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Abstract—We consider a wind power producer (WPP) partic-
ipating in a dynamically evolving two settlement power market.
We study the utility of energy storage for a WPP in maximizing
its expected profit. With random wind and price processes,
the optimal forward contract and storage charging/discharging
decisions are formulated as solutions of an infinite horizon
stochastic optimal control problem. For the asymptotically small
storage capacity regime, we precisely characterize the maximum
profit increase brought by utilizing energy storage. We prove that,
in this regime, an optimal policy uses storage to compensate for
power delivery shortfall/surplus in real time, without changing
the forward contracts from the optimal ones in the absence
of energy storage. This policy also serves as an approximately
optimal policy for the case of relatively small storage capacity.
We also design a policy based on model predictive control (MPC)
that is approximately optimal for general storage capacities.
We numerically evaluate the developed policies for wind and
price processes with representative statistics from real world
data. It is observed that, as expected, the simple small storage
approximation policy performs closely to the optimum when
storage is relatively small, while the more complex stochastic
MPC policy performs better for larger storage capacities.

I. INTRODUCTION

Wind energy contributed to 17% of load serving by re-
newable energies in the U.S. in 2014 [1]. Globally, the
installed wind power capacity has increased eight-fold in the
past decade, and continues to grow thanks to the decreasing
capital costs of harnessing wind power. A typical approach for
integrating wind energy into the electricity grid is to let wind
power producers (WPPs) participate in conventional multi-
settlement power markets, where power is sold in multiple
forward (e.g., day-ahead, hour-ahead, and 15-minutes ahead)
markets. A summary describing participation of WPPs for
multi-settlement markets in several Independent System Op-
erators (ISOs) in the U.S. can be found in [2]. Such markets
raise significant challenges for WPPs, particularly in the day-
ahead market, where the vast majority of contracts of power
delivery are made. In particular, as wind power generation
is non-dispatchable, committing to forward power contracts
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raises fundamental challenges to WPPs, as future wind power
generation is inherently uncertain due to difficulties of wind
forecast [3]. Hence, a WPP has the risk of running a short-
fall in delivering a forward power contract when its actual
generation is insufficient. Making up for such a shortfall by
fast-responding generation resources (e.g., buying power in the
real time market) is usually costly. As wind power generation
itself has very low variable cost, the cost due to compensating
for the risk of shortfall constitutes a WPP’s most significant
operating cost.

There are a variety of approaches for the WPPs to reduce
the risk of delivery shortfall. Methods that exploit statistical
characteristics of wind generation such as improving wind
power forecast [3] and aggregating diverse wind sources [4]
directly reduce the uncertainty in the WPPs’ knowledge of
future wind power generation. Fast-ramping fuel-based backup
generators can also compensate for the uncertainty of future
wind power, albeit with a high operating cost. Recently, energy
storage has emerged as an increasingly viable commercial
technology due to its decreasing cost [5]; the ability of energy
storage to shift energy across time provides great flexibility for
WPPs to charge/discharge energy to compensate for any gener-
ation shortfall/surplus to meet forward contracts. Nonetheless,
as energy storage is currently still expensive for large scale
deployments, assessing its value in reducing operating cost
and increasing profit is of primary interest to WPPs.

Without storage, the problem of a single WPP participating
in a two-settlement (day-ahead and real time) market has been
studied in [6], [7], [8] where the optimal (i.e. expected profit
maximizing) forward contracts based on the statistics of wind
generation were developed. With storage, different variants of
a stochastic control formulation have been considered in [9],
[10], [11], [12], [13], [14] for setting either the day ahead con-
tracts or the charging policy or both. Optimal storage charging
policy is studied in the absence of a power market in [9] where
the total variation of the power output of a WPP is minimized.
The value of providing co-located energy storage to a WPP has
been studied in [10] and [11] for real time market participation
only, where dynamic programming (DP) solutions and online
algorithms were developed, respectively. Focusing on a single
day of wind generation and storage operation, the day-ahead
market is considered in assessing the role of storage co-
located with wind power in [12], where the optimal day-ahead
contracts and storage operation were solved. A dynamically
evolving two-settlement market has been considered in [13]
and [14] in which optimal operation of co-located storage
and wind power are studied. There, the model is limited to
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one in which the forward market trades power one time slot
ahead. As will be clarified next, this corresponds to the case of
D = 1 in this paper. We note that, when hourly day-ahead and
hourly real-time markets are considered, D can be as large as
24, which significantly complicates the study of the problem.
Another work that considers storage and WPPs competing (as
opposed to cooperating) with each other in a power market is
[15], where the Nash equilibria in this competitive setting are
derived. We further note that the use of energy storage has also
been extensively studied from a system operator’s perspective
on unit commitment and optimal power flow problems (see,
e.g., [16], [17] among others).

In this work we consider a WPP participating in a dynam-
ically evolving conventional two-settlement (day-ahead and
real time) market, while exploiting co-located energy storage
(i.e., a battery). We consider that forward power contracts are
made some time slots ahead of delivery, depending on the
forward market structure. Wind power and prices are modeled
as random processes with general statistics. We study the
maximum utility of energy storage in the WPP’s operation
involving delivery of day ahead forward power contracts while
limiting costs due to real time market interactions.

Since the computation of a policy minimizing an infinite
horizon expected discounted cost is in general intractable due
to a policy living in a multi-dimensional continuous space, we
first focus on small storage asymptotes. We show that, for a
small storage, an optimal policy involves employing storage
to reduce the real time market interaction via appropriate
charging (when there is excess energy) and discharging (when
there is a deficit), without changing the forward contracts from
the optimal ones in the absence of energy storage. We also
show that the discounted infinite horizon profit is concave and
increasing. Thus, calculating the precise incremental benefit of
a small storage provides an upper bound that linearly increases
with the battery capacity on the utility of a battery.

Next, for general battery capacity, we propose a method
to obtain a convex quadratic approximation of the value
function, namely the expected infinite horizon discounted cost.
Based on this approximation, we develop a stochastic model
predictive control (MPC) policy. We numerically evaluate the
value function associated with the small battery approxima-
tion policy and the MPC policy. We observe that the small
battery approximation policy performs very well when battery
capacity is small, while the stochastic MPC performs better
for larger storage.

The remainder of the paper is organized as follows. In
Section II, we describe our system model, our objective in the
optimal policy computation and the underlying assumptions
made in the analysis. The optimal policy in the small battery
asymptotic regime is characterized in Section III. We then
describe a stochastic MPC policy based on quadratic approxi-
mations of the value function in Section IV. Numerical results
are presented in Section V. Conclusions are drawn in Section
VI.
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Fig. 1. System model of a wind farm participating in a two-settlement market.
Red nodes represent the wind farm and the blue nodes represent external
systems. Arrows with the labels represent flows between nodes. Solid arrows
represent directions of energy flows (bidirectional arrows indicate energy may
flow both ways). Dotted lines represent price and contract information flows.

II. PROBLEM DESCRIPTION

A. System model

We consider the infinite horizon problem of a WPP with co-
located energy storage participating in a two settlement power
market. The system diagram is depicted in Fig. 1. At each
time instant t, the WPP performs the following two actions:

• Forward market interaction: The WPP promises to
deliver a certain amount of electricity some number of
hours, denoted by Dt, into the future. The WPP’s revenue
from this forward market interaction depends on the
contract price and the amount of electricity promised.
More generally, multiple forward contracts to be delivered
at different future times can also be formed. Figures
2(a) and 2(b) depict two models of the forward market’s
timelines. In Figure 2(a), at every hour t, a forward
contract in the amount of st is formed by a WPP, to
be delivered Dt = 24 hours later. In Figure 2(b), at the
10th hour of each day, a total of 24 forward contracts
are formed to be delivered in each of the 24 hours in the
next day, respectively.
We employ the 1st model, namely, Dt = D for some
fixed D, in deriving our main results. Generalizations of
our results to other models is discussed in Section III-C.
At each hour t, the contracted amount D hours earlier
for the current hour t, denoted by st−D, needs to be
delivered by the WPP. This necessarily entails the WPP’s
interactions with the real time market and its storage
operation, as described next.

• Real time market interaction and storage operation:
The WPP fulfils its earlier commitment made to be
delivered at the current time. Due to the uncertainties in
wind power generation, the WPP may either fall short of
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Fig. 2. Examples of the timelines of forward market interactions: a) At every
hour t, a forward contract in the amount of st is formed to be delivered
D = 24 hours later, and b) In each day, at the 10th hour, 24 forward contracts
are formed to be delivered in each of the 24 hours of the next day.

its commitment, or it may have an excess left over after
meeting all the forward contracts. In the former case, the
WPP has to either buy power from the real time market
or discharge power from its energy storage. In the latter
case, the WPP sells power to the real time market or
charges power to its energy storage.

The objective of the WPP is to minimize the infinite horizon
expected discounted cost by choosing its actions appropriately.
The notation associated with our model is summarized in Table
I. Next, we present a more detailed description of the technical
assumptions in our model in Section II-B.

B. Technical assumptions and model details

Our model makes the following assumptions:

• The price process (pft , p
b
t , p

s
t ) (where pft is the forward

contract price, pbt is the real time buying price, and pst
is the real time selling price) and wind process wt are
bounded and Lebesgue measurable. The wind farm is a
price-taker, and actions of the wind farm do not impact
the joint exogenous price and wind processes. The price
and wind processes can be correlated.

• The stored energy in the battery is bt. At each time
instant, the WPP decides the level bt+1 to charge the
battery to at the next time instant. Let the charging
efficiency be denoted by η+ and discharging efficiency by
η−. Thus, the energy consumed (and an negative amount
means energy is extracted) for changing the battery level
is given by η+(bt+1−bt)+−η−(bt−bt+1)+, where (·)+
denotes max(0, ·). Due to losses, η− ≤ 1 ≤ η+. Note
that in batteries where the efficiency is 100% (lithium ion
batteries are very close to ideal [18]), η+ = η− = 1, and
the energy consumed/extracted for changing the battery
level is bt+1 − bt. At each time instant, we have the
constraint that bt+1 ∈ Bt where Bt is a set dependent
on current battery level bt. This allows us to incorporate
the following constraints in our model:

TABLE I
SUMMARY OF NOTATIONS USED

External processes
pft Forward market price
pbt Real time buying price
pst Real time selling price
wt Wind power
zt (wt, p

f
t , p

b
t , p

s
t )

Ft All external realizations till time t: {zs}s≤t

Battery parameters

B Battery capacity
bt Battery level at the beginning of time t
Bt Domain for battery level at time t+ 1
B If Bt is the same for all t we use this shorthand notation
R Ramping constraint
η+ Charging efficiency
η− Discharging efficiency

Other wind farm parameters

D The time after which the contract has to be delivered
st The contract formed at time t, to be delivered at time t+D

st−1
t−D Vector which contains all the power contracts to be

offered from time t to t+D − 1
et The excess energy left over after meeting

contract and charging/discharging battery
xt All prices (current and past time) and past actions;

we call this the state of the system.
πB,t(·) Mapping from state to action at time t when

battery capacity is B. Action is in R2 and specifies the
contract decision at time t and the battery level at t+ 1.

g Stage cost (time dependence implicit in g)
gf Cost of interaction with the forward market
gr Cost of interaction with the real time market
f(·, ·, ·) Dynamics of the state evolution

– Capacity constraints The capacity of the battery is
B. If we have an ideal battery, Bt = B = [0, B]. If
we do not wish to completely charge or discharge
the battery to prevent excessive wear, we can limit
B = [ε, B− ε]. This reduces the effective capacity to
B − 2ε.

– Ramping constraints If the battery has power limits
while charging or discharging, there is a ramping
constraint R · B which is the maximum change in
battery levels in a time instant. Ramping can be
modeled as Bt = B ∩ [bt −RB, bt +RB].

• In addition to setting the battery level at time t, the WPP
further makes a decision regarding sales and purchase
of energy in the forward market. In particular, the WPP
contracts st in the forward market to be delivered D time
units later. The WPP receives contract price pft for each
unit contracted. The maximum contract is bounded by a
sufficiently large constant S, i.e., st ∈ [0, S].

• As the earlier contract st−D needs to be delivered from
the realized wind and stored energy, the available energy
et at time t, after delivering the contract and charg-
ing/discharging the battery to the appropriate level, is

et = wt−η+(bt+1−bt)+ +η−(bt−bt+1)+−st−D. (1)

• The WPP sells its excess (et)
+, if any, at the real-time

market selling price pst .
• The WPP meets its deficit, if any, by purchasing (−et)+

units of energy at the real-time buying price pbt .
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The state of the WPP xt in general consists of the history of
contracts to be delivered, prices and wind energy realized, and
the energy storage level. When the price and wind statistics are
Markovian (to which our results are not restricted), the state
only needs to include the current prices and wind as opposed
to the history of prices and wind, i.e.,

xt , (pft , p
s
t , p

b
t , wt, s

t−1
t−D, bt, t).

The state space is X . For brevity, we denote the price and wind
processes by zt = (wt, p

f
t , p

b
t , p

s
t ) and the natural filtration [19]

associated with the external stochastic process by {Ft}t≥0.
Roughly speaking, the natural filtration satisfies the following
properties:
• Ft ⊆ Ft+s for s ≥ 0, t ≥ 0.
• Conditioning on Ft means that all realizations of the

external stochastic process until time t, i.e., {zs}s≤t, are
known.

The action given a state xt at time t consists of specifying
the contract level st and the battery level bt+1 for time t+ 1.
Thus, action πB,t(xt) = (st, bt+1) and the space of all actions
A is assumed to satisfy A = {(s, b)|s ∈ [0, S], b ∈ [0, B]}.

We define the stage cost g(xt, πB(xt)) as

g(xt, πB(xt)) = gf (pft , st) + gr(p
b
t , p

s
t , et) + IBt(bt+1), (2)

where gf is the forward market cost component, gr is the
real-time market cost component and the third term limits the
feasible range of bt+1. IBt(bt+1) denotes the standard indicator
function which evaluates to zero if bt+1 ∈ Bt and is infinity
otherwise. We consider

gf (pft , st) = −pft st,
gr(p

b
t , p

s
t , et) = pbt(−et)+ − pst (et)+.

(3)

Note that gr(·) captures the risk (the greater the −et is, the
more the deficit and purchase from the real time market),
whereas gf captures the profits from the forward contract.
Note that g, gf and gr are convex functions in their individual
arguments. It can also be seen that the dynamics of the state
is linear in the action and external processes, i.e. with a linear
function f ,

xt+1 = f(xt, πB,t(xt), zt+1). (4)

We list some additional technical assumptions below.
• Assumption 1: The prices are such that βDpst <

min(pft ) < max(pft ) < βDpbt with probability 1 for all
t ≥ 0. This is a sufficient condition to ensure that an
agent with only a battery does not make a profit and also
eliminates infinite arbitrage opportunities.

• Assumption 2: We consider contract policies in a (suffi-
ciently large) neighborhood of the optimal “batteryless”
contract policy denoted by PL. Specifically, we consider
policies which are Lipschitz in B for all B in the
following sense: there exists a finite (could be large) L so
that for all considered policies πB,t = (sB,t, bB,t) with
battery of capacity B at time t,

|sB,t(xt)− s∗0,t(x̃t)| ≤ LB,

where s∗0,t is the optimal batteryless contract policy, and
x̃t equals xt at all coordinates except for the battery
capacity where it is zero. Note that s∗0,t can be computed
based on just the external statistics by solving a news
vendor problem [6]. From the constraint on the energy
capacity, we also have |bB,t(xt)| ≤ B.

Throughout the text, we use o(B) to refer to any function
z(B) such that

lim
B→0

z(B)

B
= 0,

and Θ(B) to refer to any function z(B) such that

lim
B→0

z(B)

B
= c

for some c 6= 0.

C. The objective

We seek to obtain a policy

πB,t: Domain(xt)→ R2

that maps the state xt at each time instant to an action πB,t(xt)
that minimizes the infinite horizon stage cost. Note that if
the wind and prices are Markov processes with memory M ,
the domain for the state variable is (xt) = RD+5M+1. We
consider a discount factor of β < 1. We formulate the fol-
lowing optimal stochastic control (or dynamic programming)
problem:

Vt(xt) , min
πB,t

E

[ ∞∑
s=t

βs−tg(xs, πB,s(xs)) | Ft
]

s.t. xs+1 = f(xs, πB,s(xs), zs+1) ∀ s ≥ t.(5)

Before we describe our main results we introduce additional
notation related to the objective function. Let

VπB,t,t(xt) , E

[ ∞∑
s=t

βs−tg(xs, πB,s(xs)) | Ft
]

be the value function obtained by following some fixed policy
πB,t conditioned on the realization at time t, i.e., on Ft. Let
V +
πB,t,t be defined as

V +
πB,t,t(s

t−1
t−D, b) , E

[
VπB,t,t(xt) | Ft−1

]
, (6)

where the expectation is taken before the randomness at time
t is realized, and b is the initial battery level at time t.

III. ANALYSIS OF THE OPTIMAL POLICY

In this section we derive some properties of the optimal
policies.
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A. Structural properties

The Bellman operator of the dynamic program formulated
in (5) is

TtVt(xt) , inf
ut∈A

g(xt, ut)+βEzt+1
[Vt+1(f(xt, ut, zt+1)) | Ft].

In the simple case where the external statistics are stationary
or cyclo-stationary, the value function and optimal policy can
be obtained by solving the fixed point equation, V = T V.
Since the stage cost is bounded and the Bellman operator is
a contraction, the fixed point equation has a unique solution.
We call a stationary optimal policy (not necessarily unique)
corresponding to this optimal solution π∗B . In case the statistics
are not stationary, the optimal value function Vt(xt) and
a corresponding policy π∗B,t are even harder to compute;
however our asymptotic characterizations in the following
sections hold even for such general statistics.

The evaluation of π∗B,t for a finite B is in general intractable
both analytically and computationally. We can, however, con-
sider asymptotic analysis to give us further insights. In the
following, we list some observations about an infinite battery
asymptote first, followed by the optimal small battery charac-
terization in Section III-B.

We now describe an upper bound on the value function
when the battery is large and the discount factor is close to 1,
i.e., we would like to minimize the average cost instead of the
discounted total cost. As the energy storage capacity B →∞,
it is apparent that the optimal policy of the wind farm is to
store all realized wind and contract what is stored when the
price at the forward market is highest. i.e. pft = max pf .

Lemma 1. The average stage profit realized with infinite
battery is upper bounded by,

V∞avg = E [w]×max pf .

where E [w] = limT→∞
1
T

∑T
t=1 E [wt] is the average wind

energy realized over all time.

We can realize this only if there are no ramping constraints
or other inefficiencies. This is the optimal policy as any
interaction with the real time market (shortfall or excess) is
suboptimal due to the absence of (infinite) arbitrage opportu-
nities.

B. Small battery asymptotic analysis

As it is difficult to compute the optimal policy π∗B,t in
general, in this section we focus on the incremental value of
storage when the battery capacity B is small. As we consider
small battery capacities, ramping constraints of the battery
can be negleced in the analysis. In essence, we perform a
sensitivity analysis of V +

π∗
B,t,0

(6) at B = 0. Assuming that
both our initial contract history and the battery level is zero to
start with, we set s01−D = 0 ∈ RD, the initial battery b = 0

and seek to compute
∂V +

π∗
B,t

,0
(0,0)

∂B .
We now state our main theorem:

Theorem 1. At time t, consider the following policy πB,t:
• sB,t is set to be the optimal batteryless contract.

• The optimal storage operation policy is to charge fully or
discharge fully depending only on the external wind and
price processes. The exact specification is in Program 1.

For a small enough B, the above policy achieves
V +
π∗
B,t,t

(st−1t−D, 0) to within o(B).

Program 1 Optimize the next stage battery level
• If η+p

b
tI(st−D > wt) + η+p

s
tI(st−D < wt) <

−βαt(stt+1−D, 0), set bt+1 = B.
• If η−p

b
tI(st−D > wt) + η−p

s
tI(st−D < wt) >

−βαt(stt+1−D, 0), set bt+1 = 0.
• Else: set bt+1 = bt.

αt(.) ,
∂V +

π∗
B,t

,t
(·,b)

∂b in Program 1 is the expected cost of
storing an additional unit of charge in the battery at time t.
It is non-positive, since one can always make an expected
profit (and the cost is the negative of profit) out of storing an
additional unit of charge in the battery. The indicator function
I(·) is 1 if the condition is satisfied and 0 otherwise.

As a typical case, if

pbt < −αt(·) < pst , and β, η+, η− ≈ 1, (7)

Program 1 reduces to the specification that we should charge if
we have a wind excess event (st−D < wt), and discharge if we
have a wind deficit event (st−D > wt). This is because, as we
show later, for statistics where the distribution of the external
processes does not change significantly over time scales of
length D units (in a sense made precise in Appendix D), αt is
close to the negative of the contract price D time units earlier,
−pft−D, and the above conditions (7) hold under Assumption
1. For general statistics and correlation structure α(·) can
be computed using a dynamic program, whose complexity
depends on the mixing time of the external processes. It may
be intractable in general. Note that αt(·) needs to be computed
only within Θ(B), as discussed more after the description of
an elaborate version of this program in Appendix B.

We observe, in particular, that the optimal policy in the
low battery regime does not involve changing the optimal
forward contract from that with no storage, but instead in-
volves deciding when to charge or fully discharge the battery
to reduce the risk of energy shortfall (measured by gr(·)). For
specific cases where the external price and wind processes
are cyclostationary, this corresponds to charging when there is
excess energy, and discharging when there is a deficit.

We prove Theorem 1 in the appendices. We can thereafter

compute
∂V +

π∗
B,t

,0
(0,0)

∂B by policy evaluation. For a system with
a finite number of states, policy evaluation or evaluating the
value functions corresponding to particular states can be done
by solving a linear system of equations. It may also be
evaluated using Monte Carlo simulations of state trajectories.
The latter may be the only tractable option for larger state
spaces due to complexity. As shown later in Section V, for
some special wind and price processes, the incremental value
of a small amount of storage may be evaluated in closed form.
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C. Extension to other forward market models

In this section we describe extensions of the small battery
analysis to another day-ahead market model commonly used
in practice. The main difference of this variant from the model
analyzed earlier is as follows: a) Forward contract decisions
are made at one specified time every D′ time units, b) At each
time of decision, D′ forward contracts are determined for the
consecutive D′ time units starting from D time units later. An
example with D′ = 24 and D = 14 is the following: at 10am
of each day, 24 forward contracts are made for the 24 hours
starting from the beginning of the next day. In comparison, the
model analyzed in earlier sections evenly spread the forward
contract decisions over all hours. We observe that the same
dynamic programming formulation in Section II applies in this
market model, and the change to this market model affects the
state of the DP. However, in spite of the differences from the
model considered earlier, in the low battery limit, there are
many similarities about the nature of the policies achieving
the optimal profits in both market models.

In particular, as we show in Appendix F, Theorem 1
continues to hold under this market model. The reason is
similar to that in the earlier market model: it can be shown
that the batteryless optimal policy solves the news-vendor
problem; by the first order necessary conditions for optimality,
any deviation in the contract policy would not affect the profit
up to first order terms. The charging policy is also exactly the
same as in the earlier case, with a possibly different αt(·).

IV. APPROXIMATE DYNAMIC PROGRAMMING APPROACHES

The optimal policy described in Section III-B becomes
suboptimal for batteries of large capacities. In this section,
we propose an efficiently computable heuristic policy when
relatively large batteries are used. We first compute a convex
quadratic approximation of the value function by converting
costs and constraints to quadratic functions. We then describe
how model predictive control approaches can yield better
results.

A. Quadratic approximation of value function

We seek to represent the value function by a quadratic
approximation and use this to determine a policy to follow. The
non-linearities in the control problem arise from the piecewise
linear nature of the real time cost function and constraints
(imposed by limited energy storage) on the charging levels and
non-negative contracts in the forward market. As introduced in
[20], we replace these with quadratic cost functions as follows:

gf (pft , st) = hf,1 (st + hf,2)
2 (8)

gr(p
b
t , p

s
t , wt + bt − st−D − b+t ) (9)

= hr,1
(
wt + bt − st−D − b+t hr,2

)2
(10)

I[0,B](bt+) = γ

(
b+t −

B

2

)2

, (11)

where coefficients h·,·, γ are chosen as functions
of expected external wind and price processes(

E
[
pft

]
,E [pst ] ,E

[
pbt
]
,E [wt] , B

)
to approximate the

piecewise linear costs and the energy storage constraint.
This converts the problem to a linear-quadratic (LQ) control
problem. The state can be written as xt = [wt, bt, s

t−1
t−D] and

the action ut = [bt+1, st]. The state vector does not include
the price, introducing another source of suboptimality. This is
because policy recommendations from such an approach are
the same irrespective of instantaneous prices. The stage cost
and dynamics can now be written as

gquad
t (xt, ut) =

xtut
1

ᵀ [
Qt qt
qᵀt rt

]xtut
1


xt+1 = A1xt +A2ut +A3wt,

where Q·, q·, A· are constants that can be straightforwardly
computed. This problem has a convex quadratic stage cost
and linear dynamics. The convex quadratic value function
Vquad(xt) can be found by solving the Algebraic Ricatti Equa-
tions (ARE) resulting from the Bellman optimality equation.
Vquad is a quadratic approximation of our original problem.
This approach also delivers an affine policy as

ut(xt) = Ktxt + kt

for Kt, kt determined through the ARE.
The quality of the approximation Vquad is much higher when

the price process does not vary much. Another approach to
obtaining a quadratic approximator of the value function which
is not problem specific is presented in [21]. The authors use the
S−procedure to find a convex quadratic under-approximation
to the value function using iterated Bellman equations.

B. Model predictive control

With any approximation to the value function, denoted by
Vapp, we can employ a model predictive control (MPC) ap-
proach to determine a policy by applying Vapp as the terminal
cost. In the LQ approximation to the problem described in
Section IV-A, the variation in price is not taken into account
while determining the policy. The proposed MPC approach
refines the usage of the approximation by using the current
price information. First, the expected value of the wind and
price processes can be used for unseen future realizations in
a certainty-equivalent MPC approach.

The M step certainty-equivalent MPC algorithm utilizes an
Vapp(xt) to obtain a policy as

ut = argmin
st,bt+1

min
st+Mt+1 ,bt+M+1

t+2

M−1∑
j=0

βjg(st+j+1
t+j−D+1, b

t+j+1
t+j , z′t+j)

+βMVapp(st+Mt+M−D+1, bt+M ,E [zt+M ]).
(12)

As defined earlier, zt = (pft , p
s
t , p

b
t , wt) represents the external

stochastic processes. At each stage t, we see z′t = zt and use
z′t+j = E [zt+j ] ∀j ∈ [M ].

Furthermore, as opposed to the certainty-equivalent MPC
approach, we also use a stochastic version of the MPC
algorithm which is more robust as it samples the external
wind and price processes from its probability distribution
rather than simply using its expectation. We generate multiple
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such samples of length M for future realizations in a Monte
Carlo approach. We choose the day ahead contract and the
charging policy for the current time instant that minimizes
the average costs across all such M -length samples and the
appropriately discounted terminal function to approximate
expected future cost. A policy minimizing this cost is selected.
Further details explicitly characterizing the objective function
to be minimized are presented in Appendix F. The MPC
policy can be used in cases where the probability distribution
for future realizations depends on past realizations of wind
and prices as well. When Vapp is a quadratic (e.g. the Vquad
developed in Section IV-A), solving both certainty-equivalent
and stochastic MPC is minimizing a quadratic function subject
to linear constraints which can be done efficiently. As M gets
larger, the terminal cost function Vapp has a reduced impact
because of the discount factor. Hence, for sufficiently large
M , finding the MPC solution can be approximated by a linear
program.

V. NUMERICAL RESULTS

In this section, we a) illustrate the optimal policy in the
asymptotic regimes of energy storage, and b) extensively
evaluate the asymptotically optimal and the proposed heuristic
policies for all regimes of energy storage capacity.

A. Simulation setup

We first perform simulations employing a synthetic model
for the external wind and price processes which are fit from
PJM interconnection data from the year 2004-2005 [22]. We
consider the case of a WPP in hourly day-ahead and hourly
real-time markets for the case where horizon D = 24. For
comparison, we also evaluate approximate D = 4 models with
prices and wind averaged over 6 hour blocks. We fit Gaussian
models to the prices and uniform distributions to the wind.
The realizations of the wind and prices are independent across
time and each other in this simulations but are cyclo-stationary.
Furthermore, real world wind and price traces will be used for
simulations toward the end of the section.

The code and data files for the simulation are available
at [23]. We evaluate the averaged discounted profit over 16
realizations for two policies, and also evaluate upper bounds:

1) Small battery approximate policy: This policy sets
contracts to the optimal batteryless contract s∗t , and
charges or discharges its battery if it sees an excess or
deficit based on the realized wind and the contract it has
to meet.

2) Stochastic MPC: We use the heuristic policy described
in Section IV with 40 Monte Carlo samples for price and
wind values with lookahead of M = 40 for D = 4, and
40 samples with lookahead M = 48 for D = 24. The
terminal value function approximation used is computed
from the LQ method described in Section IV-A.

3) Clairvoyant bound: Assuming complete knowledge of
the future wind and price processes, an upper bound on
the discounted profit can be computed using a linear
program.

4) Linear upper bound: The precise incremental value of
storage was computed in the small battery regime as
shown in Section III-B. Now as the value function is
convex in B, the profit is concave, and the computed
derivative at 0 provides an upper bound as follows

V Linear
B (s∗−D+1, b = 0)

= Vπ∗
0,t,t

(s∗−D+1, 0)+
∂Vπ∗

B,t,t
(s∗−D+1, 0)

∂B
|B=0B

≥ Vπ∗
B,t,t

(s∗−D+1, 0).

5) Upper bound: The upper bound we present in the
figures is the minimum of the above two upper bounds.

B. Special case - Constant prices and stationary wind distri-
bution

We start with the price process being constant and the wind
distribution drawn from a stationary uniform distribution. The
battery is assumed to be ideal. While this scenario is not
realistic in practice, it allows us to compute the utility of the
battery solely due to the variation in wind. In this scenario,
we can evaluate the incremental value of energy storage in
closed-form. For any finite horizon D, the optimal batteryless
contract can be found by solving the following news-vendor
problem,

s∗ = min
s
−pf + βDE

[
pb(s− wt+D)+ − ps(wt+D − s)+

]
⇒ s∗ = F−1w

(
pf − βDps
βD(pb − ps)

)
,

(13)

where Fw is the cdf of the wind distribution. For a small
battery and an optimal batteryless contract, the following
holds:

∆V +
B (B) = Pr(w < s∗)

(
−pbB + β∆V +

B (0)
)

(14)

+Pr(w > s∗)
(
β∆V +

B (B)
)

∆V +
B (0) = Pr(w < s∗)

(
β∆V +

B (0)
)

(15)

+Pr(w > s∗)
(
psB + β∆V +

B (B)
)
.

The notations are explained as follows. We let
∆V +

B (stt−D+1, b) be the incremental cost of storage
(nonpositive), i.e., the difference of a) the expected batteryless
value function, from b) the expected value function at
(stt−D+1, b) from following the optimal policy under the
small battery approximation. Notationally, if the first argument
is omitted, the prior D contracted amounts are the optimal
batteryless amounts s∗. In (14), the incremental value
function with full battery is the sum of the cost when there
is a deficit (−pbB + β∆V +

B (0)) and when there is an excess
(β∆V +

B (B)), weighted by the probability of deficit or excess
while following the small battery optimal policy. Equation
(15) can be similarly interpreted. The above simplification of
stagecost is valid to o(B) as described earlier. We can evaluate
Pr(w > s∗) from the solution to the news-vendor problem
described in Equation (13). If we follow the batteryless
optimal contract and do not charge or discharge the battery
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Fig. 3. Average discounted profit as a function of battery capacity for (a) constant price and stationary wind processes and D = 4, and (b) periodic and
random price and wind processes with D = 4 modeled over 1 year and (c) periodic and random price and wind processes with D = 24 and 2 months
modeled.

until the first time we have a non-zero contract to deliver
(st−D > 0), the incremental value of battery evaluates to

∆V +
B (s∗1−D = 0, b = 0) = Pr(w > s∗)∆V +(B)

+Pr(w < s∗)∆V +(0)

= −B (pf − βDps)(βDpb − pf )

βD(pb − ps)(1− β)
(16)

This is confirmed in Fig. 3(a) where the incremental value of
the battery using the small battery policy closely matches the
asymptote obtained above (16). The approximation degrades
when B = 25MWh. Beyond a capacity of 10MWh, the
stochastic MPC heuristic outperforms the small battery policy
(albeit both are close to each other). To get a sense of the size
of storage, the average wind energy generated at every time
unit (over 6 hours) in this scenario is 200MWh. In scenarios
where the price and wind statistics are periodic, the asymptotes
are found numerically as is done in Fig. 3(b) and Fig. 3(c).

C. Performance with general battery capacities

Fig. 3(a), 3(b), and 3(c) show the performance of the two
policies for a wide range of energy storage capacities, in
the stationary wind and constant price scenario and periodic
external process scenarios with D = 4 and D = 24. The MPC
heuristic is seen to perform quite well as it a) matches the
asymptote (and the optimal small battery policy) at low battery
levels, and b) approaches the clairvoyant bound at high energy
levels. The small battery policy, which only employs the
battery to minimize real-time interactions without changing the
forward contracts from the optimal batteryless ones, is clearly
suboptimal for values of energy storage beyond 100MWh. In
other words, when the battery capacity is higher than this, it is
optimal to contract more than the optimal batteryless contract
depending on the stored energy levels. In the extreme case
with very high battery capacity, it is optimal to store energy
and contract only when price is high. In Fig. 3(a), (finite)
arbitrage across time cannot be done as prices are constant.
Increasing discounted profits are seen in Fig. 3(b) and 3(c) as
increased battery levels enable storing energy across periods
until the forward market contract price is higher.
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Fig. 4. Periodically varying wind and fixed price with D = 4 and simulated
for 1 year: (a) Average discounted magnitude of the real-time component of
the stage cost (b) Average discounted contracts offered on the forward market.

In Fig. 4(a), the magnitude of real-time market interactions
are plotted for the two policies and in the clairvoyant bound.
It can be seen that the interactions, which are a proxy for
risk since real-time market interactions are costly, are reduced
more significantly for the MPC. Fig. 4(b) shows the average
discounted contracts (sum of contracts with a discounting
factor) made. The small battery policy does not contract more
as capacity increases by design, and this is a source of its
suboptimality. The MPC policy has its discounted contracts
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Wind

Price (pf )

Contracts (st)

Charging(bt+1 − bt)
t

MPC
Small battery

Fig. 5. Time trace for 21 time units with D = 4 with periodic wind and
price statistics and capacity 30MWh. All plots have been normalized.

converging to that of the optimal clairvoyant policy as B
increases; its increased contracts and reduced real-time market
interactions contribute to good performance. In this scenario,
energy storage allows for increased contracts, and at the same
time reduced real time market interaction as it helps mitigate
the randomness of wind energy generation. In the general
case with varying prices, arbitrage brings additional benefit.
It is interesting to note that MPC and the low complex-
ity small battery heuristic have similar performance when
B < 20MWh, although the policies have quite different
computational requirements.

In Fig. 5, we can see the behavior of the MPC and small
battery policies for a specific case with D = 4 and periodic
wind and price statistics. The small battery policy contracts an
amount based on the current forward contract price, statistics
of the wind and price for each time instant; this can result
in a higher contract for periods in which the contract price
realization is low but the expected wind generation is high. The
MPC policy actively takes into account arbitrage opportunities
afforded by periodic price and wind variations and contracts
more when the price is higher by charging and discharging the
battery appropriately. This shows that the small battery policy
brings gain through minimizing wind variations whereas the
MPC policy can also arbitrage with prices.

D. Impact of battery inefficiencies

Fig. 6(a) highlights the impact of battery charging and
discharging inefficiencies in the periodically varying wind and
price scenario for D = 4. Performance of both policies and the
clairvoyant upper bound flatten out at degraded profit levels.
Efficiency of the co-located energy storage is crucial in making
a profit and justifying the expense of the battery.

Fig. 6(b) illustrates the impact of ramping factor R. A
ramping factor R > 0.7 is not seen to degrade performance
at higher battery levels, implying that large shifts in battery
values are not common in the optimal policy for typical
scenarios. The greatest impact of the ramping factor for the
small battery policy is at lower battery levels while it affects
MPC policy for all battery levels.
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Fig. 6. Periodically varying wind and price statistics with D = 4 and
simulated for 2 moths (a) Effect of battery inefficiency (b) Effect of the
ramping constraint.

E. Performance on Real Data

Performance on real data with representative forecasting
errors is shown in Fig. 7. In this simulation, PJM interconnec-
tion data for the years 2004 and 2005 were used to generate
the wind and prices. The algorithms were run over 2 months
which allowed for 12 realizations. Representative forecasting
error distributions were assumed with the margin of error
(1%−10%) increasing as the prediction horizon increased. In
solving the policy decisions A uniform model was assumed
for wind and Gaussian models for the prices. The policies are
then evaluated using the real world wind and price traces.

As can be seen from the plot, the small battery policy
performs quite well compared to the MPC policy for small
storage capacities. The clairvoyant bound is also higher as real
data can offer arbitrage conditions; this makes it profitable for
a battery owner who does not generate wind power to operate
on the grid. The performance of the small battery policy is not
monotonically increasing as Assumption 1 on prices does not
hold for real data. There are wide fluctuations in the prices and
the forward contract price now can be larger than the buying
price or lower than the real time selling price at a later time
instant. This implies that storing energy in the battery may
be sometimes not as profitable as selling it on the real time
market.
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Fig. 7. Performance with D = 4 for 12 realizations of real data with
representative errors over 2 months.

VI. CONCLUSIONS

We have studied the problem of a WPP participating in
a dynamically evolving two settlement power market, with
the help of a co-located energy storage. To maximize the
expected profit of a WPP, the optimal forward contract and
the storage operation (i.e. charging/discharging) decisions are
formulated as an infinite horizon stochastic optimal control
problem. We characterize analytically the optimal operations
for the asymptotic regimes of small storage and show that the
optimal operation for small storage involves only a reduction
in the real time market interaction, without changing the
forward contracts from the optimal ones in the absence of
storage. For an intermediate storage capacity, we propose a
stochastic model predictive control (MPC) policy based on a
quadratic approximation of the value function. We numerically
evaluate the simple asymptotically optimal policy and the
MPC policy. We observe that, as expected, while the simple
policy associated with the small battery approximation works
well for small batteries, the more complex MPC works better
for larger ones. The precise threshold on battery capacity
where the different policies are best depends on the exact
parameters of the system.
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APPENDIX A

In this appendix, we state and prove Lemma 2 about some
properties of V +

π∗
B ,t

.

Lemma 2. The following hold:
• V +

π∗
B,t,t

is differentiable in B.

• V +
π∗
B,t,t

(st−1t−D, b) is differentiable in b.

Proof. The finite first moment assumption on the wind to-
gether with the bounded price processes implies that the
expected stage cost at each time is bounded.
• The batteryless optimal contract is bounded above by an

absolute constant if the expected absolute first moment
of the wind process is finite [6]. Also, if the discount

factor β < 1, the series is absolutely summable. This
implies that the expected stage cost is finite and the
dominated convergence theorem can be used to inter-
change the expectation and the summation. We note that
the incremental change in the value function due to the
battery cannot be infinite due to the fact that the prices are
bounded. This means that the value function is Lipschitz
and absolutely continuous in B at B = 0. This implies
differentiability of the value function almost everywhere
with respect to the Lebesgue measure, in any interval that
B may lie in, in particular, a neighborhood around 0.

• From the boundedness of prices it follows that V +
π∗
B,t,t

is
Lipschitz in b. Thus V +

π∗
B,t,t

is differentiable in b (similar
argument as in the last paragraph).

APPENDIX B

In this appendix, we prove Theorem 1. We first show
that an optimal storage operation policy is dependent only
on the external processes (in particular, it is independent of
the contract policy). For any fixed storage operation policy
dependent only on external wind and price statistics we show
that an optimal contract policy is the batteryless optimal policy.

1) Optimal storage operation policy: From the differentia-
bility of V +

π∗
B,t,t

in b established in Appendix A, we have the
following expression:

V +
π∗
B,t,t

(st−1t−D, b) = V +
π∗
B,t,t

(st−1t−D, 0) + αt(s
t−1
t−D)b+ o(B).

αt(·)b in the above expression is the incremental cost (or the
negative of the incremental value) of having an initial battery
level of b. Note that αt < 0 can be computed based on the
history of all realizations till (and including) time t − 1 and
the future statistics of all external wind and price processes.
Note that, as shown in Appendix C, the o(B) term follows
from the Lipschitz continuity of αt in its contract arguments.
Hence even if each entry of st−1t−D is specified within Θ(B) of
the batteryless optimal contract, the above relation still holds.
We now characterize an optimal battery charging policy within
PL (defined in Assumption 2). Note that by an optimal policy
we mean any policy πB,t such that the corresponding V +

πB,t,t

is different from the V +
π∗
B,t,t

by no more than o(B). We have
the following inequality.

Vπ∗
B,t,t

(xt) ≤ ht(st, bt+1, xt)

= −pft (st) + pbt(st−D − wt+
η+(bt+1 − bt)+ − η−(bt − bt+1)+)+

− pst (−st−D + wt

− η+(bt+1 − bt)+ + η−(bt − bt+1)+)+

+ βV +
π∗
B,t,t

(stt+1−D, bt+1).

Note that ht(·, ·, ·) differs from VπB,t,t(xt) in that the former
corresponds to the value function for the optimal policy from
all time instants t + 1 onwards (with the only potentially
suboptimal action being at time t), whereas in the latter, we
follow the suboptimal policy πB,t for all time. Note also that
xt+1 is specified by the choices of the contract and battery pair
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st, bt+1 and by the external random processes. The (st, bt+1)
can be chosen either according to the policy π∗B,t (to get an
equality) or can be chosen suboptimally, thereby increasing
the one-stage cost.

We now look into the optimality conditions that the best
one-step bt+1 needs to satisfy. We first note that −bt + bt+1

is bounded in absolute value by B. For a given st−D, bt, wt
we then have the following:

∂h(st, bt+1, xt)

∂bt+1
|bt+1→bt+

= η+p
b
tI(st−D > wt)

+η+p
s
tI(st−D < wt)+βαt(s

t
t+1−D), if |st−D−wt| > 2B,

and

∂h(st, bt+1, xt)

∂bt+1
|bt+1→bt−

= η−p
b
tI(st−D > wt)

+η−p
s
tI(st−D < wt)+βαt(s

t
t+1−D), if |st−D−wt| > 2B.

The notation ∂f
∂x |x→a+ refers to the right derivative of f with

respect to x at x = a and ∂f
∂x |x→a− refers to the corresponding

left derivative. Note that we are interested in the value of E [h],
and specifying the storage operation policy when wt lies in
[st−D − 2B, st−D + 2B] is sufficient for us to know E [h]
within o(B). The following lemma makes this precise:

Lemma 3. Policies differing only in the specification for
bt+1 ∈ [0, B] for the wind realization wt lying in a set of
measure Θ(B) yield E [h(st, bt+1, xt)] differing by at most
o(B).

This follows from the fact that the difference in
E [h(st, bt+1, xt+1)] for two policies in PL differing only in
the behavior when |st−D − wt| ≤ 2B is of the form

Pr(|wt − st−D| ≤ B)×Θ(B) = o(B).

An implication of the above lemma is that the choice of
storage operation policy in |st−D − wt| ≤ 2B does not
matter and an optimal next stage storage operation policy
is dependent only on external wind and price processes. An
optimal next stage storage operation policy can be written as
in Program 1, reproduced in Program 2.

αt(.)

(
,

∂V +
π∗
B,t

,t
(·,b)

∂b

)
in Program 2 is the expected cost

of storing an additional unit of charge in the battery and is
non-positive, since one can always make an expected profit
out of storing an additional unit of charge in the battery. Note
that αt(stt+1−D) is Lipschitz in the contract policy, i.e., it is
known to be within Θ(B) (discussed in Appendix C) among
all policies in PL. Strictly speaking one should have Θ(B)
instead of 0 on the right hand side in Program 2 or Program
1, as done in Program 3. This is because the set of wt for
which ∂h

∂b is Θ(B) is also of measure Θ(B). By Lemma 3,
all policies satisfying Program 3 yield E [h] that are the same
up to first order terms in B.

Note that, if we start from a battery level b0 = 0, the
battery level is always either 0 or B. Note also that terms

in stt+1−D are known to within Θ(B). This is true for time
t < D because initial contracts are known, and for time t ≥ D
by Assumption 1 by which we have that the contract policy
does not deviate from the batteryless optimal contract policy
by more than Θ(B). Thus αt(·) can be computed by knowing
just the external statistics. In some special cases, this can even
be obtained in closed form (Appendix E).

We now characterize the optimal contract policy by fixing
a (potentially time dependent) storage operation policy depen-
dent only on the external statistics of wind and prices.

2) Optimal contract policy: We start with decomposing
the expression Vπ∗

B,t
(xt) as the summation of two terms: one

being the expected real time cost due to the initial contract and
the second being the expected revenue from contracts from the
time t onwards. We observe that Vπ∗

B,t
can be written as

Vπ∗
B,t

(xt) = E
[ t+D−1∑

v=t

βv−tgr(p
b
v, p

s
v, ev) | Ft

]
+

∞∑
v=t

βv−tE
[
− pfvsv

+ βDE
[
gr(p

b
v+D, p

s
v+D, ev+D) | Fv

]]
(17)

We focus on finding the optimal contract policy st. We
observe that the inner expectation conditioned on Fv can be
computed to o(B) accuracy by using the storage operation
policy which is just a function of the random variables
defined in Fv (this is proved in Appendix D). In addition,
for any L1, L2 such that |L1|, |L2| < L, we can consider
the batteryless optimal policy at time t, s∗t and have that for
s̃t = s∗t + L1B, s̄t = s∗t + L2B,∣∣∣(−pft s̃t+βDE

[
gr(p

b
t+D, p

s
t+D, ẽt+D) | Ft

])
−
(
−pft s̄t+βDE

[
gr(p

b
t+D, p

s
t+D, ēt+D) | Ft

])∣∣∣
= o(B).

Thus, given a fixed storage operation policy dependent only on
the external statistics of the wind and the price processes, we
observe that the contract choice does not affect the expected
cost by more than o(B) as B approaches 0. Intuitively, the
increased profits from the contracts are canceled by the losses
due to the increased expected real time market interaction if
the contract is already at the one specified by the batteryless
optimal policy. Hence an optimal contract policy in the asymp-
totically small battery regime is just the batteryless optimal
contract policy and an optimal storage operation policy is to
follow Program 1. Thus Theorem 1 is proved.

APPENDIX C
In this appendix, we prove that αt is also locally Lipschitz

around the contracts.
We note that the expected increase in the real time interac-

tion due to a change in the contract by Θ(B) is also Θ(B)
due to the fact that Ewt+1

[pbt(wt+1 − st+1−D)− − pst (wt+1 −
st+1−D)+] is Lipschitz in st+1−D. Since b < B, we have
bΘ(B) = o(B), and

αt(s
t−1
t+1−D + Θ(B))b = αt(s

t−1
t+1−D)b+ o(B)
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Program 2 Optimize the next stage battery level

• If ∂h(st,bt+1,xt)
∂bt+1

|bt+1→bt+ = η+p
b
tI(st−D > wt) + η+p

s
tI(st−D < wt) + βαt(s

t
t+1−D) < 0, set bt+1 = B.

• If ∂h(st,bt+1,xt)
∂bt+1

|bt+1→bt− = η−p
b
tI(st−D > wt) + η−p

s
tI(st−D < wt) + βαt(s

t
t+1−D) > 0, set bt+1 = 0.

• Else: set bt+1 = bt.

Program 3 Optimize the next stage battery level (similar to Program 2)

• If ∂h(st,bt+1,xt)
∂bt+1

|bt+1→bt+ = η+p
b
tI(st−D > wt) + η+p

s
tI(st−D < wt) + βαt(s

t
t+1−D) ≤ Θ(B), set bt+1 = B.

• If ∂h(st,bt+1,xt)
∂bt+1

|bt+1→bt− = η−p
b
tI(st−D > wt) + η−p

s
tI(st−D < wt) + βαt(s

t
t+1−D) ≥ Θ(B), set bt+1 = 0.

• Else: set bt+1 = bt.

where st−1t−D + Θ(B) is taken to refer to any contract history
which is within a constant times B of each contract in st−1t−D,
i.e.,

st−1t−D + Θ(B) , {zt−1t−D : |zi − si| < Θ(B)

for i ∈ {t−D, . . . , t− 1}}.

APPENDIX D

In this appendix we show that, given a storage operation
policy, the expectation at a future time can be computed to
within o(B) and hence can be used to compute the optimal
contract policy. The batteryless optimal s∗ is such that

− pft s∗

+ βDE
[
gr(p

b
t+D, p

s
t+D,−s∗ + wt+D

− η+(bt+D+1 − bt+D)+ + η−(−bt+D+1 + bt+D)+ | Ft
]

= 0

is minimized at s∗. A first order necessary condition for this
to hold is

∂
(
−pft s∗ + βDE

[
gr(p

b
t+D, p

s
t+D, et+D) | Ft

])
∂s∗

= 0

≡− pft + βDE
[
pbt+D(s∗ − wt+D)I(wt+D < s∗) | Ft

]
+ βDE

[
pst+D(−s∗ + wt+D)I(wt+D > s∗) | Ft

]
= 0.

With a fixed storage operation policy dependent only on the
external wind and price statistics, and here we choose s∗+λB
WLOG (as will be shown by the end of this section), the
change in the cost is

−pft (λB)

+βDE
[
gr(p

b
t+D, p

s
t+D, wt+D−s∗−λB−η+(bt+D+1−bt+D)+

−η−(bt+D−bt+D+1)+) | Ft
]

= λB
(
−pft

+βDE
[
pbt+D(s∗−wt+D)I(wt+D < s∗) | Ft

]
+βDE

[
pst+D(wt+D−s∗)I(wt+D > s∗) | Ft

] )
+B

(
βDE

[η+(−bt+D+bt+D+1)+−η−(bt+D−bt+D+1)−

B

| Ft
])

+o(B)

= B
(
βDE

[η+(−bt+D+bt+D+1)+−η−(bt+D−bt+D+1)−

B

| Ft
])

+o(B).

The first order (in B) terms in the last expression is
independent of λ and depends only on the storage operation
policy and the external statistics.

APPENDIX E

We compute αt in this appendix. We note that, by the
results of the previous appendix, we can focus only on the
real time market interaction at the next time instant, as every
subsequent time will only have a o(B) effect on the value
function. We also restrict ourselves to a contract st−D which
is within Θ(B) of the batteryless optimal contract s∗. Taking
partial derivatives with respect to bt, and using Assumption 1,
we get that

αt = β
∂

∂b
(E[pbt(s

∗+η+(−bt+b)+

−η−(bt−b)−−wt)+
−pst+1(s∗+η+(−bt+b)+
−η−(bt−b)−−wt+1)− | Ft])+Θ(B)

If the wind and price statistics are such that conditioning on Ft
is the same as conditioning on Ft−D (one special case where
this condition holds is if the external processes are independent
across time) then this expression evaluates (within Θ(B)) to

−βpft−D,

which by assumption 1 (and assuming η− = η − + = 1), is
between ps

t̃
and pb

t̃
for all t̃, w.p. 1. This means that optimal

battery charging policy in this case (under the assumptions
above) is simply to charge if there is an excess and discharge
if there is a deficit.
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APPENDIX F

In this appendix, the formulations of the M -step certainty
equivalent Model Predictive Control (MPC) and the stochastic
MPC model are presented.

The M step certainty-equivalent MPC algorithm utilizes an
approximate value function Vapp(xt) to obtain a policy as

ut = argmin
st,bt+1

min
st+Mt+1 ,bt+M+1

t+2

M−1∑
j=0

βjg(st+j+1
t+j−D+1, b

t+j+1
t+j , z′t+j)

+βMVapp(st+Mt+M−D+1, bt+M , z
′
t+M ).

(18)

As defined earlier, zt = (pft , p
s
t , p

b
t , wt) represents the external

stochastic processes. At each stage t, we see z′t = zt and use
z′t+j = E [zt+j ] ∀j ∈ [M ].

In stochastic MPC, we use the distribution of the future
realizations of wind and prices to generate multiple samples
z′(i), i ∈ [N ], where N is the number of samples. We use
z′(i)t = zt and sample z′(i)t+Mt+1

iid∼ Pr(zt+Mt+1 ) to generate N
samples indexed by i ∈ [N ].

ut = argmin
st,bt+1

min
st+M,it,i ,bt+M+1,i

t+1,i

1

N

N∑
i=1

M−1∑
j=0

βjg(st+j+1,i
t+j−D+1,i, b

t+j+1,i
t+j,i , z′(i)t+j)

+ βMVapp(st+M,i
t+M−D+1,i, bt+M,i,E [z(i)t+M ])

s.t. st,i = st, bt+1,i = bt ∀i (19)

APPENDIX G

In this section we argue that a different market model
as discussed in Section III-C would yield the same contract
and storage operation policies as the market model assumed
in the earlier appendices does. We start with the contract
policy described in Appendix B-2, and make the following
observation from the discussions after Equation (17): under
a different market model as in Section III-C, any deviations
in the contract policy which are Θ(B) from the batteryless
optimal policy would affect the cost (when the contract is
realized) only by a term whose magnitude is less than first
order in the size of the battery (i.e., the deviations in the cost
are o(B)).

The derivation of the storage operation policy follows a very
similar derivation as in Appendix B-1.
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