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Abstract— The problem of optimal joint detection and esti-
mation in linear models with Gaussian noise is studied. A simple
closed-form expression for the joint posterior distribution of the
(multiple) hypotheses and the states is derived. The expression
crystalizes the dependence of the optimal detector on the state
estimates. The joint posterior distribution characterizes the
beliefs (“soft information”) about the hypotheses and the values
of the states. Furthermore, it is a sufficient statistic for jointly
detecting multiple hypotheses and estimating the states. The
developed expressions give us a unified framework for joint
detection and estimation under all performance criteria.

I. INTRODUCTION

Detection and estimation problems appear simultaneously
and are naturally coupled in many engineering systems.
Several prominent examples are as follows. To achieve
situational awareness in power grids, it is essential to have
timely detection of outages as well as estimation of system
states [1], [2]. Radar systems detect the existence of targets
and also estimate their positions and velocities [3]. Wireless
communication systems often need to decode messages and
estimate channel states at the same time [4]. In different
engineering systems, the problem settings of joint detection
and estimation can vary greatly, and many application-
specific solutions have been developed in practice.

A classic approach that addresses the detection problem in
the presence of unknown states/parameters is composite hy-
pothesis testing [3]. Accordingly, a straightforward approach
for joint hypothesis testing and state/parameter estimation is
to perform composite hypothesis testing first, followed by
state/parameter estimation based on the hard decision made
from hypothesis testing. However, such an approach cannot
provide optimality guarantees under general performance cri-
teria that depend jointly on detection and estimation results.
In the literature, several studies have addressed such joint
performance criteria. The structure of the jointly optimal
Bayes detector and estimator with discrete-time data was
developed in [5] and [6], and was extended to the continuous-
time data case in [7]. There, the detector structure was
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expressed in terms of some generalized forms of likelihood
ratios. The structure of the optimal Bayesian estimator under
any given constraints on false alarm probability and proba-
bility of missed detection have also been developed for the
binary hypothesis case [8].

In this paper, we study the problem of optimal joint
detection and estimation for a general class of observation
models, namely, linear models with Gaussian noise. Linear
models appear in a wide range of engineering applications
including power systems [1], channel estimation [9], [10],
adaptive array processing [11]–[13], and spectrum estimation
[14]. In these applications, not only is state estimation
of primary interest, but also the observation matrix can
often change over time, and it is essential to detect which
observation matrix among many possibilities is currently
effective. We formulate these problems as joint multiple
hypothesis testing and state estimation problems. Instead
of focusing on a particular form of performance criterion
and developing the corresponding optimal joint detector and
estimator, we develop a unified Bayesian approach that can
be applied to any given criterion. Specifically, employing a
conjugate prior, we provide closed form expressions for the
joint posterior of the hypotheses and the system states given
all measurement samples. The developed expressions reveal
the exact dependence of the optimal detectors on the state
estimates. Because the joint posterior is a sufficient statistic
for joint hypothesis testing and state estimation, the derived
explicit forms of such soft information (as opposed to hard
decisions) can be applied to all performance criteria with
optimality guarantees.

The remainder of the paper is organized as follows. In
Section II, we describe the system model and formulate
the joint detection and estimation problem. In Section III,
we provide a factorization of the likelihood function and
derive a simple closed form expression for the joint posterior
distribution. Finally, we conclude our paper and remark on
future directions in Section IV.
Notation. We use boldface letters to denote random quan-
tities and use regular letters to denote realizations or deter-
ministic quantities.

II. PROBLEM FORMULATION

We consider the following observation model which en-
tails a joint detection and estimation problem. Given each of
the K + 1 hypotheses H0,H1, . . . ,HK , the M × 1 sensor
measurement vector xt at time t is obtained according to the
following linear model:

Hk : xt = Hkθ + vt, k = 0, 1, . . . ,K, (1)



where Hk is the M×N observation matrix under hypothesis
Hk, θ is the N × 1 unknown state vector1 to estimate,
and vt ∼ N (0, Rv) is the M × 1 measurement noise that
is independent and identically distributed (i.i.d.) over time.
From the measurement data {xt}, we want to jointly infer
a) the true underlying linear model Hk, and b) the true
underlying states θ. Note that neither of them is known
beforehand, and we need to solve a problem of jointly
detecting Hk and estimating θ. Such problems arise in many
applications. We provide in the following an example that
arises commonly in power grid monitoring. An outage in a
power grid will change the grid topology, and the system
operator wants to detect which outage among a candidate
set {H1, . . . ,HK} occurs, or no outage occurs (H0). With a
given set of sensors in the grid, the kth outage scenario gives
rises to a unique observation matrix Hk, and the sensors
measure the states of the grid θ via (1). Consequently, state
estimation depends on knowledge of the true outage, and
outage detection depends on knowledge of the true states [2].
Clearly, solving a joint detection and estimation problem is
essential for monitoring the health of the power grid in real
time.

For these purposes, this paper provides the joint posterior
distribution p(θ,Hk|xi) (see (12)–(13) below), which gives
us the beliefs about both θ and Hk. Actually, it is also
a sufficient statistic for θ and Hk given data xi, which
provides full information from the measured data xi about
the hypothesis Hk and the state vector θ. Therefore, instead
of being the optimal functions of xi, the optimal decision
rule and the estimator need only be the optimal functionals
of p(θ,Hk|xi). Deriving the expressions for the joint pos-
terior distribution will give us a unified framework for joint
detection and estimation under all performance criteria (e.g.,
minimum risk/minimum probability of error/maximum a-
posteriori probability (MAP) detection, and MAP/minimum-
mean-square-error (MMSE) estimate).

III. JOINT POSTERIOR OF HYPOTHESES AND STATES

We now derive the joint posterior distribution of the
hypothesis Hk and the unknown states θ. Specifically, we
will use p(θ,Hk|xi) as a hybrid probability measure to
denote the joint posterior distribution of θ and Hk:

p(θ,Hk|xi) = p(Hk|xi)p(θ|Hk, xi) (2)

where p(Hk|xi) denotes the posterior probability mass func-
tion (PMF) of Hk and p(θ|Hk, xi) denotes the posterior
probability density function (PDF) of θ given Hk.

A. The Likelihood Function

We begin with a factorization of the likelihood func-
tion p(xi|θ,Hk), which will be useful in finding sufficient
statistics for jointly detecting Hk and estimating θ, and in
computing the joint posterior distribution.

1In addition to states, θ can also include parameters in some applications
[12], [13]. For the sake of brevity, we refer to θ as states from now on.

Lemma 1 (Factorization): According to the linear model
in (1), we can express the conditional distribution (the
likelihood function) p(xi|θ,Hk) in the following form:

p(xi|θ,Hk) = p(xi|θ̂k,ML,Hk)

× exp

{
−1

2

∥∥θ−θ̂k,ML

∥∥2

I(θ̂k,ML)

}
(3)

where the notation ‖x‖2Σ denotes xTΣx for some positive
definite weighting matrix Σ, θ̂k,ML is the maximum likeli-
hood estimate of θ given that hypothesis Hk is true, and
I(θ̂k,ML) is the corresponding Fisher information matrix:

θ̂k,ML = (HT
k R
−1
v Hk)−1HT

k R
−1
v xi (4)

I(θ̂k,ML) = i · (HT
k R
−1
v Hk) (5)

xi =
1

i

i∑
t=1

xt. (6)

Proof: See Appendix I.
In [15], an asymptotic expression similar to (3) was

derived for general likelihood functions satisfying certain
regularity conditions for i large. In comparison, our expres-
sion (3) holds for all i ≥ 1 due to the properties of the
linear model with Gaussian noise that we have assumed.
Furthermore, the linear model (1) also allows us to evaluate
the expression for p(xi|θ̂k,ML,Hk) given by the following
lemma.

Lemma 2 (Expression for p(xi|θ̂k,ML,Hk)): The condi-
tional probability p(xi|θ̂k,ML,Hk) can be expressed as

p(xi|θ̂k,ML,Hk) =

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

{
−1

2

i∑
t=1

‖xt‖2R−1
v

}

· exp

{
1

2

∥∥θ̂k,ML

∥∥2

I(θ̂k,ML)

}
(7)

where θ̂k,ML and I(θ̂k,ML) are given by (4)–(6).
Proof: See Appendix II.

Substituting (7) into (3), we obtain the following factor-
ization of the likelihood function:

p(xi|θ,Hk) =

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

{
−1

2

i∑
t=1

‖xt‖2R−1
v

}

· exp

{
1

2

∥∥∥θ̂k,ML

∥∥∥2

I(θ̂k,ML)

}
· exp

{
−1

2

∥∥∥θ − θ̂k,ML

∥∥∥2

I(θ̂k,ML)

}
. (8)

Note that the first two terms in (8) are independent of
the hypothesis index k and the state vector θ, while the
other two terms depend on {θ̂k,ML}, which, by (4), is
further determined by xi. Therefore, by the Neyman-Fisher
factorization theorem [3], [15], [16], xi is a sufficient statistic



for jointly detecting Hk and estimating θ. This fact will also
be reflected further ahead in the joint posterior expressions
(12)–(16), where xi is the only statistic we need to track
over time via, e.g.,

xi = xi−1 +
1

i
(xi − xi−1). (9)

B. Conjugate Prior
For a certain likelihood function, if a prior distribution

produces a posterior distribution of the same family, then
such a prior distribution is called a conjugate prior. With a
conjugate prior, we need only to maintain the recursions for
the parameters that describe the distribution family of the
prior and the posterior. We will use this kind of prior in our
joint detection and estimation problem.

At the beginning (before any measurement data are avail-
able), we assume that the prior distribution of θ and Hk are
given by

p(θ,Hk) = p(Hk)p(θ|Hk) (10)

where p(Hk) is the prior PMF of the hypothesis Hk and
p(θ|Hk) is the prior PDF of the state vector θ given hypoth-
esis Hk. Throughout the paper, we assume that given Hk, θ
has a Gaussian prior:

p(θ|Hk) =
1

(2π)
N
2 det(Ck,0)

1
2

exp

{
−1

2
‖θ − θk,0‖2C−1

k,0

}
(11)

where θk,0 and Ck,0 are the corresponding prior mean and
covariance matrix given hypothesis Hk, respectively. We will
show in the next section that this prior is indeed a conjugate
prior. Furthermore, we will also show that even with an
“uninformative prior” about θ (i.e., Ck,0 → ∞ in some
way), the resulting posterior will take the same form as the
joint prior distribution in (11). Therefore, alternatively, we
can think of the conjugate prior in (11) as the intermediate
knowledge that we learned from earlier data.

C. Main Results
Theorem 1 (Optimal joint inference): Suppose the prior

distribution is given by (10)–(11). Then, the posterior dis-
tribution p(θ,Hk|xi) = p(Hk|xi)p(θ|xi,Hk) is given by

p(Hk|xi) =
1

f(xi)
p(Hk)

√
det(Ck,MMSE)

det(Ck,0)

·
exp

{
1
2‖θ̂k,MMSE‖2C−1

k,MMSE

}
exp

{
1
2‖θk,0‖

2
C−1

k,0

} , (12)

p(θ|Hk, xi) =
1

(2π)
N
2 det(Ck,MMSE)

1
2

· exp

{
−1

2
‖θ − θ̂k,MMSE‖2C−1

k,MMSE

}
, (13)

where

f(xi) ,
K∑
q=0

p(Hq)

√
det(Cq,MMSE)

det(Cq,0)

·
exp

{
1
2‖θ̂q,MMSE‖2C−1

q,MMSE

}
exp

{
1
2‖θq,0‖

2
C−1

q,0

}
,

(14)

θ̂k,MMSE ,
(
C−1
k,0+I(θ̂k,ML)

)−1

×
(
I(θ̂k,ML) θ̂k,ML+C−1

k,0θk,0

)
, (15)

and Ck,MMSE ,
(
C−1
k,0 + I(θ̂k,ML)

)−1

. (16)
Proof: See Appendix III.

Note that θ̂k,MMSE is the classical MMSE estimate of θ
given Hk is true, and Ck,MMSE is the corresponding error
covariance matrix. In the posterior expression (12),
• f(xi) is a normalization factor.
• p(Hk) captures the prior PMF.
• The intuition of

√
det(Ck,MMSE)

det(Ck,0) is to penalize the
model complexity of Hk. This term reduces to√

det(I(θ̂k,ML)−1) in the case of an uninformative
prior (see (18) below), for which a discussion of its
meaning can be found in [15].

• The last term in (12) characterizes the similarity be-
tween the data (adjusted by the prior PDF) and the
hypothesis Hk.

Moreover, the exact dependence of the optimal detector on
the state estimator can be seen from expression (12).

Accordingly, the posterior marginal distribution p(θ|xi)
for the state vector θ can be expressed as

p(θ|xi) =

K∑
k=0

p(Hk|xi) ·
1

(2π)
N
2 det(Ck,MMSE)

1
2

· exp

{
−1

2
‖θ − θ̂k,MMSE‖2C−1

k,MMSE

}
(17)

which is a Gaussian mixture density with K+1 components.
We observe from (12)–(13) that the posterior distribution

is in the same family as the prior distribution (10)–(11).
Therefore, the prior we have chosen is a conjugate prior.
As a result, we need only to maintain recursions for the
parameters of the posterior distribution. Specifically, we need
only to maintain recursions for Ck,MMSE and θ̂k,MMSE,
where θ̂k,MMSE is the only term that depends on data via
θ̂k,ML. By (4), θ̂k,ML is a linear function of xi, which, as we
pointed out in Section III-A, is a sufficient statistic and can be
updated recursively by (9). Therefore, as new data stream in,
the optimal inference over the joint posterior p(θ,Hk|xi) can
be implemented recursively using finite memory. This fact is
also reflected in the marginal distribution p(θ|xi), where the
number of Gaussian mixture components remains at K + 1
over time.

D. The Case without Prior Knowledge of States

When the inference algorithm has just started, we may
not have any prior information about the states θ. In this
case, we may assume that we are equally “uninformed”
about the states under different hypotheses. In such a setup,
we let the covariance matrices of the prior p(θ|Hk) be



the same for all Hk, i.e., Ck,0 = C0 for some invertible
matrix, and let C0 → ∞. Applying this procedure to
(15)–(16), the MMSE estimate θ̂k,MMSE given Hk becomes
the maximum likelihood estimate θ̂k,ML, and the MMSE
Ck,MMSE given Hk becomes the inverse Fisher information
matrix I(θ̂k,ML)−1. As a result, the optimal joint inference
is given by the following corollary.

Corollary 1 (“Uninformative Prior”): Without any prior
information about the states, the joint posterior distribution
is given by

p(Hk|xi) =

p(Hk) ·
exp

{
1
2

∥∥θ̂k∥∥2

I(θ̂k,ML)

}
√

det
(
I(θ̂k,ML)

)
K∑
q=0

p(Hq) ·
exp

{
1
2

∥∥θ̂q,ML

∥∥2

I(θ̂q,ML)

}
√

det
(
I(θ̂q,ML)

)
,

(18)

p(θ|Hk, xi) =
1

(2π)
M
2 det(I(θ̂k,ML))−

1
2

· exp

{
−1

2
‖θ − θ̂k‖2I(θ̂k,ML)

}
. (19)

As a consequence, the posterior marginal distribution p(θ|xi)
for the state vector θ can be expressed as

p(θ|xi) =

K∑
k=0

p(Hk|xi) ·
1

(2π)
M
2 det(I(θ̂k,ML))−

1
2

· exp

{
−1

2
‖θ − θ̂k‖2I(θ̂k,ML)

}
. (20)

Note from (18)–(19) that the joint posterior distribution
p(θ,Hk|xi) takes the same form as the joint posterior in
(12)–(13) even when we start without any prior knowledge
about θ. Therefore, the form of the joint prior distribution in
(10)–(11) can also be viewed as the knowledge we learned
from earlier data since they take the same form as the one
in (18)–(19).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the optimal joint detection
and estimation problem in linear models with Gaussian noise.
We have proved a factorization lemma of the likelihood func-
tion, and showed that the average measurement data vector
xi is a sufficient statistic. We then have derived a simple
closed form expression of the joint posterior distribution
for the hypotheses and the states. This expression reveals
the exact dependence of the optimal detector on the state
estimates. The joint posterior can then be used to develop
optimal joint detector and estimator structures under any
given performance criterion.

We have studied the case in which the states are static over
time. It is interesting to generalize to the case in which the
states evolve according to certain dynamics. In particular, we
would like to investigate whether the joint posterior follows
similar forms that only depend on the state estimates over

time. For this, it is essential to examine the evolution of the
joint posterior from time i−1 to i, and we expect that similar
techniques will apply. Furthermore, we have focused on the
optimal fixed sample size approach. Developing an optimal
sequential approach for joint detection and estimation from
the joint posterior distribution remains an interesting direc-
tion for future work.

APPENDIX I
PROOF OF LEMMA 1

From the definition of Gaussian linear model (1) and
because of the i.i.d. assumption on the noise, we can write
the joint likelihood function as

p(xi|θ,Hk)

=

i∏
t=1

p(xt|θ,Hk)

=

i∏
t=1

1

(2π)
M
2 det(Rv)

1
2

exp

{
−1

2
‖xt −Hkθ‖2R−1

v

}

=

[
1

(2π)
M
2 det(Rv)

1
2

]i
exp

{
−1

2

i∑
t=1

‖xt −Hkθ‖2R−1
v

}

=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

{
−1

2

i∑
t=1

∥∥∥xt −Hkθ̂k,ML+Hk(θ̂k,ML−θ)
∥∥∥2

R−1
v

}

=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

(
−1

2

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v (xt−Hkθ̂k,ML)

)

· exp

(
−1

2

i∑
t=1

(θ̂k,ML−θ)T (HT
k R
−1
v Hk)(θ̂k,ML−θ)

)

· exp

(
−

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v Hk(θ̂k,ML−θ)

)

=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

(
−1

2

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v (xt−Hkθ̂k,ML)

)

· exp

(
−1

2

i∑
t=1

(θ̂k,ML−θ)T (HT
k R
−1
v Hk)(θ̂k,ML−θ)

)
· exp

(
−i(xi −Hkθ̂k,ML)TR−1

v Hk(θ̂k,ML − θ)
)

=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

(
−1

2

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v (xt−Hkθ̂k,ML)

)



· exp

(
−1

2

i∑
t=1

(θ̂k,ML−θ)T (HT
k R
−1
v Hk)(θ̂k,ML−θ)

)
· exp

(
− i
[
xTi R

−1
v Hk(θ̂k,ML−θ)

− θ̂Tk,MLH
T
k R
−1
v Hk(θ̂k,ML−θ)

])
=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

(
−1

2

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v (xt−Hkθ̂k,ML)

)

· exp

(
−1

2

i∑
t=1

(θ̂k,ML−θ)T (HT
k R
−1
v Hk)(θ̂k,ML−θ)

)

· exp

(
− i
[
xTi R

−1
v Hk(HT

k R
−1
v Hk)−1︸ ︷︷ ︸

θ̂Tk,ML

×HT
k R
−1
v Hk(θ̂k,ML − θ)

− θ̂Tk,MLH
T
k R
−1
v Hk(θ̂k,ML − θ)

])
=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

(
−1

2

i∑
t=1

(xt−Hkθ̂k,ML)TR−1
v (xt−Hkθ̂k,ML)

)

· exp

(
−1

2
(θ̂k,ML−θ)T (i ·HT

k R
−1
v Hk)(θ̂k,ML−θ)

)
= p(x|θ̂k,ML,Hk)

· exp

(
−1

2
(θ̂k,ML−θ)T I(θ̂k,ML)(θ̂k,ML−θ)

)
.

(21)

APPENDIX II
PROOF OF LEMMA 2

By (21), the expression for p(x|θ̂k,ML,Hk) is given by

p(xi|θ̂k,ML,Hk)

=

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

{
−1

2

i∑
t=1

(xt −Hkθ̂k,ML)TR−1
v (xt −Hkθ̂k,ML)

}
(22)

For the summation in the exponent, we have
i∑
t=1

(xt −Hkθ̂k,ML)TR−1
v (xt −Hkθ̂k,ML)

=

i∑
t=1

[
xTt R

−1
v xt − 2xTt R

−1
v Hkθ̂k,ML

+ θ̂Tk,MLH
T
k R
−1
v Hkθ̂k,ML

]
=

i∑
t=1

xTt R
−1
v xt − 2ixTi R

−1
v Hkθ̂k,ML

+ i · θ̂Tk,MLH
T
k R
−1
v Hkθ̂k,ML

=

i∑
t=1

xTt R
−1
v xt − 2θ̂Tk,MLI(θ̂k,ML)θ̂k,ML

+ 2θ̂Tk,MLI(θ̂k,ML)θ̂k,ML

=

i∑
t=1

xTt R
−1
v xt − θ̂Tk,MLI(θ̂k,ML)θ̂k,ML. (23)

Finally, substituting (23) into (22), we establish Lemma 2.

APPENDIX III
PROOF OF THEOREM 1

By Bayes’ formula, the joint posterior distribution can be
expressed as

p(θ,Hk|xi) =
p(θ,Hk)p(xi|θ,Hk)

p(xi)
. (24)

To compute the above posterior distribution, we need to have
p(xi) given by

p(xi) =

K∑
k=0

p(Hk) ·
∫
θ∈Θ

p(θ)p(xi|θ,Hk)dθ. (25)

To proceed, we first introduce the following lemma that gives
an integral result that would be useful in deriving both the
optimal detection and estimation procedures.

Lemma 3 (A useful integral): Suppose we are given the
Gaussian prior distribution (11). Then, the following result
holds:∫
θ∈Θ

p(θ) exp

{
−1

2

∥∥∥θ − θ̂k,ML

∥∥∥2

I(θ̂k,ML)

}
dθ (26)

= exp

{
1

2

∥∥∥I(θ̂k,ML)θ̂k,ML+C−1
k,0θk,0

∥∥∥2

(C−1
k,0+I(θ̂k,ML))

−1

}
× exp

{
−1

2

(
‖θk,0‖2C−1

k,0
+ ‖θ̂k,ML‖2I(θ̂k,ML)

)}
× 1

det(Ck,0)
1
2 · det

(
C−1
k,0 + I(θ̂k,ML)

) 1
2

(27)

where θ̂k,ML and I(θ̂k,ML) are defined in (4)–(6).
Proof: See Appendix IV.

Second, we compute the following integral and p(xi) using
the above lemma:∫
θ∈Θ

p(θ)p(xi|θ,Hk)dθ

=

[
1

(2π)
M
2 det(Rv)

1
2

]i
· exp

{
−1

2

i∑
t=1

‖xt‖2R−1
v

}

· exp

{
1

2
‖θ̂k,ML‖2I(θ̂k,ML)

}
·
∫
θ∈Θ

p(θ) exp

{
−1

2

∥∥θ − θ̂k,ML)
∥∥2

I(θ̂k,ML)

}
dθ

=

[
1

(2π)
M
2 det(Rv)

1
2

]i
· exp

{
−1

2

i∑
t=1

‖xt‖2R−1
v

}



· exp

{
1

2

∥∥θ̂k,ML

∥∥
I(θ̂k,ML)

}
· exp

{
1

2

∥∥∥I(θ̂k,ML)θ̂k,ML+C−1
k,0θk,0

∥∥∥2

(C−1
k,0+I(θ̂k,ML))

−1

}
· exp

{
−1

2

(
‖θk,0‖2C−1

k,0

+ ‖θ̂k,ML‖2I(θ̂k,ML)

)}
· det(Ck,0)−

1
2 · det

(
C−1
k,0 + I(θ̂k,ML)

)− 1
2

(28)

p(xi)

=

P∑
p=0

p(Hk) ·
∫
θ∈Θ

p(θ)p(xi|θ,Hk)dθ

=

P∑
p=0

p(Hk) ·

[
1

(2π)
M
2 det(Rv)

1
2

]i

· exp

{
−1

2

i∑
t=1

‖xt‖2R−1
v

}
· exp

{
1

2

∥∥θ̂k,ML

∥∥2

I(θ̂k,ML)

}
· exp

{
1

2

∥∥∥I(θ̂k,ML)θ̂k,ML+C−1
k,0θk,0

∥∥∥2

(C−1
k,0+I(θ̂k,ML))

−1

}
· exp

{
−1

2

(
‖θk,0‖2C−1

k,0

+ ‖θ̂k,ML‖2I(θ̂k,ML)

)}
× det(Ck,0)−

1
2 · det

(
C−1
k,0 + I(θ̂k,ML)

)− 1
2

. (29)

Substituting the above expressions and (8) into (24), we
obtain (12)–(16) after some simple algebra.

APPENDIX IV
PROOF OF LEMMA 3

It follows that∫
θ∈Θ

p(θ) exp

{
−1

2

∥∥∥θ − θ̂k,ML

∥∥∥2

I(θ̂k,ML)

}
dθ

=
1

(2π)
N
2 det(Ck,0)

1
2∫

θ∈Θ

exp

{
−1

2
‖θ − θk,0‖2C−1

k,0

}
· exp

{
−1

2

∥∥∥θ − θ̂k,ML

∥∥∥2

I(θ̂k,ML)

}
dθ

= exp

{
1

2

∥∥∥I(θ̂k,ML)θ̂k,ML+C−1
k,0θk,0

∥∥∥2

(C−1
k,0+I(θ̂k,ML))

−1

}
× exp

{
−1

2

(
‖θk,0‖2C−1

k,0
+ ‖θ̂k,ML‖2I(θ̂k,ML)

)}
× 1

det(Ck,0)
1
2 · det

(
C−1
k,0 + I(θ̂k,ML)

) 1
2

× 1

(2π)
N
2 det

(
C−1
k,0 + I(θ̂k,ML)

)− 1
2

×
∫
θ∈Θ

exp
{
− 1

2

∥∥∥θ − (C−1
k,0 + I(θ̂k,ML)

)−1

×
(
I(θ̂k,ML)θ̂k,ML + C−1

k,0θk,0

)∥∥∥2

(C−1
k,0+I(θ̂k,ML))

}
dθ

= exp

{
1

2

∥∥∥I(θ̂k,ML)θ̂k,ML+C−1
k,0θk,0

∥∥∥2

(C−1
k,0+I(θ̂k,ML))

−1

}
× exp

{
−1

2

(
‖θk,0‖2C−1

k,0
+ ‖θ̂k,ML‖2I(θ̂k,ML)

)}
× 1

det(Ck,0)
1
2 · 1 det

(
C−1
k,0 + I(θ̂k,ML)

) 1
2

(30)

where the notation ‖x‖2Σ = xTΣx, and in the last step we
used the fact that the integral of a Gaussian distribution over
the entire space equals one.
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