
Integrating Physics-Informed Neural Networks and
Power Flow for Scalable Online Transient Analysis

Zhangrong Gu∗, Yue Zhao†, Meng Yue‡, Tianqiao Zhao‡, Jiaming Li§
∗Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
∗Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

‡Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
§Ads, Meta, New York, NY 10003, USA

Emails: {zhangrong.gu, yue.zhao.2}@stonybrook.edu, {yuemeng, tzhao1}@bnl.gov, nhlijiaming@gmail.com

Abstract—Transient dynamic analysis is crucial for power sys-
tem stability, particularly with increasing renewable integration,
yet traditional numerical integration methods are computation-
ally expensive for large-scale online applications. We propose a
novel framework integrating Physics-Informed Neural Networks
(PINNs) with an AC Power Flow (AC-PF) solver to efficiently
simulate dynamic trajectories in power systems in a scalable
fashion. A separate PINN is trained for each generator to
accurately capture the differential equations of the generator
dynamic model. The trained PINNs and an AC-PF solver
iteratively update the dynamic and algebraic variables to simulate
dynamic trajectories for the entire system. The PINN training
process consists of an unsupervised stage to enforce physical
laws, followed by a supervised stage leveraging simulation data
for enhanced accuracy. As the predictor training is performed
separately for individual generators, the method’s computational
complexity scales linearly with the number of generators in both
training and testing. Experiments on a 3-generator 9-bus system
demonstrate the very high accuracy of the developed method in
simulating full system dynamic trajectories.

Index Terms—Transient analysis, PINN, power flow, iterative
algorithm, scalability.

I. INTRODUCTION

Power grids are the backbone of modern energy systems.
With rising levels of integration of renewable energy sources,
more challenges arise for power grid operations in maintain-
ing stability and reliability. Transient dynamic analysis plays
a critical role in assessing the behavior of power systems
in the presence of disturbances such as faults and power
imbalances. These analyses often require solving large-scale
Differential-Algebraic Equations (DAEs) including both the
differential equations describing the dynamics of generators
and the algebraic equations describing instantaneous relations
between system variables. The common practice of solving
such DAEs relies on numerical integration methods [1]. While
such methods provide accurate results, they are however
computationally too expensive for online transient dynamic
analysis of large-scale power systems. An alternative approach
for stability analysis is the direct method [2] which however
does not provide full dynamic trajectories of the system.

This work is supported in part by ONR under Award N00014-22-1-2001
and Award N00014-23-1-2124, and in part by the National Science Foundation
under Grant ECCS-2025152.

Recently, machine learning (ML) techniques have been
explored as promising alternatives for solving DAEs in power
systems. These include Graph Neural Networks [3], Fourier
Neural Operators [4], Recurrent Neural Networks [5], and
Physics-Informed Neural Networks (PINNs). Among these,
PINNs have gained particular attention due to their ability
to incorporate physical laws directly into the predictor model
and learning process. The foundational work of [6] introduced
PINNs as a deep learning framework for solving nonlinear
partial differential equations, laying the groundwork for em-
bedding physical laws directly into neural networks. This
framework was then applied to power systems [7], demon-
strating the effectiveness of PINNs in generating dynamic
states in a Single-Machine Infinite-Bus (SMIB) system. [8]
further applied PINNs for dynamic state estimation in low-
inertia power grids, focusing on frequency dynamics.

While these works highlighted the potential of PINNs, scal-
ability remains a significant challenge when applied to larger
and more complex power systems. To address the scalability
issue, [9] proposed a hybrid approach that trains a separate
Long Short-Term Memory (LSTM)-based predictor for each
generator, and the predictors are then coupled with each other
via an AC Power Flow (AC-PF) solver to generate system
trajectories iteratively. In addition, [10] introduced PINNSim,
a method that uses PINNs to model the individual dynamics
of power system components, iteratively adjusting the voltage
profile by minimizing mismatches with network requirements
via Jacobian-based updates.

In this paper, we propose an efficient method by integrat-
ing PINNs with an AC-PF solver for simulating dynamic
trajectories in a scalable fashion. We train a separate PINN
for each generator to model its dynamic behaviors and use
AC-PF to update algebraic variables (e.g., bus voltages) of
the entire system. An iterative algorithm alternates between
predicting generator states with PINNs and solving AC-PF,
eliminating the need for traditional numerical integration.
As such, the method’s complexity scales linearly with the
number of generators in both training and testing. A two-stage
predictor training procedure is developed: an unsupervised
stage based on physical laws (i.e., differential equations),
followed by a supervised stage with simulation data to achieve
further accuracy. We evaluate the method’s performance in

a 3-generator 9-bus power system, demonstrating its great
accuracy in simulating full system dynamic trajectories.

II. PROBLEM DESCRIPTION

Consider an m-generator n-bus system governed by DAEs:

dx(t)

dt
= f(x(t), z(t)) (differential equations) (1)

0 = g(x(t), z(t)) (algebraic equations) (2)

where x(t) = [x1(t), x2(t), . . . , xm(t)] is the vector of
state variables for the m generators, while z(t) =
[z0(t), z1(t), z2(t), . . . , zm(t)] is the vector of algebraic vari-
ables in the system. Specifically, with the buses in the system
partitioned into m generator terminal buses and n −m non-
generator buses, (a) xi(t) represents the state variables of a
generator i, (b) zi(t) represents the algebraic variables of the
corresponding generator terminal bus, and (c) z0(t) represents
the remaining algebraic variables of all non-generator buses.
For example, with a second-order (i.e., classical) dynamic
model of generators characterized by swing equations,

xi(t) = [δi(t), ωi(t)]
T
, (a)

zi(t) = [|Vi(t)|,∠Vi(t)]T , (b)
z0(t) = [complex voltages of all non-generator buses] (c)

where δi(t) is generator i’s rotor angle, ωi(t) is its rotor speed,
and |Vi(t)| and ∠Vi(t) represent the magnitude and angle
of generator terminal bus’ complex voltage Vi(t). Given a
set of initial values of x(t) and z(t), the DAEs (1) and (2)
can be solved using various numerical integration methods
to determine the trajectories of all quantities over time. We
note that, the algebraic equations (2) can experience multiple
changes in the presence of changes in the system (e.g., faults).

The goal of this work is to simulate dynamic trajectories in
power systems with predictors in a scalable fashion, instead
of resorting to numerical integration methods. To achieve this,
we will (a) replace the dynamic computation of each generator
with a trained predictor, while (b) connect all the predictors
by solving AC-PF for the power system. In this approach,
our algorithm iteratively alternates between a) calling trained
predictors and b) solving AC-PF to dynamically update the
external inputs to the predictors (i.e., the boundary conditions
of (1)). Furthermore, given closed-form expressions of the
differential equations (1) of generator dynamics, PINNs can
be trained that effectively capture (1) in the predictor model.

III. METHODOLOGY

A. Physics-Informed Neural Networks and Their Limitation

We begin with a discussion of PINNs in power systems and
their limitation. PINNs are neural networks designed to solve
differential equations by embedding physical laws directly into
the predictor model and learning process. Consider a SMIB
system described by Ordinary Differential Equations (ODEs):

dxi(t)
dt

= f(xi(t), zi), t ∈ [0, T], (3)

where zi captures the constant boundary conditions, and
f(xi(t), zi) describes the generator dynamics. A PINN aims
to approximate the solution xi(t|xi(0), zi) of the ODE given
the initial conditions xi(0) and boundary conditions zi. In this
context, we let H(xi(0), zi, t; θ) represent a neural network
(NN), where θ denotes its parameters. By querying the NN,
one can generate the (approximated) generator trajectory with
x̂i(t|xi(0), zi) = H(xi(0), zi, t; θ),∀t. In addition to satisfying
the initial and boundary conditions, H(xi(0), zi, t; θ) is trained
to minimize the residual of the ODE [11], denoted by r(t),

r(t) :=
dH(xi(0), zi, t; θ)

dt
− f(H(xi(0), zi, t; θ), zi), (4)

where dH(xi(0),zi,t;θ)
dt is computed using automatic differenti-

ation, allowing precise and efficient calculation of gradients
during backpropagation. Accordingly, the training process
primarily involves minimizing a physics-based mean squared
error (MSE) loss, denoted as MSEphysics. The physics loss is
designed to enforce compliance with the underlying ODE at
a set of collocation points {tc}Nc

c=1 within an interval [0, T]:

MSEphysics =
1

Nc

Nc∑
c=1

|r(tc)|2 (5)

This physics loss serves as a critical component of the training
objective, ensuring that the learned NN satisfies the physical
laws of the power system. Importantly, minimizing MSEphysics
does not require solving the ODEs. Therefore, in principle,
PINNs as a solution to ODEs can be learned entirely via
unsupervised learning by minimizing the residuals of the
ODEs, effectively setting the training objective to be the
satisfaction of the system’s physical law.

Notably, in the SMIB system, the boundary conditions of
the ODEs, zi, are assumed to be constant [7]. This is critical
for PINNs to be feasible to perform as expected: the neural
networks can predict the system state directly based on the
queried time given the initial conditions xi(0), and then the
dynamics of the system can be generated for all future times
given the constant boundary conditions.

However, to extend the use case to more complex sys-
tems with multiple generators, PINN encounters scalability
challenges. Specifically, straightforward applications of PINN
would entail modeling the entire system with a single pre-
dictor, whose complexity can quickly rise as the system
size increases. An alternative is to model each generator
with a PINN. However, the assumption of constant boundary
conditions no longer holds, as the complex voltages at all
the buses continuously vary over time due to the interactions
among the generators. This reality limits the use of PINNs
which are neural networks trained with constant boundary
conditions for querying future trajectory values at any time
directly. To overcome this challenge, we will next develop an
iterative framework that allows the system to iteratively update
boundary conditions as the simulation progresses.

B. A Scalable Iterative Algorithmic Framework

We now introduce an iterative algorithmic framework de-
signed to dynamically update boundary conditions (e.g., com-
plex voltages of generator terminal buses) and describe how
it interacts with the PINN-based predictors.

In a multi-generator system, we train a PINN for each
generator separately. Different from prior work that queries
all future times in the trajectories, our method employs an it-
erative framework that integrates PINNs with an AC-PF solver
to simulate system dynamics. Specifically, during testing with
trained PINNs, the procedure alternates iteratively between
two steps — predicting generator states using PINNs and
solving AC-PF to update the algebraic variables — to generate
the full system trajectories. The process proceeds as follows
(cf. Algorithm 1): at each time step, for each generator i, its
PINN reads its previous states xi(t−1) and its previous corre-
sponding algebraic variables zi(t− 1) (boundary conditions).
Based on these inputs, the generator states xi(t) are predicted.
After obtaining the updated states of all generators, x(t), these
and the algebraic variables z(t − 1) are then input into the
AC-PF solver to compute the updated algebraic variables (i.e.
complex system voltages) z(t) across the entire system. This
iterative process continues and the states of all generators
{x(t)}Tt=1 and algebraic variables {z(t)}Tt=1 over the time
horizon T are obtained. We note that, during this process,
there could be system changes occurring at times (e.g., faults,
generation/load changes). Whenever a system change occurs,
it would simply update the AC-PF solver and/or generators’
boundary conditions for the trajectories thereafter.

Algorithm 1 Iterative Framework of Integrating PINNs and
AC-PF
Input: Initial generator states x(0) and algebraic variables

z(0).
Output: Generator states {x(t)}Tt=1 at all generators and

algebraic variables {z(t)}Tt=1 at all buses over time T .
1: for t← 1 to T do
2: if A system change occurred at time t then
3: Update admittance matrix Ybus accordingly.
4: end if
5: for i← Generator do
6: xi(t)← PINN Predict(xi(t− 1), zi(t− 1)) .

Predict next generator states with PINN.
7: end for
8: Update z(t)← AC PF(x(t), z(t− 1)) . Solve AC-PF

to update algebraic variables.
9: end for

10: return {x(t)}Tt=1, {z(t)}Tt=1

A diagram is depicted in Fig. 1 to illustrate the flow of vari-
ables fed into the AC-PF solver and the PINNs. The diagram
provides an intuitive sense of how the system dynamics are
updated (illustrated from time index t to t+ 2).

In addition to ensuring that the PINNs are dynamically
informed by continuous changes in boundary conditions, a

�1 �2 ���1 �2 ��…

�1 �2 ���1 �2 ��…

�0

�0

AC-PF

�1

�2 = �1+ �1

�3 = �2+ �2

�1 �1 �1

�1 �2 ���1 �2 ��…�0

AC-PF �2 �2 �2

Fig. 1: Diagram of the iterative algorithmic framework in
an m-generator system. x1,2...m and z1,2...m represent the
state variables of m generators and algebraic variables of
the corresponding generator terminal buses, respectively. z0

represents the algebraic variables of the other n − m non-
generator buses in the system. ∆t1 and ∆t2 are the step sizes
between the consecutive time indices. The black lines indicate
the input directions while the orange lines are for the output.

key advantage of the proposed algorithm is its scalability.
Since a predictor is trained for each generator, the method’s
computational complexity scales linearly in the number of
generators, i.e., with a computational complexity of O(m), in
both training and testing. Moreover, it can easily accommodate
additional generators without retraining the existing predictors.
Similarly, the predictors also need not be retrained under
changes to the power system, such as those caused by faults.

C. Training of PINN-based Predictors

For training high-accuracy PINNs, we propose a two-stage
strategy consisting of an unsupervised training stage followed
by a supervised training stage. In principle (cf. Section III-A),
a PINN-based predictor can be trained via unsupervised learn-
ing without any labeled data. Nonetheless, to further improve
the predictor’s accuracy, we employ a supervised training stage
utilizing some simulation data after the unsupervised training
phase. Since the PINNs for different generators are trained
independently, without loss of generality, we describe the
training strategy of a PINN for generator i in the following.

Here, while the training strategy is generally applicable to
other generator models, we use a second-order dynamic model
as an illustrative example. As such, the inputs and outputs for
a PINN are as follows:

a) Inputs: The input variables for the predictor include
the time step size between two consecutive time indices, ∆t;
the relative rotor speed ∆ωi(t) = ωi(t)−ωsynchronous; the angle
difference ∆δi(t) = δi(t) − ∠Vi(t); and the product of the
winding voltage and generator terminal bus voltage magnitude,
|Eq(i)| · |Vi(t)|, where Eq(i) is the complex winding voltage
of generator i.

b) Outputs: The output variables of the predictor include
the relative rotor speed for the next time step, ∆ωi(t+1); and
the predicted angle difference ∆δi(t+1) = δi(t+1)−∠Vi(t).

The complex bus voltage Vi(t) (formed by ∠Vi(t) and |Vi(t)|)
is subsequently updated via AC-PF.

In the unsupervised training stage, an initial condition loss,
MSEinitial is included to ensure that the predicted values match
known initial conditions:

MSEinitial =
1

Nu

Nu∑
u=1

|∆δ̂i(0)−∆δi(0)|2

+
1

Nu

Nu∑
u=1

|∆ω̂i(0)−∆ωi(0)|2. (6)

where ∆δ̂i(0) and ∆ω̂i(0) represent the predicted outputs
when ∆δi(0) and ∆ωi(0) are fed into the predictor. Here,
Nu is the number of input sets (∆δi(0),∆ωi(0)) which
are randomly sampled within their respective domains. The
combined unsupervised loss, Lunsupervised, is then defined as

Lunsupervised = αphysics ·MSEphysics + αinitial ·MSEinitial (7)

where αphysics and αphysics are weighting coefficients, and
MSEphysics is the physics loss (5). The unsupervised training
stage enforces the predictor to satisfy both the governing
physical laws and any initial conditions.

In the supervised training stage, the loss function is com-
posed of the MSE loss terms for the outputs, specifically
for relative rotor speed and angle difference predictions. The
supervised loss Lsupervised is defined as

Lsupervised =α∆ω ·
1

K · T

K∑
k=1

T∑
i=1

(
∆ω̂

(k)
i (t)−∆ω

(k)
i (t)

)2

+ α∆δ ·
1

K · T

K∑
k=1

T∑
i=1

(
∆δ̂

(k)
i (t)−∆δ

(k)
i (t)

)2

(8)

where α∆ω and α∆δ are weighting coefficients, K represents
the number of simulated cases, while T is the total number
of time steps for each trajectory. The terms ∆ω̂

(k)
i (t) and

∆δ̂
(k)
i (t) are the predicted values of relative rotor speed and

angle difference for generator i at time step t within the k-th
trajectory, while ∆ω

(k)
i (t) and ∆δ

(k)
i (t) are the ground truths.

Importantly, the unsupervised learning stage ensures con-
sistency with the physical law while reducing the amount
of training data needed in the supervised learning stage.
It thus improves both model generalizability/robustness and
computational efficiency with limited supervised training data.

IV. CASE STUDY AND DISCUSSION

A. Data Generation

We perform time-domain simulations to generate system
trajectories with an open-source transient stability simulation
program PYPOWER-Dynamics [12]. These ground-truth tra-
jectories are generated using the Modified Euler integration
method and an AC-PF solver provided by this platform. The
simulations are performed on the IEEE 3-Generator 9-Bus
Power System (cf. Fig. 2). Each generator is modeled as

a synchronous machine using a second-order (i.e., classical)
dynamic model, represented by the swing equations as follows:

dδi(t)

dt
= ∆ωi(t), (9)

dωi(t)

dt
=

1

2Hi
(Pm,i − Pe,i −Di∆ωi(t)) , (10)

where Hi, Pm,i, and Di are the inertia constant, mechanical
power input, and damping coefficient of generator i, respec-
tively. The electrical power output, Pe,i, is determined by the
network and load as:

Pe,i =
|Eq(i)| · |Vi(t)| · sin(δi(t)− ∠Vi(t))

Xdp
,

where Xdp is the d-axis transient reactance. The trajectories
of generator dynamics (i.e. rotor angles and rotor speeds in
our experiment) along with the algebraic variables (i.e., bus
voltages) of the system are simulated based on the platform.
Each trajectory is simulated with a sampling period of 0.1s
for a total length of 10s. We introduce two load changes as
disturbances to the system. The first load change happens
at the start of the simulation: the load of bus 5 in the
system reduces to a random level within [0MW, 75MW]
from 125MW. The load is restored at a random time later
in the interval [2s, 4s]. 3,800 cases are simulated for the
supervised training stage and another 1,000 cases are simulated
for testing.

Fig. 2: Diagram of the IEEE 3-generator 9-bus power system.

B. Training and Implementation Details

The Neural network architecture of the predictors is de-
termined via hyperparameter tuning, where we tested config-
urations ranging from 2 to 5 hidden layers and 50 to 300
neurons per layer. From these, for each predictor, we choose 4
hidden layers with 200 neurons each to balance model expres-
siveness, computational cost, and overfitting risks. The input
features are normalized to the range [−1, 1] using the formula
input = 2 · input−minmax−min − 1. The training is implemented
utilizing an NVIDIA RTX 6000 Ada Generation GPU.

As mentioned in III-C, the training process includes both
unsupervised and supervised training stages. In the unsuper-
vised training stage, LBFGS optimizer is used with a learning
rate of 1.0. The maximum number of iterations is set to
10,000, with a history size of 50. Convergence tolerance is
set to −1 for gradients and 1.0 · ε for parameter changes,

where ε is the machine epsilon. The line search function is
set to “strong wolfe”, and the optimization process typically
stops after approximately 4,000 iterations, which takes around
1,600 seconds in our experiments. This training stage does
not rely on any simulated data as labels but instead uses
Nu = 100,000 data points for initial conditions, ensuring
proper initialization of the system state. Additionally, another
Nc = 100,000 data points are used for the physics loss, with
these points uniformly distributed over twice the range of
the variables encountered in our simulated data. Finally, the
loss function (7) is composed of initial condition losses and
physics-based losses, with respective weights of αinitial = 100,
and αphysics = 0.1.

In the supervised training stage, the Adam optimizer is
utilized with a learning rate of 0.003, an epsilon value of
1e−6, and the AMSGrad variant enabled. The gradient clip
value is set to 1.0 during training. This stage leverages up to
K = 3,800 simulated cases that we generated, each containing
T = 100 data points, resulting in a total of up to 380,000
data points. The batch size is set to 200. While our default
supervised training setting utilizes all 3,800 generated cases
with 1,000 training epochs, we also conducted training with
fewer generated cases —– specifically, 1,900, 1000, 500, 200,
and 100 cases — for comparison. The weighting coefficients
α∆ω and α∆δ are determined via hyperparameter tuning for
each predictor. Specifically, the weighting ratios for training
different generators, G1, G2, and G3, are set as follows:
α∆ω : α∆δ = 1 : 1, 1 : 10, and 3 : 2.

After completion of both training stages, the predictors
trained for all generators are ready to be used in dynamic
simulations via the iterative testing framework.

C. Numerical Experiment Results

As described in III-B, the iterative algorithm integrating
PINNs and AC-PF (see Alg. 1) is implemented to generate
each trajectory during testing. Specifically, (a) the states of
generators G1-G3 are predicted by three predictors, and (b) the
AC-PF is iteratively solved for the 9-bus system connecting
these generators to update the algebraic variables of the
system.

To evaluate the performance of the trained predictors, we
compute the normalized MSE Ei of the i-th predictor over
1,000 testing cases, given by:

Ei =
1

2 ·K · T

K∑
k=1

T∑
t=1

[(
∆ω̂

(k)
i (t)−∆ω

(k)
i (t)

max(∆ω
(k)
i)−min(∆ω

(k)
i) + ε

)2

+

(
δ̂

(k)
i (t)− δ(k)

i (t)

max(δ
(k)
i)−min(δ

(k)
i) + ε

)2]
(11)

where max(δ
(k)
i) and min(δ

(k)
i) represent the maximum and

minimum values of the ground truths in the k-th trajectory. The
term ε is a small constant (e.g., 10−9) added for numerical
stability to prevent division by zero when the ground-truth
trajectory is flat. The same normalization method is applied

to the relative rotor speed, ∆ω. Based on the testing metric in
equation (11), we compared the predictor trained with unsu-
pervised learning only and that with the two-stage approach as
shown in Table I. We observe that the supervised training stage
significantly improves the accuracy of the predictors trained
with unsupervised learning.

TABLE I: Normalized MSEs of predictors trained with differ-
ent training strategies, averaged over 1,000 testing cases.

Unsupervised Only Unsupervised + Supervised
G1 1.059 · 10−1 2.485 · 10−5

G2 9.038 · 10−2 1.793 · 10−5

G3 1.124 · 10−1 2.693 · 10−5

Overall 1.029 · 10−1 2.324 · 10−5

To visualize the performance of the trained predictors, we
compute the normalized MSE for each testing case k:

E(k) =
1

6 · T

3∑
i=1

T∑
t=1

[(
∆ω̂

(k)
i (t)−∆ω

(k)
i (t)

max(∆ω
(k)
i)−min(∆ω

(k)
i) + ε

)2

+

(
δ̂

(k)
i (t)− δ(k)

i (t)

max(δ
(k)
i)−min(δ

(k)
i) + ε

)2]
(12)

We then select the testing case with the largest normalized
MSE, i.e., the worst case, among the 1,000 testing cases.
In Fig. 3, we plot this worst case’s predicted trajectories of
rotor angles and relative rotor speeds of all the generators.
We observe that, even for the worst-performing case among
the 1,000 randomly generated cases, the state trajectories
simulated by the PINN+ACPF framework very closely follow
the ground-truth trajectories for all the generators.

Lastly, we present the testing results with different numbers
of simulated cases used in the supervised training stage. The
results are summarized in Table II. We observe that, even
relying only on as few as 100 simulated cases in the supervised
training stage, the trained predictors can already achieve
remarkable accuracies in testing. This indicates great potential
for further reducing the overall computational complexity in
the training of predictors. We note that the non-monotonicity
observed in the accuracy is due to the randomness of the
selected cases.

TABLE II: Normalized MSEs of predictors trained with dif-
ferent training sizes, averaged over 1,000 testing cases.

Training G1 G2 G3 Overall
size
3800 2.485e-5 1.793e-5 2.693e-5 2.324e-5
1900 5.194e-5 4.609e-5 4.620e-5 4.808e-5
1000 4.054e-5 3.282e-5 3.635e-5 3.654e-5
500 2.689e-6 8.773e-6 6.498e-6 5.987e-6
200 1.178e-5 1.801e-5 1.220e-5 1.400e-5
100 8.820e-6 1.294e-5 1.339e-5 1.172e-5

0 2 4 6 8 10
time [s]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G1
 ro

to
r a

ng
le

 [r
ad

]
Ground Truth
PINN + AC-PF

0 2 4 6 8 10
time [s]

0.00

0.01

0.02

0.03

0.04

G1
 re

la
tiv

e
ro

to
r s

pe
ed

 [r
ad

/s
]

Ground Truth
PINN + AC-PF

0 2 4 6 8 10
time [s]

0.35

0.40

0.45

0.50

0.55

0.60

0.65

G2
 ro

to
r a

ng
le

 [r
ad

]

Ground Truth
PINN + AC-PF

0 2 4 6 8 10
time [s]

0.00

0.01

0.02

0.03

0.04

0.05

G2
 re

la
tiv
e
ro
to
r s
pe
ed
 [r
ad
/s
]

Ground Truth
PINN + AC-PF

0 2 4 6 8 10
time [s]

0.25

0.30

0.35

0.40

0.45

0.50

0.55

G3
 ro

to
r a

ng
le

 [r
ad

]

Ground Truth
PINN + AC-PF

0 2 4 6 8 10
time [s]

0.01

0.02

0.03

0.04

0.05

G3
 re

la
tiv
e
ro
to
r s
pe
ed
 [r
ad
/s
]

Ground Truth
PINN + AC-PF

Fig. 3: The worst-performing testing case: comparisons of
the trajectories of rotor angles and rotor speeds for the three
generators (G1-G3).

D. Discussion

Our PINN-based approach ensures that, as long as any
generator’s dynamic model can be described by ODEs, a
corresponding PINN can be trained for it. As such, when
more complex control mechanisms, such as generator Power
System Stabilizer (PSS) and Automatic Voltage Regulator
(AVR), can be (approximately) modeled by ODEs, the PINN-
based approach can continue to be applied. The general im-
plementation of the iterative algorithm during testing remains
the same regardless. The method thus has wide applicability to
different systems with different kinds of generators. Moreover,
as the predictors are trained for generators separately, once a
predictor is trained for a generator, if such a generator with
the same dynamic model appears in a different system, the
already-trained predictor could be applied directly without re-
training.

As the training of the PINNs in our method is done for each
generator separately, the training complexity scales linearly
with the number of generators in the system, and the training
for different generators can be performed in parallel. Such
linear complexity is very advantageous for training to scale
to larger numbers of generators. Notably, all the training and
simulation in our method are offline computation, which is
typically much less resource- and time-constrained. On the
other hand, the computational complexity during testing is also
linear in the number of generators. This is a key enabler for
applying our method in real-time, online transient dynamic
analysis.

While we examined transient dynamics under load changes
in the case study, the developed method is generally applicable
to other types of disturbances as well, including three-phase

faults. Regardless of the disturbance types, as long as such dis-
turbances do not affect the governing equations of generators
but only the power flow computation, the proposed method
with PINNs will continue to work.

V. CONCLUSION

We have developed a novel framework that integrates
PINNs with an AC-PF solver for efficient transient dynamic
simulations in power systems. By training a separate PINN-
based predictor for each generator and leveraging an iterative
algorithm to connect the predictors via AC-PF, the developed
approach bypasses traditional numerical integration methods,
enabling scalable and accurate simulation of full system
dynamics. The two-stage training strategy, consisting of an
unsupervised stage to enforce physical laws and a super-
vised stage to refine predictors with simulation data, ensures
both compliance with the governing differential equations
and improved accuracy. The effectiveness of the proposed
framework was demonstrated on a 3-generator 9-bus system,
showcasing its exceptional accuracy in simulating full system
dynamic trajectories. As the computational complexity scales
linearly with the number of generators, the developed method
offers promising scalability for efficiently simulating large-
scale power system dynamics.

REFERENCES

[1] B. Stott, “Power system dynamic response calculations,” Proceedings of
the IEEE, vol. 67, no. 2, pp. 219–241, 1979.

[2] H.-D. Chiang, Direct methods for stability analysis of electric power
systems: theoretical foundation, BCU methodologies, and applications.
John Wiley & Sons, 2011.

[3] T. Zhao, M. Yue, and J. Wang, “Structure-informed graph learning of
networked dependencies for online prediction of power system transient
dynamics,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp.
4885–4895, 2022.

[4] W. Cui, W. Yang, and B. Zhang, “A frequency domain approach to
predict power system transients,” IEEE Transactions on Power Systems,
vol. 39, no. 1, pp. 465–477, 2023.

[5] J. Li, M. Yue, Y. Zhao, and G. Lin, “Machine-learning-based online
transient analysis via iterative computation of generator dynamics,” in
2020 IEEE Int. Conf. on Communications, Control, and Computing Tech.
for Smart Grids (SmartGridComm). IEEE, 2020, pp. 1–6.

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[7] G. S. Misyris, A. Venzke, and S. Chatzivasileiadis, “Physics-informed
neural networks for power systems,” in 2020 IEEE power & energy
society general meeting (PESGM). IEEE, 2020, pp. 1–5.

[8] J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis, “Physics-informed
neural networks for non-linear system identification for power system
dynamics,” in 2021 IEEE Madrid PowerTech. IEEE, 2021, pp. 1–6.

[9] J. Li, Y. Zhao, and M. Yue, “Integrating learning and physics based
computation for fast online transient analysis,” in 2023 IEEE PES
Innovative Smart Grid Tech. Conf. (ISGT). IEEE, 2023, pp. 1–5.

[10] J. Stiasny, B. Zhang, and S. Chatzivasileiadis, “Pinnsim: A simulator for
power system dynamics based on physics-informed neural networks,”
Electric Power Systems Research, vol. 235, p. 110796, 2024.

[11] Z. Mao and X. Meng, “Physics-informed neural networks with
residual/gradient-based adaptive sampling methods for solving partial
differential equations with sharp solutions,” Applied Mathematics and
Mechanics, vol. 44, no. 7, pp. 1069–1084, 2023.

[12] “Pypower-dynamics,” Available at https://github.com/susantoj/PYPOWER-
Dynamics.

