving the following equation,

Yzzfe )

a'rm ual *
—Cpatt 1 E

(1+1 RR
where cpqie 1S the 1n1t1al cap1ta1 cost of battery investment,
C(y) is the BESS remaining life at the start of year y, and
Yiie is the total battery life time in years.

=0, a7

C. Simulation Environment

As discussed above, realistic simulations of the BESS
operations that represent real-world situations are essential for
accurately evaluating the return on investment of BESS.

1) Real-World Data Used for Simulations: We use three
types of real-world data in our simulations: a) electricity
prices, b) electric loads, and c) solar energy generation. In
simulating BESS’s decision making, however, while prices and
loads are assumed to be known, future solar generation is not.
This is despite the use of real-world solar generation data in
evaluating the BESS decisions. As such, forecast of future
solar generation in the prediction horizon of the stochastic
MPC needs to be generated at every hour.

2) Solar Generation Forecast: At each hour, hourly fore-
casts of solar generation in the prediction horizon (e.g., the
next 24 hours) are generated based on a) the real-world
historical data of solar generation in this prediction horizon,
and b) an Ornstein—Uhlenbeck (OU) process [12]. Specifically,

e =1-¢)-P +o-¢ (18)

log(F) = log(H:) + eg ), (19)

where egl) is the residual of the OU process at time ¢, and
& ~ N(0,1). ¢ and o are the OU process parameters control-

ling the mean-reversion effect and the volatility of the random
innovation. H is the real-world data of solar generation in
the prediction horizon. F' is the forecast generated. Notably,
the log function is employed to ensure that the generated
solar values are non-negative. In essence, egl) represents the
forecast errors (in log scale) which follow an OU process with
reversion to a mean of zero. Next, upper limit Sy, 4, are applied
to prevent physically unrealistic solar generation values:

eil) < min(egl), 1Og(SmaJ;) - log(Ht)) (20)

We note that the purpose of the above implementation is for
the realistic simulation of forecasts. In real-world operations,
solar energy forecasting in the prediction horizon will need to
be performed (or obtained via forecasters).

3) Scenario Generation of Solar Energy: In stochastic
MPC, solar generation scenarios need to be generated based
on the solar generation forecast F'. For this, we apply the same
OU process again to create multiple realistic scenarios for the
prediction horizon. Importantly, the forecast is now used as
input to generate scenarios:

Eft) =(1-9)- 2275) 1+ o0&
log(Ss ¢) = log(F}) + €7,

2n
(22)

where S, ; represents scenario s at time ¢, and the noise terms
&t ~ N(0,1) are independent across scenarios. The same
upper limit is applied to prevent unrealistic solar generation:

e« min(el?), 10g(Smaz) — log(Fy)).

4) Parameter Calibration: The OU process parameters ¢
and o control the characteristics of both forecasting and
scenario generation. The two parameters can be calibrated
using real-world data of solar forecast and realizations of
different forecast horizons. The initial residual (i.e., forecast
error) ¢g = 0. The first hour forecast error is just the
random innovation term, with no mean-reversion. Therefore,
o can simply be estimated from the statistics of the hour-
ahead forecast errors. Next, with the real-world forecast error
statistics for a different forecast horizon (e.g., 2-hour-ahead),
the other parameter ¢ can then be estimated.

(23)

IV. SIMULATION AND EVALUATION
A. Simulation Setup

We utilize the data from a real-world household in Austin,
Texas, whose loads and solar generation are recorded for an
entire year [13]. The loads are scaled to an average of 30kWh
per day to represent an average U.S. household. The electricity
prices follow a TOU structure in [14], as depicted in Fig. 2.
Excessive energy can be sold to the grid at a lower price,
in particular, 9.91 cent/kWh according to [14]. In the default
setting, the household has a 7.5kW rooftop solar PV system.

We consider installing a BESS in the household. The battery
has a range of energy and power capacity to choose from,
with charging and discharging efficiency n. = n4 = 95%,
SOChin = 2%Ecap, and SOC4z = 98%Eeqp. The default
cost of energy component and power inverter component are
mr = $200/kWh and 7p = $300/kW. (In comparison, a
Tesla Powerwall 3 with 13.5kWh energy capacity and 11.5kW
power capacity costs $8,200 in July 2025, not including
tax credit and installation cost.) The battery can operate
6,000 full cycles before reaching the end-of-life condition at
70% capacity. We treat the linear degradation cost coefficient
(tgeg used in optimization as a hyperparameter to control the
aggressiveness of battery operation, i.e., with higher o geg,
the battery would operate more conservatively. The default
Qgeg = 0, because a) it is a simple choice without the
need for tuning, and b) it consistently leads to near-optimal



BESS operations in our tested settings. Calendar degradation
coefficient vcqiendar = 0.02 per year, which translates to
a maximum of 50 years of shelf life with no operation.
In the non-linear degradation model, ase; = 5.75e—2, and
Bsei = 121 according to [9]. For the log-OU process, the
two parameters are fitted with real-world solar forecast and
realization data in [15], with ¢ = 0.3674, and ¢ = 0.4233. A
total of 10 forecast scenarios, each of length 24, are generated
at each hour for MPC optimization.

Summer Season Non-Summer Season

44¢ 0 Weekday 3 Weekday
[ Weekend & Holidays 1 Weekend & Holidays
40 40
z = 34¢
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w30 ~ 30
g 25¢ 25¢ | 25¢ g
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Fig. 2. TOU electricity rates for summer and non-summer seasons, showing
weekday and weekend/holiday pricing across different time periods.

B. Cost-benefit Analysis for Various E.qp and Peqy

We first study what the best BESS specification is that yields
the highest return on investment. Table I and II list the IRR and
annual net benefit of a wide selection of BESS specifications.
A heatmap visualization of Table I is shown in Fig. 3, with
lighter color indicating higher IRR. First, it is evident that, the
smaller the BESS’s energy capacity, the higher the IRR. This
is simply due to the diminishing marginal return principle (as
we do not consider fixed installation cost.) We see that, for
energy capacity below 7.5kWh, 4-hr duration BESS achieves
the highest IRR — Notably, very high IRRs above 10% can
be achieved in all these cases. From Table II, we observe
that having higher power capacity (i.e., shorter duration with
the same energy capacity) often leads to a higher annual net
profit. This is because higher power capacity enables more
aggressive charging/discharging. However, this also increases
the degradation costs and hence reduces BESS’s lifetime. In
general, increases in both degradation and initial investment
lead to lower IRRs.

TABLE I
INTERNAL RATE OF RETURNS (IRRS) FOR VARIOUS BATTERY ENERGY
CAPACITY AND DURATION

Ecap (kWh) | 1h 2h 4h 6h 8h 10h
1.25 5.6% 143% 163% 149% 12.5% 10.7%
2.50 50% 12.6% 152% 142% 121% 10.4%
5.00 2.7% 9.1% 125% 124% 11.0%  9.6%
7.50 0.8% 6.5% 10.0% 104%  9.6% 8.8%
10.00 -0.1%  4.8% 8.3% 9.0% 8.6% 8.0%
12.50 -04%  3.9% 7.2% 7.9% 7.8% 7.3%
15.00 -0.7%  3.2% 6.2% 7.1% 7.0% 6.7%
17.50 -09%  2.6% 5.3% 6.3% 6.4% 6.1%

We further depict IRR versus hour duration in Fig. 4. The
green and red dashed lines in the figure mark where IRR=6%
and where IRR=0, respectively. We can see that the duration
of 4 to 6 hours is the sweet spot for the default setting.

1.25kWh
2.5kWh
5kWh

7.5 kWh

IRR (%)

10kWh
12.5kWh

Energy Capacity (kWh)

15 kWh
17.5kWh

6h
Duration (hours

16
14
12
10
8
6
4
2
0

1h 2h 4h 8h 10h

)

Fig. 3. Heatmap of battery IRR across energy capacities and duration ratings.

TABLE II
ANNUAL NET PROFIT OF BATTERY ($) FOR VARIOUS BATTERY SIZES

Ecap (kWh) | 1h 2h 4h 6h 8h 10h
1.25 107.1  101.8  80.2 63.2 50.6 42.0

2.5 1832 176.8 149.7 121.5  98.7 82.3

5 2799 2783 2532 2183 1834 1558

75 3417 3422 3244 287.8 250.6 2179

10 384.6 3858 3758 339.0 300.8 266.6

12.5 4137 4154 4099 3779 3398 3052

15 430.7 4313 4302 4068 371.0 336.7

17.5 4409 441.0 4415 4278 397.0 363.7

C. Sensitivity Analyses

We next perform a sensitivity analysis of various factors,
including battery capital cost, linear cost coefficient, and
energy selling price. We evaluate the following two battery
specs: default specs with E.,,=7.5kWh, P.,,=1.8kW (4-hr
duration), and the Tesla Powerwall 3 with E.,,=13.5kWh,
Pqp=11.5kW.

1) IRR sensitivity to battery cost: We vary the battery
capital cost coefficients according to the battery cost projection
in [16], and calculate the IRR for the projected cost in 2030,
2040, and 2050. As shown in Fig. 5, we see that Powerwall 3’s
specs achieve a much lower IRR compared with our default
specs, likely because its high energy and power capacity are
too large to be fully utilized for consumers with the average
load and solar energy sizes.

2) IRR sensitivity to linear cost coefficient: Previously, we
mentioned that the linear cost coefficient used in optimization

15.0
12.5
10.0
S
> 7.5
x
5.0
Energy Capacity
25 —e— 2.5kWh
—»— 7.5 kWh
0.0 —e— 12.5kWh -

2 4 6 8 10
Duration (hours)

Fig. 4. Internal Rate of Return (IRR) versus duration for three battery energy
capacities (2.5kWh, 7.5kWh, and 12.5kWh).
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Fig. 5. IRR sensitivity to battery costs projected over time for basecase
(7.5kWh/1.8kW) and Powerwall 3 (13.5kWh/11.5kW) settings.

is a hyperparameter that controls the operation aggressiveness
of BESS. The sensitivity analysis for linear degradation cost is
shown in Fig. 6. We can see that the linear degradation costs
of 0.01-0.03 yield the highest IRR, by balancing profit-making
and degradation. This implies that the IRRs achieved with our
simple default of zero linear degradation cost, as shown in the
previous tables and figures, can be made even higher if specs-
specific tuning is performed for this linear cost coefficient.

Battery Configuration
10 —e— Basecase (7.5kWh, 1.8 kw)
Powerwall 3 (13.5 kwWh, 11.5 kW)
8
S
= e S
4
- 4
2
0
0.00 0.02 0.04 0.06 0.08 0.10
Degradation Cost Coefficient
Fig. 6. IRR sensitivity to linear degradation cost coefficient for basecase

(7.5kWh/1.8kW) and Powerwall 3 (13.5kWh/11.5kW) settings.

3) IRR sensitivity to energy selling price: Last but not least,
we consider alternative cases where energy selling price vary
between $0.05/kWh and $0.11/kWh, which are all lower than
the lowest price in TOU pricing programs, so that there is no
opportunity for BESS to simply arbitrage. Fig. 7 shows that,
as the selling price decreases, the IRR gets higher. This is
because the alternative of PV charging to battery is selling to
the grid: when this alternative becomes less attractive, having
a BESS would bring more net profit.

V. CONCLUSION

We studied the economic viability of BESS for residential
consumers with rooftop solar. Hourly charging/discharging de-
cisions are optimized using a stochastic model predictive con-
trol framework. As time progresses, solar generation scenarios
over the prediction horizon are repeatedly generated based on
updated forecast information. The impact of the optimized
BESS charging/discharging decisions on BESS degradation
is computed based on accurate degradation models. Based
on the entire history of BESS charging/discharging decisions,
the revenue/payments stream and degradation process are
computed from which the return on investment of BESS over

Battery Configuration
15.0 —e— Basecase (7.5 kWh, 1.8 kW)
125 Powerwall 3 (13.5kWh, 11.5kW)
. 10.0
I
z 75
[
5.0
2.5
0.0
0.05 0.06 0.07 0.08 0.09 0.10 0.11
Energy Selling Price (USD/kWh)
Fig. 7. IRR sensitivity to energy selling price (USD/kWh) for the default

specs (7.5kWh/1.8kW) and the Powerwall 3 specs (13.5kWh/11.5kW).

its entire lifetime is evaluated. Specifically, the Internal Rate
of Return (IRR) is employed as the metric that fairly compares
BESS with different specifications and lifetimes. Optimal
BESS sizing with the highest IRR is identified accordingly.
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