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Abstract—As the penetration of behind-the-meter (BTM)
rooftop solar energies continues to increase in power distribution
systems, it is of paramount importance for load serving entities
and system operators to forecast net loads in the system. In this
paper, novel algorithms for training high-performance predictors
for day-ahead net load forecasting are developed. Importantly,
the overall method only utilizes metered net load data and does
not require any monitoring data of solar generation. Methodolog-
ically, the net load data trace is disaggregated into estimated BTM
solar and load traces, based on which separate predictors are then
trained for solar generation and load forecasting exploiting their
distinct natures, respectively. For solar generation forecasting,
time data, weather forecast, and potentially solar irradiance
forecast are used as input features of the predictor. For load
forecasting, time data, weather forecast, and judiciously chosen
load data in the recent past are used as input features of
the predictor. The two predictors’ outputs are combined to
produce the final net load forecast. The developed method is
comprehensively evaluated based on two real-world smart meter
data sets from Ithaca, NY and Clifton park, NY, respectively.
High accuracy of day-ahead net load forecast is demonstrated.

I. INTRODUCTION

Day-ahead net load forecast, especially at aggregate levels
(e.g., feeder, substation, and above), is of paramount impor-
tance for efficient and reliable system operations by utilities
and independent system operators (ISOs). Net load forecast is
crucial for efficient procurement of energy supplies in energy
markets: e.g., ISO relies on net load forecast to perform
optimal generation scheduling to serve the loads, and load
serving entities need such information to do optimal bidding
in electricity markets. Net load forecast also provides critical
indicators of system reliability risks, e.g., potential overloading
in parts of the power transmission and distribution systems.

Traditionally, net load forecasting is mostly about load
forecasting. With the rapid increase of behind the meter
(BTM) renewable energies, predominantly rooftop solar, the
composition of net load changes and thus the problem nature
of net load forecasting changes fundamentally. It is important
to note that, unlike utility-scale renewable energy sites, BTM
solar generation is not monitored by utilities (and hence the
term “behind the meter”), and all that utilities can measure are
the net loads. While existing data-driven methods designed for
load forecasting could be applied to net load forecasting by
replacing the load data with the net load data, there tends to be
performance degradation because load forecasting methods do
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not distinguish and exploit the two very different components
of net load — solar generation and load.

There have been a large number of studies on the respec-
tive topics of solar generation forecasting and electric load
forecasting. We refer the readers to the review papers [1] and
[2] among all these works. For net load forecasting in the
presence of both solar generation and loads, recent works have
trained predictors that a) take net loads (as opposed to loads)
and informative solar energy related features (such as sky
images and separately measured solar generation) as inputs,
and b) directly output net load forecast [3], [4]. Different
from such “direct” strategies, there have been works that
treat solar generation forecasting and load forecasting as two
separate tasks and integrate the respective results in the final
stage. In [5], a Wavelet Neural Network was developed and
it significantly outperformed direct strategies in high solar
penetration scenarios. In [6], a Dynamic Gaussian Process
and quantile regression were employed, and the impact of
aggregating customers was also investigated. In [7], autoen-
coders and cascade neural networks were employed to perform
forecasting across different time horizons. Notably, however,
these approaches all rely on separately measured solar and
load traces which serve as supervision signals in training the
separate predictors for solar generation and load, respectively.
In practice, however, it is often the case that BTM solar
and load data are not available to the utilities and ISOs.
To address this issue in order to still use separate predictors
for solar generation and loads, [8] estimates solar generation
and loads from net load data based on maximal information
coefficient based correlation analysis and a grid search. It
then decomposes net-loads into solar generation, loads, and
residuals, where separate predictors are trained for forecasting
these three components. However, the disaggregation approach
employed therein is relatively simple.

In this work, we develop a novel two-step approach for net
load forecasting that first a) disaggregates historical net load
data to obtain BTM solar generation and load traces, and b)
utilizes the disaggregated traces to separately train predictors
for solar generation and load forecast, before combining them
to form the eventual net load forecast. Notably, we employ
the state of the art BTM disaggregation algorithm from our
recent work [9]. We show that the ensuing separate training
of predictors based on our disaggregated data leads to a net
load forecast performance very close to the ideal performance
bound achieved by training with ground truth BTM solar



generation and load data. In particular, recognizing the distinct
natures of the two sub-problems of solar generation and load
forecast, we develop different strategies of training effective
predictors for these two sub-problems respectively. Moreover,
we develop a novel customer clustering component in the load
forecasting sub-task based on the disaggregated load traces of
individual customers. As such, clusters of customers with sim-
ilar behaviors are identified, and separate predictors are trained
to better capture the different customer behavior patterns. In
this work, compared with short-term forecasting, we focus on
the more challenging day-ahead net load forecasting problem.

II. PROBLEM FORMULATION

For a set of residential energy customers, their total net
load at time t is denoted by nptq. We study the problem of
day-ahead forecast of this total net load. Our objective is
to predict, at any given time t, the vector of net loads in a
future time window of rnpt ` ∆1q, npt ` ∆2qs. Specifically,
we consider ∆1 “ 13 and ∆2 “ 36 in this paper, where
we employ hour as the unit of time. The reason is that this
time window aligns with the operation routine of the day-
ahead power markets in some independent system operators
(ISOs), e.g., New York ISO (NYISO): every day, at 11am,
the day-ahead market operation decisions must be determined,
and hence all 24 hours’ net loads of the next day need to be
predicted. This implies the need for net load predictions from
13-hour ahead to 36-hour ahead. We note that a simplified
objective of 24-hour ahead prediction, i.e., predicting npt`24q,
is often employed in existing studies. Clearly, this is included
in our objective as a special case. We further note that the
proposed method in this work can be straightforwardly adapted
to net load forecast with different look-ahead times.

With smart meters, residential customers’ net loads are
directly measured, and a typical time granularity is 15 minutes.
Based on massive historical net load data collected by smart
meters, it is intuitive that some net load patterns of the
customers may be captured and useful information could be
provided for day-ahead net load predictions. Furthermore,
weather also has an influence on both energy consumption and
solar generation. As such, we aim to develop a predictor that
takes a) historical net load measurements from smart meters,
b) day-ahead weather forecast, and c) time related information
such as time of day and day of year, as the input variables,
and outputs the next day’s net load forecast.

A. Decomposition of Net Load by BTM Smart Meter Data
Disaggregation

Importantly, we have seen a steady increase in rooftop
solar panel installation among residential customers, and the
trend is only accelerating. Such solar energies are however
installed “behind-the-meter”, meaning that their generation are
not separately metered or monitored in any way by the utility
companies. Instead, for a given customer k, its smart meter
measures its net load, which is equivalent to the difference
between load and solar generation, i.e.

nkptq “ lkptq ´ gkptq, (1)

where nkptq, lkptq and gkptq are its net load, load and solar
generation, respectively.

Hypothetically, let us assume that, not only nkptq, which is
measured by smart meters, but also both the load and solar
generation traces lkptq and gkptq are separately known: they
would fundamentally provide more information than that of
just the net load trace nkptq, and hence would in principle
enable more accurate forecast of future net loads.

Notably, the traces of the load lkptq and that of the solar
generation gkptq have very different natures:

‚ The load is primarily driven by human activities and
needs. While weather clearly has an impact on load, it is
just one of the potentially many determining factors.

‚ In contrast, given the installation parameters of the solar
panel, solar generation is directly determined by meteo-
rological conditions.

Consequently, an important implication is as follows: Condi-
tioned on knowing the weather information of the next day,

‚ The historical load data still provide important predictive
information on the loads of the next day due to the
intrinsic temporal correlations of human behaviors. For
example, the load pattern of the next day likely bears
some similarities to the current day.

‚ In contrast, the historical solar generation has no con-
ditional correlation with the solar generation of the next
day, as the latter is fully determined by the corresponding
weather conditions.

Accordingly, predicting future loads and predicting future
solar generation require fundamentally different strategies.
Indeed, in this work, we employ two distinct strategies tailored
for day-ahead forecasting of load and for that of solar gener-
ation, respectively. The results are then combined to provide
the day-ahead net load forecast.

Having said the above, separate data traces of load and solar
generation are however not measured by the smart meters and
hence are not available to the utilities. To exploit different
strategies for solar and load forecast, we address this issue by
employing a two-step methodology: We first a) disaggregate
the net load traces into solar generation traces and load traces
in a fully unsupervised fashion (i.e., without utilizing any BTM
measurements), and then b) utilize the disaggregated solar and
load generation traces to train separate predictors for day-
ahead forecast of solar generation and load, respectively.

III. THE PROPOSED FORECASTING METHOD

In this section, we introduce in detail the proposed method-
ology for net load forecasting.

A. BTM Solar Energy Disaggregation from Net Load

Given the net load data measured by smart meters, the
first step of our method is to disaggregate the net load traces
into BTM solar generation traces and load traces. Specifically,
we employ the method developed in our recent work [9]
which represents the state of the art. As a result, for any
customer k, its net load trace nkptq is disaggregated into
its solar generation trace gkptq and load trace lkptq, so that
nkptq “ lkptq ´gkptq. In brief, our method is an unsupervised
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Figure 1: Predictor models: (a) Solar generation forecast
(FCNN-based); (b) Load forecast (FCNN-based); (c) Load
forecast (LSTM-based).

learning based algorithm that exploits generic physical models
of solar panels. It takes a) net load traces and b) solar
irradiance, weather and time data as inputs, and outputs the
BTM solar generation (and hence load) traces. The main ideas
of this disaggregation method are to a) find pairs of time slots
in which customers likely have similar loads, and b) estimate
the unknown parameters of the solar panel physical model
by minimizing a loss constructed using these time pairs with
similar loads. With the estimated physical parameters of the
solar panels, the solar generation traces gkptq can then be
computed based on the solar irradiance, weather and time data,
and the load lkptq “ nkptq ` gkptq can also be recovered.
Due to space limitations, we refer the readers to [9] for more
details. With the disaggregated data, we next design algorithms
for forecasting solar generation and load traces, respectively.

B. Solar Generation Forecast
Based on the disaggregated solar generation traces

gkptq,@k, we compute the total solar generation gptq “
ř

k gkptq of the set of customers. We then train predictors
for day-ahead forecasting of the total solar generation gptq.

1) Feature Selection: For a future time slot of interest t`T ,
we employ the following input features for predicting gpt`T q:

‚ Time and location information: time of day P r1, 96s, and
solar zenith angle. We note that the 96 time slots are from
the fact that the data have 15-minute intervals, and thus
there are 4 time slots in each of the 24 hours.

‚ Weather information: weather forecast including temper-
ature, cloud type, humidity, dew point, precipitable water,
pressure, and wind speed.

It is worth mentioning that the above weather forecast is
standard practice and widely available and used in many appli-
cations. In addition to the above, another piece of information
that can be particularly helpful for forecasting solar generation
is solar irradiance. Existing works have demonstrated that day-
ahead forecasting of solar irradiance can also be performed
with reasonable accuracy [10]. As such, in our study, we
consider both of the following two problem settings:

‚ Day-ahead solar generation forecasting without using any
solar irradiance forecast information.

‚ Day-ahead solar generation forecasting with solar irra-
diance, in particular, global horizontal irradiance (GHI)
forecast as an input feature.

The first setting is more conservative without assuming the
knowledge of solar irradiance forecast and uses only standard
weather forecast information. In the second setting, we will
demonstrate how even better performance can be achieved if
solar irradiance forecast is available.

Notably, the historical solar generation data are not included
as an input feature because of the conditional independence of
future solar generation and past solar generation, conditioned
on the knowledge of future weather, (cf. Section II-A). This
is not to be confused with the fact that the historical solar
generation data are used in training the predictors. Specifically,
the solar generation predictors are trained in a supervised
fashion with a) the historical solar generation data as training
labels of the predictor outputs, and b) the historical time,
weather, and potentially GHI data in the corresponding time
slots as the predictor inputs.

2) Predictor Model: We employ neural networks with fully
connected layers as the predictor model. A diagram for this
architecture is depicted in Fig. 1(a). For the time of day data,
due to their circular nature (e.g., hour 1 and hour 24 are in
fact very close to each other), we employ a two dimensional
transformation using sine and cosine functions to properly
encode such circular variables [11]. For the categorical weather
variable of cloud type, one-hot encoding is applied.

C. Load Forecast

Based on the disaggregated load traces lkptq,@k, we com-
pute the total load lptq “

ř

k lkptq of the set of customers.
We then train predictors for day-ahead forecasting of the total
load lptq.

1) Feature Selection: In addition to the time and weather
information as in Section III-B, we further employ historical
load data as part of the inputs to the predictors. The way we
include the historical load data in the input features depends
on the predictor model architecture. In particular, we develop
two types of predictor model architectures: a) fully connected
neural networks (FCNN), and b) recurrent neural networks, in
particular, long short-term memory (LSTM) networks.

For FCNN predictors, at the current time t, for predicting
the loads in the future time window rt`13, t`36s, we utilize
a) the past two days’ load data up to the current time, i.e.,
lpt´47q, . . . , lptq, and b) the load data in the day exactly one
week before the day to predict, i.e., lpt´155q, . . . , lpt´132q.
The reasoning is the following: a) the load pattern in the very
recent past, represented by the past two days, likely provides
useful information for the load pattern of the very near future,
and b) the load pattern in the same day a week ago also likely
provides useful information due to the weekly activity patterns
of the customers. For LSTM predictors, the past 7 days of
historical load data trace is utilized as predictor inputs.

2) Predictor Model Architecture: For FCNN-based predic-
tors, a diagram of the neural network architecture is depicted



in Fig. 1(b). In this architecture, we employ an idea inspired
by “skip connections” in residual neural networks [12]. Specif-
ically, we introduce a “skip connection” branch (cf. the left
branch in Fig. 1(b)) of the neural network solely for the loads
from the day one week before the predicted day. The output is
then added to the general branch (cf. the right branch in Fig.
1(b)) of neural network. The intuition is to exploit the weekly
patterns of customer behaviors via this skip connection so that
the general branch can focus on learning the more intricate
load patterns beyond this weekly pattern. For LSTM-based
predictors, we employ two LSTM layers followed by one fully
connected layer (cf. Fig. 1(c)).

3) Clustering of Customers: As our objective here is day-
ahead forecasting of the total loads of a set of customers
(e.g., at the feeder level), it is sufficient to train the load
forecasting predictor based on just a single trace of the total
load disaggregated from the total net load. Having said this,
with the availability of smart meter data from individual
customers, the individual load traces can fundamentally offer
more information to improve the forecasting performance of
the total load. The intuition is to design predictors specialized
for different customers’ behaviors that exhibit distinct patterns:
Training more nuanced predictors that separately forecast
loads of different patterns can perform better than training
just a single predictor for the total load in which all different
load patterns are aggregated. As such, we perform a step of
clustering of customers based on their load traces, and train a
separate predictor for each cluster to forecast its corresponding
cluster-wise total load. We then combine the cluster-wise
predictors to form the forecast of the total load.

Specifically, we employ a hierarchical clustering method –
the agglomerative clustering method with Ward’s linkage – on
the set of load traces of all the customers, In brief, Ward’s
method is an iterative algorithm: at each iteration, a pair of
clusters that leads to the minimum increase in total within-
cluster variance are merged [13].

IV. DATA-DRIVEN EVALUATION

In this section, we evaluate the performance of our methods
on two real-world smart meter data sets: a) a Pecan Street
Inc. data set [14] of 12 BTM-PV-owning residential customers
residing in Ithaca, NY, collected in a six-month period from
05/01/2019 to 10/31/2019, and b) a National Grid data set of
185 BTM-PV-owning residential customers residing in Clifton
Park, NY, collected in a 12-month period from 01/01/2019
to 12/31/2019. Both data sets are collected with 15 minutes
intervals. In the Ithaca data set, the ground truths of BTM
solar generation are also separately measured and available.
In the Clifton Park data set, only the net loads measured by
smart meters are available which is the typical case in practice
for most utilities. The weather data, including GHI data, for
the same periods of time and from (approximately) the same
locations are collected from the National Solar Radiation
Database (NSRDB) [15].

For each data set of net loads, we perform BTM disag-
gregation of the net load traces (cf. Section III-A). to obtain
estimated solar generation traces and a load traces. The solar
generation and load predictors are then trained based on

these two disaggregated traces, respectively. Notably, for the
Ithaca data set, since the ground truth solar and load data
are also available, this allows us to compute a performance
bound achieved by training with these BTM ground truths,
which would typically not be available in practice although
available in this particular data set. We will then compare the
performance achieved by using the disaggregated data, which
is practical, with this performance bound which is based on
impractical BTM measurements.

Given that the Ithaca data set consists of only 12 customers,
whereas the Clifton Park data set have 185, we will perform
customer clustering for load forecasting (cf. Section III-C3)
with the latter but not the former. To comprehensively evaluate
the proposed method, we perform a 5-fold cross-validation-
like testing. Specifically, we evenly divide both the Ithaca and
Clifton Park data sets into 5 folds. For each fold as the testing
data, we train the predictors on the other 4 folds. The average
testing performance across all the 5 folds are computed.

Evaluation Metrics: To evaluate forecasting accuracy, we
utilize the Mean Squared Error (MSE) and hourly Normalized
Mean Absolute Error (nMAE) as the metrics:

MSE “
1

N

N
ÿ

t“1

pxt ´ x̂tq
2, (2)

nMAE “
1

N

N
ÿ

t“1

|xt ´ x̂t|

rangepxq
ˆ 100%, (3)

where xt and x̂t are the ground truths and predicted values of
the variable to forecast, respectively, and rangepxq is defined to
be the difference between the highest and lowest realizations
of x in the period of evaluation.

A. Ithaca Case Study

We first present the performance evaluated with the Ithaca
data set under the following three dichotomies:

‚ Train the predictors either a) based on the ground truth
BTM solar generation and load traces, or b) based on
the disaggregated traces (cf. Section III-A) which are
estimation of the ground truths. Clearly, the former is
expected to have a better performance.

‚ Either a) do not utilize GHI forecast information, or
b) include GHI forecast as part of the input features.
The latter is expected to have a better performance.
Specifically, prior research has shown that day-ahead
forecast of GHI can achieve an RMSE of as low as 6.6
W/m2 [10]. In our experiments, we make a conservative
assumption of a forecast RMSE of 10.0 W/m2.

‚ For load forecast, either a) employ FCNN as the predictor
architectures, or b) employ LSTM.

The eight performance evaluation under these dichotomies are
summarized in Table I. Furthermore, as a baseline method
that does not exploit disaggregated solar generation and load
traces, we train a FCNN predictor that takes the historical net
load data (in addition to the other time and weather related
data) as inputs, and directly produces the net load forecasts as
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Figure 2: Ithaca data set’s testing performance (using LSTM
without GHI forecast): forecast (red dashed) vs. ground truth
(solid blue) traces for three representative weeks.

Table I: Testing MSE and nMAE of Day-Ahead Net Load
Forecast, Ithaca, NY

MSE/NMAE FCNN w/o GHI FCNN w/ GHI LSTM w/o GHI LSTM w/ GHI
Ground Truth 38.145/4.038% 25.148/3.322% 37.519/4.002% 24.939/3.312%
Disaggregation 40.603/4.294% 28.115/3.604% 39.854/4.280% 27.640/3.646%
Baseline 57.358/5.525%

its outputs. The performance of the baseline for the setting of
FCNN without GHI is presented in Table I.

We make the following observations:
1) Compared with the baseline, significant performance

gain is achieved by performing the step of disaggrega-
tion and exploiting the disaggregated BTM solar gener-
ation and load traces for separate training.

2) FCNN and LSTM have similar performance (with
LSTM being slightly better in this case).

3) Having day-ahead GHI forecast information can signif-
icantly further improve the net load forecast accuracy
due to the improved solar generation forecast.

4) Without knowing the ground truth BTM solar generation
and load traces, based on the disaggregated estimates
of these traces, the performance is in fact very close
to that achieved with the ground truth knowledge. This
is great news for applying the developed methods in
practice, because a) such BTM ground truth information
are typically not available to the utilities, and yet b)
the utilities can still achieve almost the same day-ahead
net load forecasting performance as if the BTM ground
truths are known.

To visualize the performance, we plot the traces of the 24-
hour ahead net load forecast vs. the ground truths in three
representative testing weeks in Figure 2. Specifically, among

Figure 3: The dendrogram illustrating the result of hierarchical
clustering performed on the 185 customers.

all the weeks ranked by their MSEs, we choose the three weeks
at the 1st, 2nd (i.e., the median), and 3rd quartile marks.
As such, these three weeks exhibit above-average, average,
and below-average performance, respectively. We note that
these plots are derived based on the results from using LSTM
but without using GHI forecast as input. We observe that
the day-ahead net load forecasting accuracy is reasonably
high. As shown in Table I, if GHI forecasts are available as
input information to the predictors, the net load forecasting
performance will be even better.

B. Clifton Park Case Study
We now present the performance evaluated with the Clifton

Park data set. Recall that, in this data set, we only have the
measured net loads, and the ground truth BTM solar genera-
tion and loads are not available. Thus, we only evaluate the
predictors trained based on the disaggregated solar generation
and load traces.

With the relatively large number of customers in the Clifton
Park data set, we perform a step of customer clustering (cf.
Section III-C3) for load forecasting. We plot the clustering
results in Fig. 3: All 185 customers were clustered into 8
groups as marked by the black horizontal line.

To verify the performance gain with clustering, we evaluate
the load forecasting performance achieved by a) training 8
predictors for each cluster separately and b) combining the 8
predictors to obtain the total load forecast. We also evaluate
the performance without clustering. The testing performance
comparison is shown in Table II. We note that this is for
load forecasting which is one of the two critical components
(the other being solar generation forecasting) for our net
load forecasting method. We observe that, with the help of
clustering, the MSE of the day-ahead load forecast can be
significantly lowered.

Table II: Testing MSE of Day-Ahead Load Forecast by LSTM

MSE Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
w/o Clustering 535.094 402.333 558.327 526.258 477.699 501.942
w/ Clustering 504.230 383.526 500.289 451.976 425.112 453.027

Next, utilizing clustering in load forecasting, we evaluate
the net load forecasting performance under the following two
dichotomies:

‚ Either a) do not utilize GHI forecast information, or b)
include GHI forecast as part of the input features. The
latter is expected to have a better performance.
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Figure 4: Clifton Park data set’s testing performance (using
LSTM without GHI forecast): forecast (red dashed) vs. ground
truth (solid blue) traces for three representative weeks.

‚ For load forecast, either a) employ FCNN as the predictor
architectures, or b) employ LSTM.

Again, as a baseline method that does not exploit disaggre-
gated solar generation and load traces, we further train a
FCNN predictor that takes the historical net load data (in
addition to the other time and weather related data) as inputs,
and directly produces the net load forecasts as its outputs. The
performance comparison is summarized in Table III.

Table III: Testing MSE and nMAE of Day-ahead Net Load
Forecast, Clifton Park, NY

MSE/NMAE FCNN w/o GHI FCNN w/ GHI LSTM w/o GHI LSTM w/ GHI
Disaggregation 538.325/4.006% 502.275/3.840% 513.876/3.864% 475.373/3.704%
Baseline 708.518/5.127%

We make the following observations:
1) Compared with the baseline, significant performance

gain is again achieved by performing the step of disag-
gregation and exploiting the disaggregated BTM solar
generation and load traces for separate training.

2) LSTM has a noticeably higher performance than FCNN.
3) Having day-ahead GHI forecast information can again

greatly improve the net load forecast accuracy due to
the improved solar generation forecast.

We note that the above observations for the Clifton Park
data set are consistent with those for the Ithaca data set.

To visualize the performance, we plot the traces of the 24-
hour ahead net load forecast vs. the ground truths in three
representative testing weeks (corresponding to the 1st, 2nd,
and 3rd quartiles of testing MSEs) in Figure 4. We note that
these plots are derived based on the results from using LSTM
but without using GHI forecast as input. We observe that the

day-ahead net load forecasting accuracy is again reasonably
high. As shown in Table III, if GHI forecasts are further
available as input information to the predictors, the net load
forecasting performance will be even better.

V. CONCLUSION

We developed an effective data-driven method for training
day-ahead net load predictors that do not assume any behind-
the-meter sensor data. The method disaggregates the net load
data traces into estimated BTM solar generation and load
data traces, and utilizes such disaggregated data traces to
train two separate predictors for solar generation and load
forecasting. The distinct natures of these two sub-problems
are exploited for effective input feature selection and neural
network architecture design. The outputs of the two trained
predictors are then combined to produce the net load forecast.
Comprehensive evaluations with two real-world data sets col-
lected in New York demonstrated the high forecast accuracy
of the method.
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