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Abstract—Detecting multiple simultaneous line outages in
power transmission networks is known to be a challenging
problem due to the number of hypotheses that grows expo-
nentially with the network size. A low complexity message
passing algorithm is proposed for multi-line outage identification,
which exploits the underlying sparse structure of the network
topology in power systems. First, a factor graph is established
that characterizes jointly the power system and the sensor
network monitoring it. For inferring line status, the mixed
integer and continuous variables and the loopy structure of
the factor graph make it difficult to use conventional message
passing algorithms. Exploiting the power flow equations, efficient
message representation and new techniques in message passing
algorithms are developed. Simulation results demonstrate that the
developed algorithm can effectively identify an arbitrary number
of simultaneous line outages in real time.

I. INTRODUCTION

The wide area monitoring system (WAMS) plays a crucial
role in preventing power transmission networks from failing
due to unexpected component outages. Major blackouts were
often caused by the lack of real time knowledge of component
failures that can quickly escalate into large-scale cascading
failures [1]. While the power system is usually protected
against the so called “N — 1” scenarios (i.e., only one com-
ponent fails), as failures accumulate, automatic protection is
no longer guaranteed. In critical situations in which cascading
failures start developing, real-time protective actions depend
on correct and timely knowledge of the network status. In
particular, since we may have already missed the first few
component outages, the ability to identify in real time the net-
work topology with an arbitrary number of outages becomes
critical to prevent system collapse.

Previous works on transmission line outage detection using
exhaustive search methods include [2], [3] and [4], which
focus on detecting single and two-line outages. As the number
of possible outage patterns grows exponentially with the
number of components (e.g. lines) in the network, exhaustive
search methods quickly run into computational complexity
problems as the number of potential simultaneous outages
increases. Beyond two-line outages, [5] has recently exploited

This work was supported in part by the National Science Foundation under
Grant CMMI-1435778, by the DTRA under Grant HDTRA1-08-1-0010, and
by the NSF under CPS Synergy grant 1330081.

the sparsity of outage patterns with overcomplete observations
to detect sparse multi-line outages. A related work [6] relies
on ergodicity of power injections and full phasor measurement
unit (PMU) deployment to reconstruct a dependency graph of
the power grid in order to detect multi-line outages.

In this paper, our objective is to identify the instantaneous
topology of the power transmission network (i) in real time,
(ii) regardless of how many line outages there are, (iii) with
low complexity, and (iv) using undercomplete observations.
To address the challenge of the exponentially large number of
outage patterns (on the order of 2” where L is the number of
lines), we develop a message passing algorithm to provide fast
identification of the instantaneous topology of the transmission
network. We first establish a factor graph that captures the
binary status of the lines, the continuous values of the physical
quantities (power injections, power flows, etc.) in the system,
and the noisy measurements from the sensors that monitor
the network. We then develop a computationally efficient
message representation for this mix of discrete and continuous
variables. To address the loopy structure that is inherent in the
topology of power transmission networks, we develop heuris-
tics that significantly improve the performance of the message
passing algorithms. We note that the proposed message passing
algorithms for outage identification are quite different from
those developed for power system state estimation in which
all variables are continuous [7], [8].

We specifically study identifying multi-line outages based
on measurements by PMUs of voltage phase angles at a subset
of the buses. This is an undercomplete inference problem
since the number of observations is less than the number
of unknowns (i.e., the status of the lines). Nonetheless, the
developed message passing algorithm is able to detect an
arbitrary number of line outages with good performance. We
evaluate the developed algorithm on the IEEE 14-bus system.
Simulation results show that the algorithm can effectively
identify the topology of the network in the presence of
arbitrary line outages with undercomplete observations.

II. PROBLEM FORMULATION

We consider the problem of identifying the instantaneous
topology of a power transmission network of N buses and L
transmission lines. We employ a DC power flow model [9].



Let p, f and 6 denote the NV x 1 vector that collects the power
injection at all the buses, the L x 1 vector that collects the
power flows in all the lines, and the NV x 1 vector that collects
the voltage phase angles at all the buses, respectively. We then
have the following relations among these quantities:
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where M is the incidence matrix of the power grid topology
without line outages, S is the diagonal status matrix of the
lines (each diagonal entry indicates the status of a line; zero
means disconnected and one means connected), and I' is a
diagonal matrix whose diagonal entries correspond to the
inverses of the line reactance. We assume that the voltage
phase angles on a subset of the buses are measured by
PMUs, and we assume that the measurements are corrupted
by additive Gaussian noise. We denote by M the set of all
the buses equipped with PMUs. Accordingly, the measurement
can be modeled as
y=U60+v, 3)
where U is an M| x N selection matrix with one entry being
1 for each row (the (m, n)-th entry is one if the m-th PMU is
deployed at the n-th bus) and all other entries being 0, and v
is the measurement noise distributed according to N(0, 021).
Substituting (2) into (1), we have
0 = (MS,TM")'p, )
where (-)! denotes the Moore-Penrose pseudoinverse. Substi-
tuting (4) into (3), we obtain the following hypothesis testing
problem:
Hi: y=UMS, TMD)p4ov, k=1,...,2L (5
That is, the topology identification problem can be formulated
as making the best conjecture over 2 possible hypotheses
based on the observation y. The 2% possibilities are due to the
fact that each line can be either connected or not. Specifically,
the entries of the diagonal matrix Sy are binary variables, and
our objective of identifying the network topology is equivalent
to inferring the binary diagonal entries of Sj using y. This is
a challenging problem for the following two reasons:

o The number of hypotheses is exponentially large. There-
fore, the complexity is too high for any exhaustive search
method.

o The number of observations |M]| is smaller than the
number of unknowns L, as we consider using voltage
phase angle measurements on only a subset of the buses.

Nevertheless, since the number of possible hypotheses is finite
due to the binary nature of the unknowns, it is still possible
that a good conjecture over these finitely many possibilities
can be made based on undercomplete observations.

III. FACTOR GRAPH FOR TRANSMISSION NETWORKS

Our objective is to solve the hypothesis testing problem
(5) with low complexity. However, it is unclear just from (5)
how to develop a low complexity algorithm for this problem.
Instead, we begin by exploiting the structures of (1)—(3) to
develop a new graphical model that represents the relations
among different quantities in the transmission network.

The three equations in (1)—(3) characterize the relations
among the key quantities in power grids. Specifically, there
are three types of unknowns: voltage phase angles 0, power
flows f, and line connectivities Si. The power injections p
are assumed to be known a priori (based on load forecasts
or state estimates). Furthermore, each equation corresponds to
one type of constraint, and we call them bus check (1), line
check (2) and measurement check (3) equations. Accordingly,
we establish a factor graph [10] in which

o Entries in the vectors § and f and diagonal entries in the

matrix Sy correspond to variable nodes.

o Each row of equations in (1)—(3) corresponds to a check

node.

For a bus check or line check node, i.e., a row in (1) or (2),
the variable nodes connected to it are given by the variables
that are selected according to the nonzero entries of M7 or
SEI'M. For a measurement check node, i.e., a row in (3),
the corresponding entry in y is the noisy measurement of
the true phase angle variable in 6. Note that, y is fixed and
known once the measurements are taken, and hence it does
not correspond to any variable nodes. Since y is related to 0
through a linear relation plus unknown measurement noises,
as opposed to bus and line check nodes described by “hard
constraints” (1)—(2), the relation enforced by the measurement
check is a “soft relation”. Such a soft relation is made precise
with the Gaussian noise assumption as in (8) below. Based on
these rules, an illustrative factor graph for a 3-bus example is
given in Fig. 1. The relations among the variable nodes at the
check nodes are given by:

[Bus check] : p; = Z M fi,
1

12 (i,j) €& j€di,icV, (6)
[Line check] : fi=s-v-(0; —0;), l€E, @)
1
[Meas. check] : ., (6,,) = exp {w(ym - Hn)z} ,
m e M, (8)

where [ = (i, j) € € denotes the index of the lines, £ denotes
the set of all lines, V denotes the set of all buses, the notation
2 means “equal up to a normalization factor”, and 9i denotes
the neighborhood of node ¢. Note that (8) characterizes the
soft relation between the measurement y,,, and the true phase
angle 6,,, which is derived from the Gaussian linear model (3).

IV. MESSAGE PASSING FOR LINE OUTAGE DETECTION
A. Sparsity of the Power Transmission Network Topology

From Fig. 1, we observe that the topology of the factor
graph integrates the topology of the transmission network
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Fig. 1. Factor graph for a 3-bus example

and the placement of PMUs. Power transmission networks
are sparsely connected networks, with an average degree per
node typically below three. As a result, the associated factor
graphs are also sparsely connected. Such sparsity enables us
to develop a low complexity inference algorithm via message
passing. We note that, unlike [5], we do not assume that the
outage patterns are sparse, and we study identification of the
network topology with an arbitrary number of line outages.
Next, we develop a message passing algorithm that performs
inference of line status over the sparse factor graph, and
address several challenges that arise in this inference problem.

B. Efficient Message Representation and Closed-form Itera-
tions

In a factor graph, message passing (or belief propagation)
algorithms infer the values of the variable nodes by computing
their beliefs, i.e., the probabilities of these variables taking
different values. This is achieved by having the variable and
check nodes iteratively processing and passing messages over
the edges. For a detailed tutorial on message passing over
factor graphs, we refer the reader to [10].

The messages toward and from a variable node are proba-
bility distributions that characterize the beliefs of this variable
from different information sources. Therefore, representing the
messages is equivalent to representing a probability distribu-
tion of this variable. First, we observe from Fig. 1 that we
have a mix of two types of variable nodes: discrete (binary)
variables for the line status, and continuous variables for the
phase angles and power flows. Therefore, we need to represent
the probability distributions of both the discrete variables
and the continuous variables. For any messages toward and
from the binary variables, we can simply use the proba-
bility mass function (PMF) in the form of two-dimensional
probability simplex vector to represent the messages, i.e.,
[Pr(s = 0) Pr(s = 1)]. On the other hand, the messages
toward and from the continuous variables is a probability
density function (PDF). A straightforward approach to repre-
senting the messages associated with the continuous variables
is to discretize the PDF and represent it as a PMF as in
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Fig. 2. Gaussian mixture model of the messages.

the discrete case. However, this turns out to be quite an
inefficient method, because i) the range that each variable takes
is fairly large, and ii) very small quantization error, and hence
a large number of quantization levels are needed to achieve
satisfactory performance in line status inference.

This motivates us to develop a different approach, in which
we represent the messages for the continuous variables in a
parametric form. This representation is based on the following
observation from (6)—(8): the measurement noise is Gaussian,
the relations from the bus checks are linear equations, and the
relations from the line checks are linear equations multiplied
by a binary variable indicating the corresponding line status.
It follows that the messages over the edges in the factor
graph always obey a Gaussian mixture model (GMM, cf.
Fig. 2), which can be characterized by a few parameters: the
probability, the mean and the variance of each component.
This is a much more efficient way to represent the messages
than discretization. Moreover, it allows us to develop closed-
form expressions for iterations of message passing in the sum-
product algorithm — a belief propagation method for comput-
ing the marginal probabilities of the variables in a factor graph.
We summarize below the expressions for the messages that are
iteratively passed in a sum-product algorithm. Their detailed
derivations are omitted due to space limitations.

o Notation for messages: We denote a message from a
check node b to a variable node i by #_,;, and that from
a variable node ¢ to a check node a by v;_,,. In what
follows, we use a and b to index check nodes, and i, j, f
and s to index variable nodes.

o Messages toward and from variable nodes: In each itera-
tion, a variable node (7) collects and multiplies messages
from all its neighboring check nodes (b € di\a) but one
(a), and sends this product as a message to the remaining
check node (a). The product of GMM messages is also a
GMM message. The mean (u), variance (6?) and proba-
bility (¢) of each GMM component in the output message,
Vi—q, can be computed from the means, variances and
probabilities of one GMM component in each of the input
messages, Uy, b € 0i\a. Specifically,
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where n;,, and n,_,; are the indices of the GMM
components in v;_,, and ¥y_,,, respectively.
o Messages from a measurement check node: Given the
measurements at a check node a, and the noise variance
02, U4_y; is a Gaussian distribution with
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o Messages from a bus check node: From (6), each GMM
component n,_,; from a bus check node a to a power

flow variable node ¢ is computed as follows:
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where M is the network incidence matrix, and n,_,; and
nj_, are the indices of the GMM components in ,_,;
and v;_,,, respectively.
o Messages from a line check node to a power flow node:
From (2), depending on whether the probabilities that
this line is connected and disconnected, i.e., v,_,,(1) and
Vs_,,(0), each GMM component from a line check node
a to power flow variable node f is computed as follows:
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where the meaning of the last three equations is that, if the
line is disconnected, the power flow is deterministically
zero (with a zero variance).
o Messages from a line check node to a phase angle node:
From (2), each GMM component from a line check node
a to a phase angle variable node ¢ is computed as follows:
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where the meaning of the first three equations is that, if
the line is disconnected, then the phase angle at the other

end of the line provides no information (infinite variance)
to that at the other end.

o Messages from a line check node to a line status node:
The estimated probability of line outage is returned as
the soft-decision of this line status, i.e.,

ﬁaas(o) = qo,p—a> ﬁaﬂs(]‘) = q1,p—a- (29)
C. Loopy Message Passing

The effectiveness of the message passing algorithm is also
challenged by the loopy nature of the factor graph as shown
in Fig. 1. The issues caused by this loopy nature include the
following. i) The parametric form for the variance update (10)
is the harmonic mean of the variances from different edges.
Thus, the more messages we aggregate, the smaller the vari-
ance is. This makes sense in a graph without loops in which
messages are coming from independent information sources.
In a loopy graph (especially with small loops as in Fig. 1),
however, the same information will be passed along a small
cycle, coming back and being aggregated again. With copies of
identical information, intuitively we should not further reduce
the variance of the GMM components because we do not have
improvement in the accuracy the information. To address this
issue, we incorporate a simple but effective solution in our
implementation: we freeze the variance updates, and do not
change them over time. ii) The number of GMM components
grows exponentially with the number of iterations. This is
because identical or perturbed information comes back via
cycles. In reality, these identical pieces of information which
come back have GMM components with very similar means.
Accordingly, we just perform a quantization over the means,
with which these similar GMM components get merged once
they fall into the same quantization bin. We also observe that
only a small fraction of the GMM components are dominant,
and we hence discard the negligible components.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
message passing algorithm on the IEEE 14-bus system. Typi-
cal power injections are employed [11], and the 7-th and the
8-th buses are equivalently merged into one bus because of the
zero injections at these two adjacent buses. Therefore, we are
dealing with an equivalent 13-bus system. We use the receiver
operating curve (ROC), i.e., the probability of detection versus
the probability of false alarm of the line outages, to evaluate
the performance of the proposed algorithm, and we test the
algorithm against up to 6-line outages. All the experimental
results are averaged over 5000 Monte Carlo runs. Furthermore,
only the top five GMM components are maintained during the
message passing iterations.

We randomly generate from 1 to 6 line outages with
a uniform distribution on the number of simultaneous line
outages. We test against only those outages under which the
network is still connected. In Fig. 3(a), we show the ROC
curves for different numbers of PMUs with a measurement
accuracy of 0.01 degree, which is the state-of-the-art PMU
accuracy [12]. We observe that the message passing algorithm
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Fig. 3. Outage detection performance of the message passing algorithm on the IEEE 14-bus system. (a) ROC curves for different numbers of PMUs, where

the standard deviation of the PMU is 0.01 degree. (b) Noise performance for different numbers of PMUs. (c) Probabilities of Gaussian mixture components.

provides reasonably good performance even with 9 PMUs,
which is significantly less than the number of unknowns (19
in the 14-bus case).

One question that arises is whether the algorithm is sensitive
to different numbers of simultaneous line outages. To answer
this question, we run extensive experiments comparing ROCs
for identifying different numbers of line outages. Interestingly,
we observe that the algorithm performs almost the same in all
these settings. In other words, the developed message passing
algorithm is equally powerful regardless of the number of
simultaneous line outages to be identified.

Furthermore, we use AUC (area underneath the curve) of
the ROC as the overall performance metric to evaluate the
robustness of the message passing algorithm against measure-
ment noise. A perfect detector would have an AUC of 1 and
the random binary guess would give an AUC of 0.5, (and the
higher the better.) Fig. 3(b) shows the AUC curves against
different levels of PMU accuracy for different numbers of
PMUs in the network, for which from 1 to 6 line outages are
randomly generated. We can see that the proposed algorithm
is quite robust against the level of PMU accuracy, and gives
satisfactory performance when the accuracy is better than 0.1
degree.

Finally, we validate that using five GMM components to
represent the messages is sufficient for the 14-bus system.
To this end, we allow the algorithm to maintain the top
20 GMM components during the message passing iterations.
Fig. 3(c) shows the average probability of different GMM
components, from which we can see that there are only 3 ~ 5
dominating GMM components during the message passing
iterations. Accordingly, keeping just the top 5 components
appears to be sufficient for the cases that we have tested.

VI. CONCLUSION

Based on the sparse topology of power transmission net-
works, we have proposed a low complexity message pass-
ing algorithm that can effectively identify in real time an
arbitrary number of simultaneous line outages. We have first
established a factor graph that characterizes jointly the power
transmission network and the sensor network that monitors it.

With representation of the messages in parametric forms, the
message passing iteration can be computed very efficiently.
We have further developed simple and effective heuristics
to address the challenges brought by the loopy structure of
the transmission network. Simulation results on the IEEE
14-bus system demonstrate that the proposed algorithm can
identify multi-line outages even with undercomplete PMU
measurements, and without any assumption on the sparsity of
outage patterns. The results further show that the performance
is robust to PMU accuracy.
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