
DeepPursuit: Uniting Classical Wisdom and Deep
RL for Sparse Recovery

Ziheng Chen∗, Sichen Zhong†, Jianshu Chen‡ and Yue Zhao§∗
∗Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY

†Splunk Inc., San Francisco, CA
‡Tencent AI Lab, Bellevue, WA

§Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY

Abstract—In this paper, we formulate sparse signal recovery
as a sequential decision making problem (modeled by Markov
Decision Processes). Based on the formulation, we propose
DeepPursuit, a novel sparse recovery algorithm that learns to
recover sparse signals via deep reinforcement learning (RL) and
Monte Carlo Tree Search (MCTS). To substantially enhance the
learning speed and performance, DeepPursuit (i) employs a novel
residual-type policy/value network architecture that organically
incorporates the classical wisdom from the Orthogonal Matching
Pursuit (OMP) algorithm, and (ii) exploits the available ground-
truth knowledge to guide the MCTS during the training process.
Experimental results for general random sparse signal recovery
demonstrate that, with very low computational complexity, the
DeepPursuit algorithm significantly outperforms the state-of-the-
art algorithms. Even higher performance gains are observed with
experiments on the MNIST dataset.

I. INTRODUCTION

We consider the compressed sensing (CS) problem [1]–[4],
where for a given measurement matrix A ∈ Rm×n, m � n,
and a (noiseless) observation vector y = Ax0, we want to
recover a k-sparse vector/signal x0 (k < m)1. Formally, it can
be formulated as:

minimize
x

‖x‖0 subject to Ax = y, (1)

where the `0-norm ‖ ·‖0 of a vector is defined as its number of
non-zero values. Notably, solving (1) entails minimizing an `0
norm and is an NP-hard problem. The readers are referred to
the seminal papers [1], [2] for a comprehensive survey of the
compressed sensing problem. Compressed sensing and sparse
signal recovery have seen wide applications in many areas
including image processing [5], magnetic resonance imaging
(MRI) [4], and seismology [6] among others.

It has been well understood under what conditions solving
the NP-hard `0-minimization problem (1) guarantees to recover
the correct sparse signal x0 [3]. On the other hand, there have
been many studies on analyzing conditions under which efficient
algorithms guarantee to solve (1) with high probabilities. In
particular, the restricted isometry property (RIP) of A allows
the solution of an `1-minimization problem to recover the
correct sparse signal x0 [2]. There is however a significant gap

This work is supported by the National Science Foundation under Grant
ECCS-2025152.

1We say that a vector is k-sparse if it has k non-zero values.

between the `0 and `1 minimization based conditions. Even
if the provable RIP conditions are not satisfied, empirical
evidence demonstrates that, efficient algorithms can still
sometimes achieve good performance in the recovery of x0
[7], [8]. As such, there is an enormous potential in developing
novel computationally efficient algorithms to approach ideally
solving the NP-hard `0 minimization problem. Such algorithmic
improvement will lead to significant reduction in the number
of measurements needed for signal recovery.
Related Work Efficient algorithms for solving the sparse
recovery problem (1) have been extensively studied, including
convex relaxation [3], [9], matching and subspace pursuit [7],
[10]–[12], and iterative thresholding [13], among others. Recent
advancements in machine learning have opened a new frontier
for solving compressed sensing problems, in particular by
taking a deep learning approach. The works in [14]–[17] apply
DNNs and RNNs for encoding and/or decoding of signals
x0. Modern generative models have also been used to encode
signals with strong priors and design the measurement function
[18], [19]. The latter is also addressed in [20] using MCTS.
Different from the above works, our innovation with machine
learning is on signal recovery algorithms. Supervised learning
approaches for training sequential signal support recovery
policies have been developed [21]. While they are effective
for recovering signals with strong statistical priors, they are
shown to underperform classical algorithms such as OMP for
general sparse signals.

In this paper, we formulate sparse signal recovery as a
sequential decision making problem, modeled by Markov
Decision Processes (MDP), where the signal support of x, or
equivalently, the columns of A to represent y are sequentially
selected. Based on this formulation, we employ an RL-based
framework aided with Monte Carlo Tree Search (MCTS) for
training signal recovery policies [22]. We develop DeepPursuit,
a novel sparse recovery algorithm that (i) employs a novel
residual-type policy network architecture that organically in-
corporates the classical wisdom from the Orthogonal Matching
Pursuit (OMP) algorithm [10], and (ii) exploits the available
ground-truth knowledge to guide the MCTS during training. As
such, the classical wisdom from OMP is effectively integrated
with that from Deep RL in a unified learning framework. We
conduct experiments to evaluate our proposed DeepPursuit

algorithm on general random sparse signals and compare it
to existing state-of-the-art methods. The experimental results
demonstrate that DeepPursuit significantly outperforms the
state-of-the-art methods in speed and/or performance. We note
that, in the testing stage, the DeepPursuit algorithm has a very
low computational complexity.

II. SPARSE SIGNAL RECOVERY AS A MARKOV DECISION
PROCESS

A. MDP Formulation of Sparse Recovery

We formulate the sparse signal recovery problem as a
sequential decision making problem. Note that the key to
the successful sparse recovery is to choose the correct subset
of the columns of A, or equivalently, the support of x, such
that the optimization problem (1) is solved. Equivalently, this
can be reformulated as the following problem. An agent is
employed to sequentially choose one column of A at a time
until it selects up to k columns: The agent succeeds if the
selected columns in the end meet the constraint in (1) and
minimize the `0-loss in (1). Next, we formally define such an
MDP problem.
State and Action Spaces A state s is defined to be a pair
(y, S), where y is the observed signal generated according
to x0 (via y = Ax0)). Let S ⊆ [n] denotes the set of the
already selected column indices of A, where [n] , {1, . . . , n}.
Provided that the matrix A is given, the state does not depend on
this measurement matrix. We define the terminal states to be the
states s = (y, S) that satisfy either: (a) a maximum-considered
number of columns have been selected, or (b) ||ASxs− y||22 <
ε for some given ε, where AS denotes the submatrix of A
constructed by the selected columns in S, and xs is the solution
to the following least-square solution for the given signal
support S:

xs , argmin
z
||ASz − y||22. (2)

The feasible action space at a state s = (y, S) is defined to be
As = [n] \ S; that is, a valid action at state s is any column
from the remaining unchosen ones.
Transition When an action a is taken (i.e., a new column a of
A is selected) at state s=(y, S), the next state s′=(y, S∪{a})
(and hence the MDP transition) is determined and known.
Reward We define the reward to be: R(s, a, s′) := −1−
β
(
||AS′xs′−y||22−||ASxs−y||22

)
, where s, s′ are the current

and next states, and xs is the least-square solution given by
(2) (and similarly for xs′). Such a reward design ensures that
the cummulative reward when reaching a terminal state s is

Rcum(s) = −||xs||0 − β||ASxs − y||22. (3)

As such, this cummulative reward consists of two parts: the first
part is the `0 term that measures the sparsity of the solution,
and the second part is the optimal least-square-error given the
column choices in S. β > 0 is a hyperparameter that controls
the balance between sparsity and goodness of fit. We note that,
the purpose of such a “reward decomposition” is to avoid the
potential sparse-reward issue that occurrs when we only have
the terminal rewards (3) with no intermediate ones.

+

Neural Net softm
ax

n dim

n dim

n dim n dim

OMP Skip Connection

|•|�S

<latexit sha1_base64="G4BYGuhlbtRZ/LsLWWf70R5aSYQ=">AAAHcXicbdXZTttAFAZg04XQdIP2quqNBapUqRJKKqS2d+z7EiAb4AiNx+PExFvsMSRYeYretg/W5+gLdOzk/GGppUhzvtnPeGIzdJ1Ylkp/pp48ffZ8ujDzovjy1es3b2fn3tXjIIm4qPHADaKmyWLhOr6oSUe6ohlGgnmmKxpmdy2rb1yLKHYCvyoHoWh5rO07tsOZVHRmuKqpxS5PL2cXSoul/NEfF8rjwoI2fiqXc9MnhhXwxBO+5C6L44tyKZStlEXS4a4YFo0kFiHjXdYWF6roM0/ErTRf8VD/pMTS7SBSP1/qud7tkTIvjgeeqVp6THbih3UZ/q/uIpH291bq+GEihc9HE9mJq8tAz7avW04kuHQHqsB45Ki16rzDIsalStK9Waw4W9q9faSmNywWi4YlbMP3U8MP/MQzRZThSDdSI1uTaaYbw+GIPJNsDOoneqkhI4f5bVf0qB0ftePMHYvKyogiL8sbDXjNIrAqE6sNteFZQBVcndBkHBVQRXUyThXDmJXUMNUMFYLAF6NmVpyWCSuTrhV0DaOgf4eD/hDZ8lbSbIMrSMp6Hq8jPsjjA8S1PK4hbuRxA/F5Hp9PZmDjLNspw1ZAJnIB4sgbyCISIEFkg2yiNgip7oA6RA7IIboCXRF1QV0iF4ST90AekQ/ycWCgACcDCol6oB5RBMKRxqCYSILwIiWgBC8p6JroBnRD1Af1iQagAdEt6DY779xWYHinVkGrRGugNaJ1EF6+TdAm0RZoi2gbtE20A9oh2gXtEu2B9oj2QftEByBcgkPQIdER6AhXEYQreww6JjoBnRCdgk7xjwCqEtVAuIx1UJ2oAcIVbYKaRGegM6JzUHaX1Veo/PCb87hQ/7pYXlr8cby0sLw6/h7NaB+1ee2zVta+acvatlbRahrXPO2n9kv7Pf238KGgF+ZHTZ9Mjfu81+49hS//AJ8BsXs=</latexit>

n dim

1 dim

Fig. 1. The OMP-Residual Policy/Value Network.

B. Learning-to-Recover via Reinforcement Learning

Given a measurement matrix A, we have a set of (sparse)
signals x0, and generate observations y according to y = Ax0.
Based on these signal-observation pairs {(x0, y)}, we use an
RL framework to learn a policy π(a|s)(modeled by a policy
network), which sequentially selects the columns of A and
reconstructs the sparse signal x0. The RL objective is to learn
the π(a|s) that maximizes the cumulative reward, which leads
to recovering x to be the same as the ground truth x0 with high
probability. In RL training, MCTS is employed to generate
high quality experience to update the policy. After the training,
at the testing stage, the learned policy network π(a|s) can then
recover the sparse signal x0 efficiently for any unseen y.

We note that there are existing works using supervised
learning approaches (as opposed to RL) to train a sequential
decision policy for choosing the signal support, but fail to
outperform OMP for general signals without a strong prior
[21]. This motivates us to (i) develop the proposed RL approach,
(ii) design our method to incorporate the wisdom of OMP and
learn beyond the classical algorithms, while still (iii) leveraging
the available ground truth knowledge as the supervision and
guidance signals.

III. THE DeepPursuit ALGORITHM

The key innovations of the proposed DeepPursuit Algorithm
stem from two objectives. Firstly, we seek to incorporate a
classical sparse recovery algorithm, OMP, into the learning of
a policy network. As such, the wisdom from both classical
compressed sensing algorithm design and deep reinforcement
learning are organically integrated. Secondly, we seek to
leverage the fact that the ground truth signals x0 are available at
the training stage, and use them to effectively guide the training
of a policy network. We achieve the first objective by designing
a novel OMP-Residual Policy Network (OMP-ResNet), and the
second objective by incorporating the ground-truth-knowledge
to guide the MCTS process at the training stage.

A. OMP-Residual Policy/Value Network

To learn a policy in the sequential decision making formu-
lation of sparse signal recovery (cf. Section II-A), we employ
a single neural network to jointly model the policy πθ(a|s)
and the state-value function Vθ(s). The policy πθ(a|s) defines
a probability distribution over all actions for a given state s,
where the action set includes the possible next columns of A
to pick and a stopping action. The input of the policy/value

Select	a	leaf Expand	the	leaf	and	
evaluate

Back-up	with	edge	
information	update

Eq.	(5)

Learning to Recover Sparse Signals

Sichen Zhong
Stony Brook University
szhong26@gmail.com

Yue Zhao
Stony Brook University

yue.zhao.2@stonybrook.edu

Jianshu Chen
Tencent AI Lab

jianshuchen@tencent.com

Abstract

In compressed sensing, a primary problem to solve is to reconstruct a high di-
mensional sparse signal from a small number of observations. In this work, we
develop a new sparse signal recovery algorithm using reinforcement learning (RL)
and Monte Carlo Tree Search (MCTS). Similarly to orthogonal matching pursuit
(OMP), our RL+MCTS algorithm chooses the support of the signal sequentially.
The key novelty is that the proposed algorithm learns how to choose the next
support as opposed to following a pre-designed rule as in OMP. Empirical results
are provided to demonstrate the superior performance of the proposed RL+MCTS
algorithm over existing sparse signal recovery algorithms.

⇡✓, V✓/R

1 Introduction

We consider the compressed sensing (CS) problem ???, where for a given matrix A 2 Rm⇥n,
m ⌧ n, and a (noiseless) observation vector y = Ax0, we want to recover a k-sparse vector/signal
x0 (k < m). Formally, it can be formulated as:

minimize
x

||x||0, (1)

subject to Ax = Ax0 (2)

Related work There is a large collection of algorithms for solving the CS problem. Some foun-
dational and classic algorithms include convex relaxation, matching and subspace pursuit ??? and
iterative thresholding ??. In particular, two well-established methods are (i) Orthogonal Matching
Pursuit (OMP) and (ii) Basis Pursuit (BP). OMP recovers x0 by choosing the columns of A iteratively
until we choose k columns ?. BP recovers x0 by solving minAx=y ||x||1 ?. Because OMP and BP
are extremely well studied theoretically?? and empirically ?, we use these two algorithms as the
main baseline methods to compare against when evaluating the proposed RL+MCTS algorithm.

Recent advancements in machine learning have opened a new frontier for signal recovery algorithms.
Specifically, these algorithms take a deep learning approach to CS and the related error correction
problem. The works in ?, ?, ? and ? apply ANNs and RNNs for encoding and/or decoding of
signals x0. Modern generative models such as Autoencoder, Variational Autoencoder, and Generative
Adversarial Networks have also been used to tackle the CS problem with promising theoretical and
empirical results ???. These works involve using generative models for encoding structured signals,
as well as for designing the measurement matrix A. Notably, the empirical results in these works
typically use structured signals in x0. For example, in ? and ?, MNIST digits and celebrity images
are used for training and testing.

Our contribution Differently from the above learning-based works, our innovation with machine
learning is on signal recovery algorithms (as opposed to signal encoding or measurement matrix
design). We do not assume the signals to be structured (such as images), but cope with general sparse

Deep Inverse Workshop, 33rd Conf. on Neural Info. Process. Systems (NeurIPS 2019), Vancouver, Canada.

(Q,	N)

Eq.	(5) (Q,	N)

state	c state	c state	c

Fig. 2. MCTS rollouts for sparse recovery.

network consists of two parts: (xs, λs). The first part is the
least-square solution in (2) extended to an n-dimensional vector
with zeros padded in the positions not in S. The second part
is given by

λs := AT (y −ASxs) ∈ Rn,

where y−ASxs is the least-square’s residue. As will be shown
next, having λs as an input feature allows us to include an
“OMP skip connection” in the policy network architecture.

In desigining the architecture of the policy network, we seek
to leverage OMP which a) is widely accepted as a very fast and
effective heuristic for sparse recovery, and b) shares the same
sequential decision making nature as our MDP formulation.
Notably, the OMP algorithm sequentially chooses the column
index whose corresponding component in |λs| is the largest,
where |λs| captures the correlation between the columns of A
and the least-square’s residue. Such a “hard-max” decision
policy can be approximated by Softmax(|λs|). On the other
hand, the policy network also employs a softmax layer, with
a log-probability vector as its input. Thus, a natural way of
combining the decision of OMP and that of a trained policy
network is to element-wise add the logits from both parts,
meaning that the respective probabilities are multiplied.

Based on the above, we design a policy network architecture
as in Figure 1. The upper branch is a general neural network,
whereas the lower branch is an “OMP skip connection” that
implements |λs| to mimic the “OMP-policy”. Adding the OMP
skip connection enables us to learn beyond what OMP can
do. In other words, we free the upper branch from learning
what OMP already does, and provide it a “head start” as it
only needs to focus on what OMP cannot do. Since it shares
a high-level intuition with the residual network [23], we call
our new architecture as an “OMP-Residual Policy Network”.

B. Knowledge-Guided Monte Carlo Tree Search

Since the MDP transition is deterministic and known, we are
able to use such model-based information to perform planning
with MCTS in RL training [24]. In particular, we employ
the general algorithmic framework of AlphaZero [24], and
introduce two novel components that incorporate supervision
signals into the MCTS and RL process (cf. Figure 4).

1) Guiding the MCTS with Ground-Truth Knowledge: The
key search decision during the MCTS rollouts is how to select
an action at at each state st experienced. On the one hand,
we incorporate the decision framework of PUCT (Polynomial
Upper Confidence bound for Trees) [24]. On the other hand,
we leverage the availability of the ground truths x0 in the
generated training data as a supervision signal to guide the
search. Specifically, we introduce a perturbation vector ηea0
in the PUCT framework as follows:

π̃θ(a|st) ∝ πθ(a|st) + ηea0 ,
∑
a

π̃θ(a|st) = 1, (4)

at = argmax
a

{
Q(st, a) + cpuct · π̃θ(a|st)

√∑
bN(st, b)

N(st, a) + 1

}
,

(5)

where, in (4), a) st denotes the state at step t during the MCTS
simulations; b) πθ(a|st) is the output (action probabilities)
of the policy network; c) ea0 is a 1-hot vector at a position
a0 randomly selected within the ground truth signal support;
d) η > 0 is a hyperparameter that controls the influence
of this ground truth guidance; and e) π̃θ(a|st) is the action
probabilities with such guidance. Q(st, a) is the action value
function, and N(st, a) is the visiting count. (5) is PUCT with
cpuct being a hyper-parameter that controls the tradeoff between
exploration and exploitation.

As such, during the MCTS process, the above guidance
makes it more likely to select a support among the ground
truth labels. By varying η, we balance between exploring more
generally and learning primarily from the ground truth.

2) Training with a Diminishing OMP-bias: After the
(pseudo) empirical probability labels are computed from MCTS,
denoted by pM ∈ Rn, we further introduce a bias in these
labels with the knowledge from OMP. Specifically, as OMP
produces a deterministic choice, we encode this choice in a
1-hot vector, pO ∈ Rn, whose value is one at the OMP’s choice
and zero elsewhere. We then bias the (pseudo) label pM from
MCTS with pO in the cross entropy loss:

l = −[(1− µ)pM + µpO] log πθ(s), (6)

where µ is a hyperparameter that controls the contributions
from both labels, and πθ(s) ∈ Rn is the vector of all the action
probabilities from the policy network. This step of biasing the
labels by OMP is in fact designed in conjunction with the
OMP skip connection. The rationale is that, at the initial stage
of training, the (pseudo) labels from MCTS have poor qualities,
and biasing them with the OMP’s choice improves the label
quality. Next, as training progresses and the policy network
becomes better, we anneal this bias by gradually reducing µ.

IV. SIMULATION

In this section, we present experimental results for evaluating
the proposed DeepPursuit algorithm with (i) general random
sparse signals, and (ii) the MNIST dataset [25]. In all the
experiments, the upper branch of the OMP-ResNet in Figure
1 uses a neural network with two hidden layers and ReLU

TABLE I
VECTOR RECOVERY ACCURACY (HIGHER IS BETTER) OF DEEPPURSUIT VS. EXISTING ALGORITHMS.

Matrix Size Sparse Recovery Alg. Accuracy (%) for various sparsity k Testing time
k = 2 (20) k = 3 k = 4 k = 5 (millisecond)

BP (`1-min) 77.6 32.5 6.0 0.8 20.0
10× 100 OMP 79.6 41.3 11.0 2.0 0.49

CoSaMP [11] 74.7 28.9 3.5 0.1 1.89
Subspace Pursuit [12] 77.4 36.9 8.8 1.7 0.76

DeepPursuit (ours) 83.9± 1.2 47.5± 0.7 13.6± 1.1 2.2± 0.0 0.67

BP (`1-min) 97.2 61.0 26.5 7.3 90.0
15× 150 OMP 94.3 75.6 46.3 22.0 0.52

CoSaMP [11] 93.4 71.1 31.2 7.8 2.01
Subspace Pursuit [12] 96.8 73.8 40.5 19.5 0.90

DeepPursuit (ours) 94.3± 0.6 79.8± 1.3 55.1± 1.6 25.6± 1.1 0.86

BP (`1-min) 99 87 52 26.9 170.0
20× 250 OMP 96.5 86.1 67.5 40.8 0.89

CoSaMP [11] 98.6 85.5 60.8 31.1 2.79
Subspace Pursuit [12] 99.5 87.2 68.7 39.8 1.35

DeepPursuit (ours) 96.3± 0.5 86.9± 1.1 71.2± 1.2 43.6± 1 0.96

activations followed by two separate output heads that models
πθ(a|s) and Vθ(s), respectively.

A. General Random Sparse Signal Recovery

Training Data Generation We conduct experiments on four
measurement matrices of sizes 10×100, 15×150, 20×250 and
200×600, respectively. Each matrix A is generated with entries
sampled from an independent and identically distributed (i.i.d)
standard Gaussian N (0, 1) distribution. In each iteration (i.e.,
between consecutive updates of the policy/value network) in the
training process, 1600 i.i.d. random samples of x0 are generated:
a) x0’s sparsity k is randomly generated, b) the locations of
the k nonzero elements in x0 are chosen uniformly at random,
and c) the values of the nonzero elements are generated i.i.d.
from U [0, 1]. y0 = Ax0 is computed for each x0, resulting in
a (y, x0) pair. MCTS is then performed on each of these 1600
(y, x0) pairs.
Testing Data Generation and Evaluation Metric The test
data contain (y, x0) pairs generated i.i.d. in the same way
as in training. For each sparsity level k that we evaluate for,
we generate 1000 k-sparse test signals x0 and compute the
corresponding y. With x̂ as the predicted sparse vector, we
define a successful recovery of x0 as exactly satisfying x̂ = x0.
Experiment Results We evaluate the testing performance of
DeepPursuit and several baseline algorithms. We summarize
the main results (along with their per-sample testing times2)
in Table I and Figure 3. We note that all the performance of
DeepPursuit are achieved without any use of MCTS during
testing, i.e., only by querying the OMP-ResNet. We observe a
significant improvement in the recovery success rates of Deep-
Pursuit over the existing algorithms. Moreover, DeepPursuit is
only slightly slower than OMP, and orders of magnitude faster
than Basis Pursuit (BP, i.e., `1-minimization).

2The testing time is measured on a computer with 5 CPU cores and 1
Nvidia 1080TI GPU.

Fig. 3. Vector recovery accuracy for the 200× 600 matrix.

Ablation Study We then perform ablation study of DeepPursuit
to examine the contribution of the individual components
(Table II), which shows that all the components developed
in Section III are essential. Note that the results in Tables I
and II are performed with 400 MCTS rollouts in training, and
none in testing. To understand the importance of MCTS, the
performance of DeepPursuit under different numbers of MCTS
rollouts in training is depicted in Figures 4. We can see the
performance improves significantly as the number of rollouts
increase. The gain of employing more rollouts beyond 400
would however be very small, and is hence not quite worth
the corresponding extra training time. Generally, it is clear that
MCTS plays a key role in improving the training efficiency.

B. Image Recovery with Compressed Measurements

Each image in the MNIST dataset is of size 24 × 24. We
limit the number of nonzero values in each image to 80. We
divide each image into four 12× 12 blocks (cf. [26]), resulting

TABLE II
ABLATION STUDY OF DEEPPURSUIT ON 15× 150 MATRIX A (IN VECTOR RECOVERY ACCURACY (%)).

Method k = 2 k = 3 k = 4 k = 5

DeepPursuit 94.3± 0.6 79.8± 1.3 55.1± 1.6 25.6± 1.1
DeepPursuit w/o OMP skip connection 92.7± 0.6 78.6± 0.8 47.9± 1.0 20.9± 1.2
DeepPursuit w/o OMP-biased labels 85.0± 6.5 64.1± 5.1 23.0± 2.0 5.6± 0.8
DeepPursuit w/o ground-truth guidance 83.2± 6.0 63.1± 3.6 26.2± 3.6 4.8± 1.6
DeepPursuit w/ MCTS within ground-truth only 62.0± 6.0 37.0± 3.0 18.0± 4.2 3.6± 1.3

0 100 200 300 400
MCTS rollouts in training

0

20

40

60

80

100

Ac
cu

ra
cy

 (p
er

ce
nt

) k = 2
k = 3
k = 4
k = 5

Fig. 4. Testing performance vs. number of MCTS rollouts in training.

in a signal dimension of 144. A measurement matrix of size
50 × 144 is generated with i.i.d. standard Gaussian N(0, 1)
distribution. 43, 000 original images are used in the training
process, and 1, 000 for testing. We evaluate the following
performance metric for image recovery: |S ∩ S0|/|S0|, where
|S0| is the number of nonzero pixels in the original image,
and |S ∩ S0| is the number of pixels where both the original
and the recovered images are non-zero (i.e., the size of the
overlap). We also plot the recovered images.

We summarize the testing performance in Table III, which
shows that DeepPursuit significantly outperforms BP and OMP.
Next, we plot examples of the recovered images from all the
tested algorithms, as well as the original images, in Figure 5.
We observe that the recoveries by DeepPursuit are perceptually
very close to the original images, whereas those of BP and
OMP suffer from major perceptual distortions.

V. CONCLUSION

We have developed DeepPursuit, a new sparse signal
recovery algorithm trained under a reinforcement learning (RL)
framework. We design a novel residual network architecture
that organically integrates the Orthogonal Matching Pursuit
algorithm into the learning of a policy/value network. We
further employ MCTS in the RL training process, and leverage
the supervision signals from the ground-truth knowledge avail-
able in the training data to guide the MCTS. We demonstrate
that DeepPursuit significantly outperforms the state-of-the-

Fig. 5. MNIST image recovery. From top to bottom: original,
DeepPursuit, OMP, BP.

Method DeepPursuit DeepPursuit ∪ OMP BP OMP

|S∩S0|
|S0| 89.0± 2.0 89.0± 2.1 57.5 53.0

TABLE III
TESTING PERFORMANCE (%) ON THE MNIST DATASET

art algorithms for recovering general random sparse signals.
Furthermore, we show that DeepPursuit achieves even larger
performance gain over OMP and BP on image recovery tasks.

REFERENCES

[1] David L Donoho, “Compressed sensing,” IEEE Trans. on Inf. Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[2] Emmanuel J Candes, “The restricted isometry property and its
implications for compressed sensing,” Comptes rendus mathematique,
vol. 346, no. 9-10, pp. 589–592, 2008.

[3] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
Dec 2005.

[4] Michael Lustig, David Donoho, and John M Pauly, “Sparse MRI: The
application of compressed sensing for rapid mr imaging,” Magnetic
Resonance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[5] Yuejie Chi, Louis L Scharf, Ali Pezeshki, and A Robert Calderbank,
“Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions
on Signal Processing, vol. 59, no. 5, pp. 2182–2195, 2011.

[6] Felix J Herrmann, Michael P Friedlander, and Ozgur Yilmaz, “Fighting
the curse of dimensionality: Compressive sensing in exploration seis-
mology,” IEEE Signal Processing Magazine, vol. 29, no. 3, pp. 88–100,
2012.

[7] David Donoho and Jared Tanner, “Observed universality of phase
transitions in high-dimensional geometry, with implications for modern
data analysis and signal processing,” Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 367, no. 1906, pp. 4273–4293, 2009.

[8] Guillaume Lecué and Shahar Mendelson, “Sparse recovery under weak
moment assumptions,” J. Eur. Math. Soc.(JEMS), vol. 19, no. 3, pp.
881–904, 2017.

[9] Scott Shaobing Chen, David L Donoho, and Michael A Saunders,
“Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no.
1, pp. 129–159, 2001.

[10] Stéphane G Mallat and Zhifeng Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on signal processing, vol.
41, no. 12, pp. 3397–3415, 1993.

[11] Deanna Needell and Joel A Tropp, “Cosamp: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and computational
harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[12] Wei Dai and Olgica Milenkovic, “Subspace pursuit for compressive
sensing signal reconstruction,” IEEE Trans. on Inf. Theory, vol. 55, no.
5, pp. 2230–2249, 2009.

[13] Ingrid Daubechies, Michel Defrise, and Christine De Mol, “An iterative
thresholding algorithm for linear inverse problems with a sparsity
constraint,” Comm. on Pure and Applied Math: A Journal Issued by
the Courant Institute of Mathematical Sciences, vol. 57, no. 11, pp.
1413–1457, 2004.

[14] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk, “A deep learning
approach to structured signal recovery,” in 53rd Annual Allerton
Conference on Communication, Control, and Computing. IEEE, 2015,
pp. 1336–1343.

[15] Ali Mousavi and Richard G Baraniuk, “Learning to invert: Signal
recovery via deep convolutional networks,” in Acoustics, Speech and
Signal Processing, IEEE International Conference on. IEEE, 2017, pp.
2272–2276.

[16] Amir Adler, David Boublil, Michael Elad, and Michael Zibulevsky, “A
deep learning approach to block-based compressed sensing of images,”
arXiv preprint arXiv:1606.01519, 2016.

[17] Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David
Burshtein, and Yair Beery, “Deep learning methods for improved
decoding of linear codes,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 119–131, 2018.

[18] Shanshan Wu, Alexandros G Dimakis, Sujay Sanghavi, Felix X Yu,
Daniel Holtmann-Rice, Dmitry Storcheus, Afshin Rostamizadeh, and
Sanjiv Kumar, “Learning a compressed sensing measurement matrix via
gradient unrolling,” arXiv preprint arXiv:1806.10175, 2018.

[19] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis, “Com-
pressed sensing using generative models,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 537–546.

[20] Kyong Hwan Jin, Michael Unser, and Kwang Moo Yi, “Self-supervised
deep active accelerated MRI,” arXiv:1901.04547, 2019.

[21] Dany Merhej, Chaouki Diab, Mohamad Khalil, and Rémy Prost,
“Embedding prior knowledge within compressed sensing by neural
networks,” IEEE transactions on neural networks, vol. 22, no. 10,
pp. 1638–1649, 2011.

[22] Sichen Zhong, Yue Zhao, and Jianshu Chen, “Learning to recover
sparse signals,” in 57th Annual Allerton Conf. on Comm., Control, and
Computing. IEEE, 2019, pp. 995–1000.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[24] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al., “A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play,” Science,
vol. 362, no. 6419, pp. 1140–1144, 2018.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[26] Hamid Palangi, Rabab Ward, and Li Deng, “Distributed compressive
sensing: A deep learning approach,” IEEE Transactions on Signal
Processing, vol. 64, no. 17, pp. 4504–4518, 2016.

	Introduction
	Sparse Signal Recovery as a Markov Decision Process
	MDP Formulation of Sparse Recovery
	Learning-to-Recover via Reinforcement Learning

	The DeepPursuit Algorithm
	OMP-Residual Policy/Value Network
	Knowledge-Guided Monte Carlo Tree Search
	Guiding the MCTS with Ground-Truth Knowledge
	Training with a Diminishing OMP-bias

	Simulation
	General Random Sparse Signal Recovery
	Image Recovery with Compressed Measurements

	Conclusion
	References

