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Abstract— Primary Frequency Control (PFC) is a fast acting
mechanism used to ensure high-quality power for the grid
that is becoming an increasingly attractive option for load
participation. Because of the speed requirement, PFC requires
distributed control laws to be used instead of a more central-
ized design. Current PFC designs assume that costs at each
geographic location are independent. Unfortunately for many
networked systems such as cloud computing, the decisions
made among locations are interdependent and therefore require
geographic coordination. In this paper, distributed control laws
are designed for geo-distributed loads such as data centers in
PFC. The controlled frequencies are provably stable, and the
final equilibrium point is proven to strike an optimal balance
between load participation and the frequency’s deviation from
its nominal set point. We evaluate the proposed control laws
with realistic numerical simulations. Results highlight signifi-
cant cost savings over existing approaches under a variety of
settings.

I. INTRODUCTION

In the electrical power grid, keeping a stable frequency
at a set nominal value is important for supplying reliable
high-quality power and maintaining safe grid infrastructure
operation. The frequency can drift away from its set point
if there is a power imbalance anywhere in the grid. To
stabilize and return the frequency back to its nominal value,
Frequency Control (FC) [1] is used to correct this power
imbalance as fast as possible in a smooth manner. FC as
a whole involves different mechanisms working at different
timescales depending on the speed of the frequency drift.
For frequency drifting slowly in the timescale of several
seconds, Automatic Generation Control (AGC) [2] is used
to centrally decide and change the set power injections
of the generators. However, if the frequency drifts much
faster due to a sudden power imbalance, e.g., generator
failure, power injection modifications must be made faster
than can be centrally decided and disseminated to all of
the control points by AGC. In this case, Primary Frequency
Control (PFC) [3] is used to stop the drift and stabilize
the frequency which is done by controlling each generator’s
power injection independently according to a function of its
locally measured deviated frequency. Usually this stabilized
equilibrium frequency is deviated from its nominal value in
which AGC is then employed to return it back.

Traditionally, FC is done on the generation side, while it
is becoming an attractive opportunity for load participation.
Similar to generation-side, demand-side PFC works by set-
ting devices to independently adjust their individual power
consumptions according to some function of the locally
measured frequency. However when a device deviates its

power consumption, there is an associated loss of utility to
the owner of that device. Finding an optimal balance between
the cost of load participation and the stabilized equilibrium’s
deviated frequency is a major challenge of demand-side PFC.
It has been shown that with well designed control laws, this
optimal balance can be made in a fully distributed fashion
and is provably stable as long as these costs are assumed to
be independent of each other [4].

However, the assumption of independent costs is somehow
restrictive. For instance, in some networked systems such as
in cloud computing, not all costs can be considered inde-
pendent. In general, networks of data centers make up the
infrastructure that supplies the computing resources neces-
sary for making the cloud run. These data centers are located
around the world and groups of them may be connected to the
same electrical power network. User workloads requesting
computing resources are distributed to different data centers
in a way that depends on data availability, server utilization,
network delay, etc. Since servers essentially convert elec-
trical power into computational power, the distribution of
IT workloads among the data centers has a direct impact
on the distribution of their power consumptions. Through
Geographic Load Balancing (GLB), networks of data centers
can dynamically redistribute workloads depending on data
center and power network conditions [5]. In other words,
some workloads that cannot be processed in one data center
can be served by other data centers, which significantly
increases system reliability and flexibility in workload dis-
tribution. However, if some fraction of the workload is not
processed by any of the data centers, the whole system is
penalized from the resulting loss of revenue, which can be
much larger than the costs of redistribution [6]. This fraction
of the workload not processed by any of the data centers is
measured by the cloud provider and communicated back to
all of the data centers.

Since the cloud has been steadily increasing its share
of the total US electricity consumption to about 1.8% in
2014 and has precise energy management of its systems
[7], it has great potential to be a large contributor to PFC.
For this reason, the paper answers the following question:
How to coordinate primary frequency control that have
geographic interdependencies? While motivated by cloud
computing, this question and associated solutions can be
applied to general cases with interdependent costs.

For large-scale control with many decisions such as PFC,
distributed control design is important. As networks grow, the
increased communication overhead required for a centralized



controller becomes infeasible. Additionally, privacy require-
ments may not allow a central entity to know the objectives
and constraints of all the users. This is especially true in
the case of deregulated power markets and load frequency
control [8]. Distributed control is a major challenge for sys-
tems with interdependencies because each component needs
information about the collective system-wide decisions.

In order to tackle these existing problems, we make the
following contributions in this paper:

1) We formulate a primary frequency control problem
that balances the extent of load control participation
for a cloud computing network operating at different
geographic locations with both independent and inter-
dependent costs (Sections III and IV).

2) We study the frequency control problem’s optimal so-
lution characteristics, and design a set of distributed
feedback control laws that a) has an optimal equilibrium
point, and b) is asymptotically stable (Sections V and
VI).

3) We evaluate our control scheme and show that it works
on a realistic emulator system using the Power Sys-
tem Toolbox (PST) [9]. Furthermore, we show that
our distributed control gives significant cost savings as
interdependent costs become more prevalent (Section
VII).

The next section gives a motivating example to show the
impact of interdependent costs on a cloud computing network
participating in PFC.

II. MOTIVATING EXAMPLE
In order to demonstrate the importance of taking geo-

graphic interdependence into account for PFC design, we
showcase a concrete example of a cloud computing work-
load running on a network of data centers which consume
electrical power from the power grid.

Consider a network of two identical data centers where the
only difference between them is their locations in the power
grid and their efficiencies which is the ratio of computational
power output to the electrical power input. The first data
center is a high efficiency one with an efficiency of 0.9
while the second is an average one with an efficiency of
0.5. The first is 1.8× more efficient than the second which
is consistent with those studied in [10], [7]. Therefore, the
total computational power of the data centers is a linear
combination of both power consumptions (d1, d2) weighted
by their efficiencies. The workload that the data centers need
to share requires 28 MW of computing power. Subtracting
the workload size from the total computational power gives
the excess computational power of the network 0.9d1 +
0.5d2 − 28. A negative excess computational power means
that some of the workload was not processed which results
in a loss of revenue shared by all of the data centers. In
this example it is represented by the quadratic cost function
γ (0.9d1 + 0.5d2 − 28)

2 that features an increasing marginal
cost where γ is the interdependent cost coefficient. Each
data center also observes an independent quadratic cost of
(dj − 20)2 for purchasing and processing dj of electrical

power into computational power. Therefore the total cost of
both data centers is:

γ (0.9d1 + 0.5d2 − 28)
2

+ (d1 − 20)2 + (d2 − 20)2.

The solution d1 = d2 = 20 MW minimizes the total cost
with a value of 0 and gives an aggregate electrical power
consumption of 40 MW. Let this be the power consumed
when the data centers are not participating in FC.

Suppose that there is a sudden power disturbance in the
grid and therefore it is required that the data centers reduce
their aggregate power consumption by 10 MW for FC, i.e.
∆d1 + ∆d2 = −10. If only the independent costs (last
two terms of the total cost) are considered for FC, then
reducing both power consumptions by 5 MW minimizes
the cost. However, if the interdependent cost (first term of
the total cost) is also considered then reducing both power
consumptions by 5 MW may be suboptimal as shown in
Figure 1. Figure 1(a) shows that interdependent cost for FC
that only minimizes the independent cost increases linearly
with the interdependent cost coefficient γ while optimal FC
increases sublinearly. This gap is not fully compensated by
the difference in independent costs (cf. Figure 1(b)). There-
fore it is important for FC to take into account interdependent
costs for networked systems and the rest of this paper focuses
on closing this gap. As a result, there is great opportunity to
reduce the total cost by taking the interdependent costs into
the optimization.
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Fig. 1. Interdependent (a) and Independent (b) costs vs. the cost coefficient
γ of the interdependent cost for FC that only considers independent costs
(dashed gray line) and of the optimal FC (solid orange line) .

III. MODEL AND NOTATION

A. Power network model

We consider a power network consisting of a set of buses
N connected by a set of arbitrarily directed lossless lines
E , and only consider the real power injection at each bus
and the real power flow across each line. We ignore reactive
power since it is more closely related to voltage control as
compared to frequency control [11]. For each bus j ∈ N
we denote Pj as the real power injection, θj as the voltage
phase angle from a standard reference point rotating at the set
nominal frequency ω0, ωj as the frequency’s deviation from
the nominal set point ω0 or also the time rate of change for
the voltage phase angle

ωj :=
dθj
dt

∀j ∈ N , (1)



and we assume that the voltage magnitude |Vj | remains
constant during the time frame of PFC. For each directed
line (j, k) ∈ E we denote xjk as the reactance.

The power injection at each bus is split into three terms

Pj := pj −Djωj − dj ∀j ∈ N (2)

where pj is the frequency-insensitive part of the non-
controllable power injection, the second term is the
frequency-sensitive part of the non-controllable power in-
jection, and dj is the controllable load. We assume that pj
remains constant during the time frame of PFC. The second
term approximates the frequency-sensitivity as a first-order
dependence on the frequency’s deviation where Dj > 0 is
the linear coefficient. This is reasonable for small deviations
[12].

The voltage phase angle difference across each line con-
nected to bus j ∈ N determines the real power flow out
from that bus into the rest of the power network:

Fj(θ) :=
∑

k:(j,k)∈E

Yjk sin(θj − θk)

−
∑

i:(i,j)∈E

Yij sin(θi − θj) (3)

where Yjk :=
|Vj ||Vk|
xjk

is the maximum power flow across
line (j, k) ∈ E as determined by the constant bus voltage
magnitudes and line reactance.

B. Cloud computing model

We consider a set of data centers D ⊆ N connected by
a high speed communication network that provides cloud
computing services for a workload incoming rate of size W .
We assume that the incoming workload rate remains constant
for a primary frequency control event time duration. Each
data center j ∈ D processes some of the incoming workload
at a rate of rj . Subtracting the workload incoming rate from
the sum of the data center processing rates we get the excess
computational power of the network:

s :=
∑
j∈D

rj −W. (4)

A negative s represents insufficient computational power to
process all of the incoming workload which means that −s
of the workload may suffer a delay or remain unprocessed.
This causes a loss of revenue captured by the cost function
g(s) which means that a specific cost level depends on all of
the data center processing rates. We assume that each data
center knows the interdependent cost function g(·) and can
receive information about the excess computational power s
via the communication network.

We model each data center j as a machine that converts
electrical power dj into computational power rj with a linear
usage profile:

dj := dj +
1

aj
rj (5)

where dj is the constant overhead electrical power usage, and
aj is the conversion coefficient that can be considered the

computational efficiency as described in Chapter 5 of [13].
Each data center has an upper bound on its electrical power
consumption dj , and observes a cost of cj(dj) associated
with obtaining and processing the electrical power dj . We
assume that the value of dj and the function cj(·) are only
known by data center j.

The excess computational power of the network (4) can
now be expressed in terms of the individual electrical power
consumptions in (5):

s =
∑
j∈D

ajdj − b (6)

where b := W +
∑
j∈D ajdj .

C. System dynamics

The power network frequency dynamics at each bus are
determined by the swing equation

Mj
dωj
dt

= Pj − Fj(θ) ∀j ∈ N (7)

where Mj is the physical interia of the rotating equipment.
Since stability is an essential feature of FC, we give

the following definition for an equilibrium point of the
previously described system.

Definition 1: A closed-loop equilibrium of the system (1)
(2) (3) (6) (7), is any solution (θ∗,ω∗,P∗,d∗, s∗) that
further satisfies:

dω∗j
dt

= 0 ∀j ∈ N (8a)

dP ∗j
dt

= 0 ∀j ∈ N (8b)

ω∗j = ω∗ ∀j ∈ N . (8c)
Note that (8a) makes the LHS of (7) equal to zero and (8c)

synchronizes all deviations of frequency to a single value.
(8b) implies that d(d∗j )/dt = 0 : ∀j ∈ N and thus ds∗/dt =
0.

IV. GEOGRAPHIC FREQUENCY CONTROL
PROBLEM

Before designing control laws for data center participation
in PFC, we must first decide what an optimal balance is
between the controllable data center loads and equilibrium
deviations of frequency. Essentially, we form an optimization
problem that minimizes the global cost of the system which
is the total cost of the network of data centers plus the
summed cost of the equilibrium deviations of frequency at
each bus.

The total cost of the network of data centers is the inter-
dependent cost of the excess computational power summed
with the independent electrical power costs:

g(s) +
∑
j∈D

cj(dj).

For the cost of the deviations of frequency, we adopt the cost
function developed by [14] which is a sum of the squared



deviations at each bus weighted by its associated frequency-
sensitive linear coefficient:∑

j∈N

Dj

2
ω2
j

Given the above total cost of the network of data centers
and equilibrium deviations of frequency, we state the Geo-
graphic Frequency Control (GFC) problem:

min
s,d,ω

g(s) +
∑
j∈N

(
cj(dj) +

Dj

2
ω2
j

)
(9a)

s.t.
∑
j∈N

ajdj − b = s (9b)∑
j∈N

(pj −Djωj − dj) = 0 (9c)

dj ≤ dj ≤ dj ∀j ∈ N (9d)

where (9b) is the excess computational power (6), (9c) is the
balance of electrical power on the grid, and (9d) are the box
constraints on the data center electrical power consumptions.
Note that for any bus j /∈ D, we set aj = dj = dj = 0.

In order to take advantage of the structure of GFC (9) we
use the following mild assumptions.

Assumption 1: g(s) is strictly convex and twice continu-
ously differentiable. For all j ∈ N : cj(dj) is strictly convex
and twice continuously differentiable for all dj ∈ [dj , dj ].

Assumption 2: GFC (9) has a feasible solution, and for
any optimal solution there exists a feasible θ such that:

Fj(θ) = pj −Djωj − dj ∀j ∈ N . (10)
Convex cost functions are found in geographic load bal-

ancing optimization problems [5] and are consistent with
concave disutility functions used in demand response pro-
grams [15], [16], [17]. Assumption 2 ensures that for any
optimal solution of power injections, there exists a set of
voltage phase angles that satisfy the solution.

With the above assumptions we now prove that GFC is a
convex optimization problem.

Lemma 1: Given Assumption 1, then GFC (9) is a convex
optimization problem and has a unique solution.

Proof: From Assumption 1, the objective function is
strictly convex which means it has a unique minimizer.
Additionally, the equality constraints (9b) (9c) are linear and
the inequality constraints (9d) are convex which gives the
result.

V. CHARACTERIZING THE OPTIMA

We now provide characterizations of the optimal solution
of GFC. This will then motivate the design of decentralized
algorithm later on. From Assumption 2 and Lemma 1, the
Karush-Kuhn-Tucker (KKT) conditions for optimality for
GFC (9) are applicable and can be determined with the dual
variables (µ, λ,κ,κ) for each constraint respectively:

g′(s)− µ = 0 (11a)
c′j(dj) + µaj − λ− κj + κj = 0 ∀j ∈ N (11b)

Djωj − λDj = 0 ∀j ∈ N (11c)
κj(dj − dj) = 0 ∀j ∈ N (11d)

κj(dj − dj) = 0 ∀j ∈ N (11e)
κj ≥ 0 ∀j ∈ N (11f)

κj ≥ 0 ∀j ∈ N (11g)∑
j∈N

ajdj − b− s = 0 (11h)∑
j∈N

(pj −Djωj − dj) = 0 (11i)

dj − dj ≤ 0 ∀j ∈ N (11j)

dj − dj ≤ 0 ∀j ∈ N (11k)

where (11a) (11b) (11c) are the first-order stationary con-
ditions, (11d) (11e) are the complementary slackness con-
ditions, (11f) (11g) are the dual feasibility conditions, and
(11h) (11i) (11j) (11j) are the primal feasibility conditions.
Note that the operator (·)′ denotes the derivative.

From the above KKT conditions we can infer the following
properties of the optimal solution:

1) From (11c) we have that

ωj = λ ∀j ∈ N (12)

which means that the deviation of frequency at each bus
is equal to a single value, the same as the equilibrium
condition (8c).

2) From (11a) and Assumption 1, we have that at equilib-
rium the excess computational power s is equal to

s = (g′)−1(µ) (13)

which is an increasing function of µ due to the strict
convexity property. Note that the operator (·)−1 denotes
the inverse.

3) If dj < dj < dj then from (11d) (11e) we have that
κj = κj = 0 and from (11b) we have that:

dj = (c′j)
−1(ωj − ajµ) (14)

which is also an increasing function of (ωj − ajµ) due
to the strict convexity property.

VI. DISTRIBUTED FREQUENCY CONTROL

In this section, we first state the distributed control laws
and then prove their optimality and stability in solving GFC.

A. Control Laws

At time t, let (ωj(t), s(t)) respectively be the local devia-
tion of frequency measured by data center j, and the excess
computational power of the network that is measured and



broadcasted by the cloud provider through the communi-
cation network. We propose the following control law of
demand response dj(t), with an auxiliary variable µ(t):

µ(t) = µ(0) + β

∫ t

0

(
s(τ)− (g′)−1(µ(τ))

)
dτ (15a)

dj(t) =
[
(c′j)

−1(ωj(t)− ajµ(t))
]dj
dj

∀j ∈ N (15b)

where the constant β > 0 controls the speed at
which the auxiliary variable µ(t) reacts to the difference(
s(t)− (g′)−1(µ(t))

)
. Note that (g′)−1(·) and (c′j)

−1(·) are
well defined because of the strict convexity assumption stated
in Assumption 1.

Essentially the control laws work by first implementing the
optimal solution’s property (14) and relaxing property (13). It
then gradually changes the auxiliary variable µ in (15a) based
on how far (13) is from being satisfied. Changing the value of
µ simultaneously changes the value of each electrical power
consumption dj from (15b) and therefore changes the excess
computational power s from (6) in the direction of satisfying
(13).

In order to better qualify an equilibrium point, we further
define it to include the auxiliary variable µ when the optimal
property (13) is satisfied and therefore is not changing with
time. The following definition will be useful when proving
stability in Section VI-C.

Definition 2: A closed-loop equilibrium of the system (1)
(2) (3) (6) (7) (15a), is any solution (θ∗,ω∗,P∗,d∗, s∗, µ∗)
that satisfies Definition 1 and

dµ∗

dt
= 0. (16)

B. Optimality

The following theorem states that an equilibrium point of
the above distributed control laws is optimal to the GFC
optimization problem (9).

Theorem 2: Given Assumptions 1 and 2, an equilibrium
point from Definition 2 of the system (1) (2) (3) (6) (7) with
control laws (15) is an optimal solution of GFC (9).

Please see Appendix A for the proof of the above theorem.
This is important because it shows that when the system

reaches steady state, there is a guaranteed optimal balance
between data center PFC load participation and the system
wide deviated frequency that is equal to the deviated fre-
quencies at every bus. Also at steady state, the marginal
independent cost for each data center is the equilibrium
deviation of frequency discounted by its marginal contribu-
tion to the interdependent cost (See (13), (14)). This means
that a data center with a large marginal contribution to the
interdependent cost results in a low marginal independent
cost as compared to the other data centers.

C. Stability

To prove that the system is asymptotically stable with the
distributed control laws, we give the following assumption
which is found to be true under normal operating conditions
[12].

Assumption 3: The equilibrium phase angle deviations
between connected buses are bounded: |θ∗i − θ∗j | < π

2 for
all (i, j) ∈ E .

We use the Lypanunov method in the following theorem
to prove that an equilibrium point, within the neighborhood
described in the above assumption, is asymptotically stable.
Additionally, we show that the system asymptotically con-
verges to an equilibrium point that does not consider the
specific phase angles. This is important because it guarantees
that the system trajectory is always moving towards an
equilibrium point.

Theorem 3: Given Assumptions 1 and 2, an equilibrium
point (Definition 2) of the system (1) (2) (3) (6) (7) with
feedback control (15) that satisfies Assumption 3 is asymp-
totically stable. In particular under the same assumptions,
the trajectory of (ω,P,d, s, µ) such that |θi − θj | < π

2 :
∀(i, j) ∈ E will asymptotically converge to an equilibrium
point (ω∗,P∗,d∗, s∗, µ∗).

Due to space limitations we have provided the proof of
the above theorem in an extended version of this paper [18].

VII. PERFORMANCE EVALUATION
We simulate a 50 MW generation loss at the 5 second

time stamp and show that the proposed feedback control
stabilizes the system to an equilibrium point with significant
cost savings. We compare the proposed control with a
decentralized load control OLC [4] and the system under
no control mechanism denoted as “none”.
A. Setup

In order to demonstrate the performance of the proposed
control on a more realistic system model than described in
Section III, we use the Power System Toolbox (PST) [9] to
simulate it.

Power network: The IEEE 39-bus (New England) sys-
tem was chosen as the test case for the evaluation which
has 19 buses available to place controllable loads. The total
power demand is set at 14 GW [19]. We use the following
ten buses to place controllable data center loads: 3, 4, 7, 8,
15, 16, 18, 20, 21, and 23. To simulate a power disturbance,
at the 5 second time stamp power drops 50 MW from a
generator at bus 39.

Network of data centers: The ten data centers contain
a total of 500k 300W servers in which each server’s average
power consumption relative to peak is 75% [13]. The data
centers each have a nominal demand of 25 MW which in
total is 1.8% of the total power demand [7]. Each data center
has minimum and maximum demands of 15 MW and 30 MW
respectively. Each data center’s efficiency aj is estimated
based on the fact that typical data centers have a Power
Usage Effectiveness (PUE) range between 1.1 and 2.1 with
an average of 1.8 [10], [7], therefore we randomly select
1/aj ∈ [1.1, 2.1] with E[1/aj ] = 1.8.

Costs: The objective function used in analyzing the cost
for control is defined as follows:

γ
1

2

∑
j∈D

ajδj

2

+
∑
j∈D

ηj
2
δ2j + α

∑
j∈N

Dj

2
ω2
j . (17)



where δj := dj − 25 which means that each data center
has a nominal demand of 25 MW. The first term is the
interdependent cost, the second term is the independent costs,
and the third term is the cost associated with the deviations
of frequency. The interdependent cost is approximated by
the fact that the Amazon Web Service’s revenue of 1.3
million servers [20] is $2.5 billion for the first quarter in
2016 [21]. This gives a cost of $2.47 per second for each
10k servers. For our system, this translates into maximum
of estimated interdependent cost for each second is $123.50.
Hence assuming an average PUE of 1.8 and only half of a
100 MW power equivalent workload is processed, we set γ =
$0.16/MW2 throughout the evaluation. The dependent cost
for each data center includes its wasted cost for under/over-
utilizing the pre-purchased electricity, operation, and mainte-
nance. Based on the Total Cost of Ownership in [13], under
utilizing a data center by 50% can cost $0.28 per second for
each 10k servers. For the average data center in our system
with 50k servers this is $1.40 which we equate to a 5 MW
decrease of the total available 10 MW decrease. Hence, we
randomly choose ηj such that E[ηj ] = $0.11/MW2. The cost
for deviated frequency has been valued at $15/MW for a 0.2
Hz deviation [22], [23]. Since

∑
j∈N

Dj

2 ωj is the aggregate
frequency-sensitive load, we set α to $75/MW-Hz.

Baselines: To show the benefit of incorporating inter-
dependent load costs, we compare the proposed control to
Optimal Load Control (OLC) described in [4] which is a
decentralized control that does not take into account interde-
pendent costs. In the stability analysis, we also compare it to
the case called “none” where there are no primary frequency
control system in place; it relies on frequency control at a
larger timescale. In the equilibrium cost analysis, we also
compare it to the case called “optimal” which is an estimated
offline optimal solution to GFC (9) with Dj = 0 : ∀j ∈ N .

B. Stability analysis
The proposed control stabilizes the frequency and each

load decision within 30 seconds of the generation loss. In
Figure 2(a), both the proposed control and OLC converge to
an equilibrium frequency within 30 seconds. On the other
hand, for the system trial with no control, the frequency
continues to drop even well after the 50 second time stamp
and does not converge to a final equilibrium frequency. Note
that for each control scheme in Figure 2(a), the frequencies
for the separate buses are so close that they cannot be
distinguished.

Additionally in Figure 2(b), all of the loads reach their
equilibrium points at different times which are all within
30 seconds of the generation loss. It is worth noting that
the most efficient data center DC 1 actually increases its
load instead of decreasing it. This is because the value
of (ω1 − a1µ) remains positive throughout the simulation
due to the product of a negative auxiliary variable µ and
a relatively large computational efficiency a1 counteracting
and surpassing the negative deviation of frequency ω1. That
positive value is used in the proposed control (15b) which is
an increasing function.

C. Equilibrium cost analysis
The proposed control shows a 24% decrease in total cost

from OLC (cf. Figure 3(a)). While on the other hand, it
has a larger deviation of frequency than OLC (cf. Figure
2(a)) because OLC underestimates the actual total cost of
decreasing the load consumptions. This is caused by OLC
minimizing only for independent and deviated frequency
costs (i.e. last two terms of (17)) as compared to the proposed
control which minimizes the sum of all three cost types. This
results in OLC having a 38% lower independent cost and a
83% smaller equilibrium deviation of frequency, but a 46%
higher interdependent cost.

Also, the proposed control will utilize smaller power de-
viations from higher efficient data centers than OLC. Higher
values of computational efficiency aj cause power deviations
to have larger marginal increases to the interdependent cost
(i.e. the first term of (17)) than for lower values of aj .
This causes the OLC power deviations to be more negative
than the proposed control for data centers with higher than
average efficiencies (DC 1-3), and less negative for all other
data centers (cf. Figure 3(c)).

Also shown in Figure 3(a) is that the proposed control is
close to but not at the estimated optimal cost. This is rooted
in the fact that the frequency sensitive loads in PST exhibit
nonlinear behavior as opposed to the linear model used in
GFC (9). By setting Dj = 0 : ∀j ∈ N in GFC (9) for
the “optimal” case comparison, we get an optimal solution
where all the data centers must have an aggregate load
consumption decrease equal to the power drop. However,
when using the proposed control in PST, we get an aggregate
load consumption decrease that is greater than the power
drop. This means that the estimated optimal has a lower cost
since it does not need to decrease as much load consumption
as was done by the proposed control in PST.

D. Sensitivity analysis
Impact of interdependence: In order to measure the

effect that the interdependent cost has on the cost savings
of the proposed control, we vary γ ∈ [0.03, 0.3] (cf. Figure
4(a)). While low interdependent costs (γ ∼ 0.03) make
the cost savings between the proposed control and OLC
insignificant, higher interdependent costs result in larger cost
savings for the proposed control.

Demand flexiblity (X%): As data centers may not be
able to reduce all of their demand at this fast timescale, next
we evaluate the impacts of data centers’ demand flexibility,
which is the fraction of the nominal load that can be changed,
i.e. dj ∈ [25 ∗ (1 − X/100), 30] (cf. Figure 4(b)). Observe
that the cost savings remain significant for most of the range
except just above 20% demand flexibility. This is where both
proposed and OLC total costs converge because the box
constraints (9d) become active and every data center reduces
its demand to its lowest allowed value.

VIII. CONCLUSION
Frequency control is an important class of mechanisms

to ensure high-quality power for the grid and has been an
increasingly attractive option for load participation. Primary



(a) Frequency (b) Power demand change, δj
Fig. 2. Trajectories of the system state variables: (a) Bus frequencies for each of the ten buses containing a data center under the three different control
schemes; (b) changes in load for each of the ten data centers under the proposed control.
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(b) Impact of demand flexibility
Fig. 4. Sensitivity analysis in terms of cost savings by using the proposed control instead of OLC for: (a) Interdependent cost coefficient; (b) Demand
flexibility.

Frequency Control, being the fastest of these, requires that
the decisions be made in a distributed fashion because of the
speed requirement. Prior work on distributed load control
assumed that the cost for changing load demand at each
geographic location is independent from the rest. However, in
some networked systems such as a network of data centers
that support cloud computing, the decisions made at each
data center affect the group because of interdependent costs
and so require geographic coordination. In this paper, we
designed a set of distributed control laws that can handle
interdependent costs in such a way that is provably stable.
Also, we proved that the final equilibrium point optimally
balances the cost of load participation with the frequency
level deviated from its nominal set point. We tested our
control laws for a network of data centers on a realistic
emulator, Power System Toolbox, and found that there is
significant cost savings with the proposed control law over
existing benchmarks that do not account for interdependent
costs.

The results presented in this paper open up three distinct

future research directions. The first is to explore how other
interdependent systems (e.g. electric mass transit, thermal
grids) can be used to help increase the reliability of the grid.
The second is to investigate how a network of data centers
that are located in multiple disjoint power grids can utilize
their interconnectedness to enhance the reliability in those
grids. The third is to apply the distributed control laws to a
system with a higher-order transient stability model. For our
future work, we plan to extend the proposed control laws to
take into account further network effects such as power flow
constraints across lines and network losses.
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APPENDIX
A. Proof of Theorem 2

Proof: Since GFC is a convex optimization problem
(Lemma 1) and is feasible (Assumption 2), we need to

show that the proposition satisfies the KKT conditions for
optimality (11).

From the strict convexity property in Assumption 1, the
function (c′j)

−1(·) is well defined and increasing. Therefore,
control law (15b) can be separated into three cases: (i) d∗j ∈
(dj , dj), thus d∗j = (c′j)

−1(ω∗j − ajµ∗); (ii) d∗j = dj , thus
(c′j)

−1(ω∗j − ajµ∗) ≤ dj ; (iii) d∗j = dj , thus (c′j)
−1(ω∗j −

ajµ
∗) ≥ dj . Case (i) results in:

dj < (c′j)
−1(ω∗j − ajµ∗) < dj

c′j(dj) < ω∗j − ajµ∗ < c′j(dj).

since c′j(·) and (c′j)
−1(·) are increasing functions. Likewise,

Case (ii) results in:

(c′j)
−1(ω∗j − ajµ∗) ≤ dj

ω∗j − ajµ∗ ≤ c′j(dj)
and Case (iii) results in:

dj ≤ (c′j)
−1(ω∗j − ajµ∗)

c′j(dj) ≤ ω∗j − ajµ∗.
Let us define the following two variables:

κj := [c′j(dj)− (ω∗j − ajµ∗)]+

κj := [(ω∗j − ajµ∗)− c′j(dj)]+

which satisfy (11f) (11g). Note that in: Case (i), dj−d∗j 6= 0,
d∗j − dj 6= 0, κj = 0, κj = 0; Case (ii), dj − d∗j = 0,
d∗j − dj 6= 0, κj ≥ 0, κj = 0; Case (iii) dj − d∗j 6= 0,
d∗j − dj = 0, κj = 0, κj ≥ 0. Therefore each case satisfies
(11d) (11e).

Additionally, each case from their definitions satisfies:

c′j(d
∗
j )− κj + κj = ω∗j − ajµ∗ (18)

and we can use the equilibrium condition (8c) to define the
following variable since each frequency deviation must be
equal to a single value:

λ := ω∗ = ω∗j ∀j ∈ N .
which is equivalent to (11c) when multiplied by Dj . There-
fore, substituting λ for ω∗j in (18) becomes (11b).

The time derivative of (15a) at equilibrium gives:
dµ∗

dt
= β

(
s∗ − (g′)−1(µ∗)

)
From the strict convexity property in Assumption 1, the
function (g′)−1(·) is well defined. Since dµ∗/dt = 0 from
equilibrium condition (16), then we have that (g′)−1(µ∗) = s
which is equivalent to (11a).

System equation (6) is equivalent to (11h).
To get (11i), start with (7) and apply (2), and equilibrium

condition (8a):
pj − d∗j −Djω

∗
j − Fj(θ

∗) = 0.

Summing the above equation for all j ∈ N gets (11i) because∑
j∈N Fj(θ

∗) = 0 from each term canceling when summing
(3).

Because the range of (15b) is [δj , δj ], (11j) (11k) are
satisfied.

Since all of the KKT conditions have been satisfied, we
get the resultant.


