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Abstract—The cyber security of Inverter Based Resources
(IBRs) has received increasing attention in recent years. In
this paper, a cyber attack detection method is proposed based
on dynamic state estimation for IBRs. The state-space models
of the physical inverter system and the digital controller are
separately derived and then coupled by the data flows in between,
i.e., measurement signals and control signals. Based on Kalman
Filtering (KF), two dual dynamic state estimators are developed
for tracking the cyber and physical state variables, respectively.
By checking the model-data consistency of both the physical
and cyber layers via hypothesis testing, the proposed method
features the capability of distinguishing between false data in
measurement signals and in control signals. Simulation results
in an IEEE 13 node test feeder demonstrate the effectiveness of
the proposed method.

Index Terms—Dynamic state estimation, Inverter based
resources, Kalman filter, Cyber security, Event detection.

I. INTRODUCTION

The fast-acting control of IBRs and the absence of a

rotational part especially in Solar Photovoltaic (SPV) and

battery energy storage systems are changing the dynamics of

the system during disturbances. While the growing integration

of IBRs leads to significant economic and environmental

benefits [1], [2], the security, reliability, and resiliency of

IBRs has become one major concern. Unlike conventional

synchronous generators, the dynamics of IBRs are heavily

determined by their digital controllers, which interact with

the physical inverter system via fast measurement signals

and control signals. The exchange of information between

the cyber layer and the physical layer can easily be exposed

to attackers, who can inject false data to compromise the

performance of IBRs [3], [4]. Furthermore, IBRs are only

equipped with a few sensors at the terminals, and the internal

operating conditions of both the digital controller and the

physical inverter system are not directly monitored. Therefore,

state and security monitoring of IBRs will play important role

in the operations and control of IBR-integrated power grids.

To track the states of grid components, dynamic state

estimation methods have been widely studied and used in

conventional bulk power grids with synchronous generators

[5]. Different variants of dynamic state estimation methods are

developed based on the consideration of various applications,

dynamics components, time scales, and computation efficiency

requirements (see [6]–[8]). A detailed review of dynamic state

estimation techniques and applications can be found in [5].

Despite significant progress in the research of dynamic state

estimation for synchronous generators, few papers on dynamic

state estimation for IBRs have been reported. The stability of

three loop control of IBR using state variable is developed

in [9]. The unscented KF-based dynamic state estimation of

a doubly fed induction generator is proposed to estimate the

machine flux [10]. A general dynamic state estimation model

for a permanent magnet synchronous generator is proposed

in [11]. Another application of dynamic state estimation is

converter health monitoring [12]. However, these existing

methods either ignore the control dynamics or mix the digital

control model with the physical inverter model in a single state

space model, which cannot explicitly monitor the data flows

between the two systems and is unable to detect anomalies in

measurement signals or control signals.

In this paper, a novel cyber attack detection method based on

dynamic state estimation is proposed for the secure operation

of IBRs. In order to explicitly model the uncertainty in

measurement and control data flows, the state-space models

of the physical layer (inverter system) and the cyber layer

(digital controller) are separately derived and then related by

the input and output signals. Noting the symmetry between the

two state spaces, a dual dynamic state estimation framework is

proposed to track the internal states of both layers and detect

anomalies in measurement and control data flows between the

two layers. The key strength of the proposed method is that

it not only detects false data with high reliability, but can

accurately identify the source of false data, and distinguish

between false data in measurement signals and control signals.

This is a highly desirable feature as the closed-loop control

makes false data affect both layers and difficult to trace.

II. CYBER-PHYSICAL REPRESENTATION OF IBR MODELS

To detect and distinguish between anomalies in

measurement signals and control signals, the physical

layer and cyber layer of IBRs are represented separately,

such that these data flows between the two layers could be

explicitly modeled and examined. The physical and cyber

layers of the dual-stage grid following IBR connected to the

grid are shown in Fig. 1.
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Fig. 1. Dual stage IBR with a physical and cyber layer

A. Physical state space representation of IBR

Typically, the physical layer of IBR has a few sensors

that collect measurements and provide input to the digital

controller. The differential equations characterizing the

dynamics of the physical layer can be written as,

⎡
⎣i̇invabc

v̇cabc

i̇gabc

⎤
⎦ =

⎡
⎢⎣
−Ri

Li
I3×3 − 1

Li
I3×3 03×3

1
C I3×3 03×3 − 1

C I3×3

03×3
1
Lg

I3×3 −Rg

Lg
I3×3

⎤
⎥⎦
⎡
⎣iinvabc

vcabc

igabc

⎤
⎦+

⎡
⎣

1
Li
I3×3 03×3

03×3 03×3

03×3 − 1
Lg

I3×3

⎤
⎦
[
vinvabc

vpccabc

]

(1)

where iinvabc
, igabc

are inverter side current and grid side

current; vpccabc
, vinvabc

and vcabc
are the point of common

coupling voltage, voltage at inverter terminal and voltage

across capacitor bank; Li, Ri, Lg , Rg , and C are inverter side

inductance and resistance, grid side inductance and resistance,

and filter capacitance, respectively. Eq. (1) is referred to as

state transition equations of the physical layer of IBR. The

measurement signals are outputs of the physical layer, whose

variables are determined by the states of the physical layer.

The output equations can be written as,

igabc
=

[
03×3 03×3 I3×3

]
⎡
⎣iinvabc

vcabc

igabc

⎤
⎦ (2)

Hence, the state-space representation of the physical layer of

dual stage grid following IBR in abc frame can be given as,

ẋpl = Aplxpl +Bplupl; ypl = Cplxpl +Dplupl (3)

where the state variables, input signals, and output signals

for physical layers of IBR are xpl = [iinvabc
, v

abc
, igabc

]T ,

upl = [vinvabc
, vpccabc

]T and ypl = [igabc
]T , respectively; Apl

is the system matrix, Bpl is the input matrix, and Cpl is the

output matrix and Dpl is the direct transmission matrix for the

physical layer; the subscript pl denotes the physical layer.

B. Cyber state space representation of IBR

Taking the measurement signals from the physical layer as

inputs, the controller performs digital computations to obtain

control signals as outputs for inverter actuation to achieve

specific operational objectives. Converting transfer functions

into a state-space representation, the dynamics of the cyber

layer of a dual-stage grid following IBR with Maximum Power

Point Tracking (MPPT) in the dq frame can be written as,⎡
⎢⎢⎣
ṡv1
ṡv2
ṡv3
ṡv4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
Ki2 0 0 0
0 0 0 0
0 0 Ki4 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
sv1
sv2
sv3
sv4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Ki1 0 0 0
Kp1Ki2 −Ki2 0 0

0 0 Ki3 0
0 0 Kp3Ki4 −Ki4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
vzdc − vcdcref

Izd
qz − qcref

izq

⎤
⎥⎥⎦ (4)

The control signals vcid and vciq as outputs of the cyber layer

are taken as the input of the physical layer, i.e., to generate the

firing pulses for the inverter switches. The output equations of

the cyber layer can be represented as,

[
vcid
vciq

]
=

[
Kp2 1 0 0
0 0 Kp4 1

]
⎡
⎢⎢⎣
sv1
sv2
sv3
sv4

⎤
⎥⎥⎦+

[
Kp1Kp2 −Kp2 0 −Ltotω

0 Ltotω Kp2Kp4 −Kp4

]
⎡
⎢⎢⎣
vzdc − vcdcref

izd
qz − qcref

izq

⎤
⎥⎥⎦

(5)

Hence, the state-space representation for cyber layers of IBR

in a conventional dq frame can be given as,

ẋcl = Aclxcl +Bclucl; ycl = Cclxcl +Dclucl (6)

where the state variables, input signals, and output signals

for cyber layers of IBR are xcl = [sv1, sv2, sv3, sv4]
T ,

ucl = [vzdc − vcdcref , i
z
d, q

z − qzref , i
z
q ]

T and ypl = [ig]
T ; vdc,

id, iq; q are PV side input voltage, grid side d, and q-axis

currents and reactive power; Kp1 − Kp2 and Ki1 − Ki4 are

proportional and integral gains of the controller as shown in

Fig. 1; Ltot = Li+Lg and ω are total inductance and angular

frequency; the superscripts z and c represent the measurement

and control signal and subscript cl denotes the control layer.

III. CYBER ATTACK DETECTION BASED ON DUAL

DYNAMIC STATE ESTIMATION

A. Overall framework

In this section, The dynamic state estimation framework

is presented to track the internal cyber-physical states of IBR

utilizing terminally available measurement and control signals.

The cyber-physical representation of the IBR and the overal

framework of the proposed method is shown in the Fig. 2. An

interesting symmetry between the cyber and physical layers

can be observed: the measurement signals are outputs of the

physical layer but inputs to the cyber layer; on the contrary,

the control signals are the outputs of the cyber layer but inputs

to the physical layer. As the outputs of a layer are determined

by the state transition and output models of this layer, it can

be used to infer the internal states of this layer. Therefore,

a dual dynamic state estimation framework is proposed: one
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estimator for tracking the states of the cyber layer based on the

control signals, and another estimator tracking the states of the

physical layer based on the measurement signals, respectively.

From Fig. 2, it is also clear that there are two possibilities

of data falsification in the interaction between the two layers:

falsification of measurement signals and falsification of control

signals. As the outputs of a layer must follow the state

transition and output models of the same layer, a hypothesis

testing method is developed to detect inconsistencies due

to data falsification and distinguish between anomalies in

measurement signals and control signals.

B. Proposed algorithm

As the dynamic state estimators for the cyber and physical

layers have dual structures, they can be described in a uniform

fashion. To distinguish between the variables associated with

cyber and physical layers, a subscript set Φ = {pl, cl} is used.

The KF is a widely used approach for tracking the state of

linear dynamic systems [8]. As observed in (3) and (6), both

the cyber and the physical layer of the IBR are linear when

represented by the electromagnetic transient model. Therefore,

for either layer, the discrete-time model by the forward Euler

method can be rewritten as,

xφ(k) = Fφxφ(k−1) +Bφuφ(k−1)Ts + vφ(k), φ ∈ Φ (7)

yφ(k) = Cφxφ(k) +Dφuφ(k) + wφ(k), φ ∈ Φ (8)

where Fφ = (I+Aφ)Ts, Ts is sampling interval; vφk
and wφk

are white uncorrelated Gaussian noise with vφk
∼ (0, Qφk

)
and wφk

∼ (0, Rφk
). The following steps are used to estimate

id iqv v

pcc gv i

v v v vs s s s

inv g ci i v
inv g ci i v

v v v vs s s s

Fig. 2. Data flows between physical and cyber layers and the proposed method

the state variables of both the physical and the cyber layers.

False data detection for both measurement signals and control

signals is performed using the Largest Normalized Residual

(LNR) hypothesis test [13] following state estimation in each

time step. Initially, set k = 0.

1) For φ ∈ Φ, compute a priori state estimate and

covariance matrix x̂φ(k|k−1) = Fφx̂φ(k−1|k−1) +
Bφuφ(k−1)Ts, Pφ(k|k−1) = Fφ(k)Pφ(k−1|k−1)F

T
φ(k) +

Qφ(k).

2) For φ ∈ Φ, compute a priori measurement

estimate and covariance matrix, and Kalman

gain ŷφ(k|k−1) = Cφx̂φ(k|k−1)) + Dφuφ(k|k−1),

Sφ(k) = Cφ(k)Pφ(k|k−1)C
T
φ(k) + Rφ(k),

Kφ(k) = Pφ(k|k−1)C
T
φ(k)S

−1
φ(k).

3) For φ ∈ Φ, compute a posteriori state estimate and

covariance matrix x̂φ(k|k) = x̂φ(k|k−1) +Kφ(k)(yφ(k) −
ŷφ(k|k−1)), Pφ(k|k) = Pφ(k|k−1)−Kφ(k)Cφ(k)Pφ(k|k−1).

4) For φ ∈ Φ, compute Normalized Residual (NR) for

all the output signals resφ(k) = yφ(k) − Cφ(k)x̂φ(k|k),
Ωφ(k) = Rφ(k) − Cφ(k)Pφ(k|k)CT

φ(k), resNφ(k)(i) =
|resφ(k)(i)|√
Ωφ(k)(i,i)

, where i is the index of the output

(measurement or control) signal.

5) Find the output signal with the LNR (φ̂(k), î(k)) =

argmax{resNφ(k)(i)}. If resN
φ̂(k)

(̂i(k)) > ζ = 3.0, false

data is detected, go to Step 6), otherwise, no false data

is detected, k ← k + 1, go to Step 1).

6) If φ̂(k) = pl, false measurement signal is detected, and

î(k) is the index of the measurement channel with false

data; if φ̂(k) = cl, false control signal is detected, and

î(k) is the index of the control channel with false data.

Set false data flag Flagφ̂(k)
(̂i(k)) = 1, and the false data

flag of all the other measurement/control signals as 0.

k ← k + 1, go to Step 1).

Owing to the separate state-space modeling of the physical

and cyber layers in Section II and the dual dynamic

state estimation framework for the two layers, false data

in measurement signals and in control signals can be

distinguished from each other. The reason is discussed as

follows. As measurement signals are outputs of the physical

layer, the normalized residuals of measurement signals

indicates the inconsistency between measurement signals and

the physical layer model 3. Similarly, as control signals are

outputs of the cyber layer, the normalized residuals of control

signals cyber layer model 6. When a measurement signal

or a control signal is falsified, although the disturbance will

propagate across both layers due to the closed-loop structure,

inconsistency will only be detected between the false signal

and the model of the layer for which the false signal is the

output. In addition, with the proven property of the LNR test

[13], the LNR will correspond to the channel with the false

data, and thus the source of the attack can be exactly identified.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed methods, the

IEEE 13-node test feeder with the integration of five IBRs is

considered as shown in Fig. 3. IBR1 and IBR2 are single-

phase sources while IBR3-IBR5 are three-phase sources. The

IBR1-IBR3 are grid following IBRs, whereas IBR4 and IBR5

have grid forming capability. Their ratings are given in Table I.

The dynamic state estimator and cyber attack detector monitor

IBR3 located at node 680, whose parameters are listed in Table

I. The system frequency is 60Hz and the number of samples

per cycle Ns is 120.

A. State tracking under solar irradiation change

The SPV-based IBR is highly intermittent in nature due

to changes in solar irradiation patterns throughout the day

of operation. The tracking performance of online dynamic

state estimator for physical state variables îinvabc
, v̂cabc

, îgabc

978-1-6654-6441-3/23/$31.00 ©2023 IEEE
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CB

Fig. 3. IEEE 13 node test feeder with 5 IBRs

TABLE I
IBR RATINGS AND SPECIFIC PARAMETERS OF IBR3

IBRs
Rating

kW
Voltage

Level (V)
IBR3 Parameters

IBR1 50 480, 1φ Li 0.06 Kp1 7 Ki1 800
IBR2 50 480, 1φ Lg 0.14 Kp2 0.3 Ki2 20
IBR3 100 400, 3φ Ri 0.003 Kp3 0.01 Ki3 0
IBR4 500 480, 3φ Rg 0.002 Kp4 0.3 Ki4 20
IBR5 500 600, 3φ C 0.003 Ns 120 ω 1

and cyber state variables ŝv1, ŝv2, ŝv3, ŝv4 for IBR3 (as in

Fig. 3) is obtained for variation in solar irradiation from

(1000 → 800 → 500 → 800 → 1000)W/m2 at 0.4s,

0.5s, 0.6s and 0.7s, respectively as shown in Fig. 4. From

Fig. 4 (a)-(c) and Fig. 5 (a)-(d), it can be observed that the

actual trajectory and predicted trajectory of physical states and

controller states are almost overlapping. As solar irradiation

of solar PV changes, the grid current and inverter current of

IBR3 is changing as can be observed from Fig. 4 (a) and (c).

In contrast, the vca remains the same in Fig. 4 (b) due to the

grid following operation of IBR3. For ease of representation,

only phase ’a’ state variables are shown for physical layer. So,

the proposed KF algorithm is able to rightly and accurately

track states during dynamic operation of IBR3.

Fig. 4. (a) îinva (b) v̂ca (c) îga with change in solar irradiation of IBR3

B. State tracking under grid voltage change

IBRs are subjected to frequent terminal voltage fluctuations

due to the change in grid operating conditions and faults.

Hence, the tracking performance of the dynamic state

estimator for the physical layer under a grid voltage change

vpcc = 1 − 0.5 pu between 0.4 − 0.7s is tested, with results

shown in Fig. 6. From Fig. 6 (b), it can be observed that

v̂ca is dropped to 0.5 pu and iinva and iga is proportionally

increased in Fig. 6 (a) and (d) due to MPPT operation of the

Fig. 5. (a) ŝv1 (b) ŝv2 (c) ŝv3 (d) ŝv4 with solar irradiation change of IBR3

grid following operation of IBR3. Similarly, the internal state

variables for the cyber layer are obtained for vpcc = 1−0.9pu

during interval 0.4−0.7s as shown in Fig. 7 (a)-(d). The state

tracking results for physical and cyber layers are both accurate

under the dynamic voltage conditions.

Fig. 6. (a) îinva (b) v̂ca (c) îga with change in grid voltage

Fig. 7. (a) ŝv1 (b) ŝv2 (c) ŝv3 (d) ŝv4 with change in grid voltage

C. Cyber attack detection

The false data is injected into a measurement signal and a

control signal at two different times during real-time operation

of IBR3. Specifically, false measurement signal in phase ’a’

of ig is introduced at 0.4s as can be seen in the corrupted

state variables shown in Fig. 8. Also, false control signal is

injected in the d-axis voltage of IBR3 at 0.7s as can be seen in

the corrupted state variables as shown in Fig 9. To identify it,

the normalized residuals of measurement signals and control

signals as shown in Fig. 10 (a) and Fig. 10 (c) are obtained

through the proposed framework. Flagpl and Flagcl are

shown in Fig. 10 (b) and Fig. 10 (d), which reflect the detection

status of false data in measurement signals and control signals,

respectively. Clearly, it can be stated that both false data
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are effectively detected by the proposed framework. More

interestingly, by comparing the normalized residuals of all

the signals, the proposed method also succesfully distinguish

the source of false data. When the false measurement signal

in phase ’a’ of grid current ig is introduced at 0.4s, only

the normalized residual of resNiga exceeds ζ and generates

the flag, while the normalized residuals of all other signals

remain below the threshold; similarly, when the false control

signal is injected in the d-axis voltage of IBR3 at 0.7s, only

resNvd
exceeds ζ and generates the flag. This shows that the

proposed framework is able to trace the source of the attack

and facilitates effective follow-up countermeasures.

Fig. 8. (a) îinvabc
(b) v̂abc (c) îgabc with false data injection

Fig. 9. (a) ŝv1 (b) ŝv2 (c) ŝv3 (d) ŝv4 with false data injection

Fig. 10. (a) Normalized residuals of measurement signals, and (b) false data
flags of measurement signals, (c) Normalized residuals of control signals and
(d) false data flags of control signals

V. CONCLUSION

In this paper, an online dynamic state estimator and cyber

attack detector are developed to track the cyber and physical

state variables and attack events of IBRs. The mathematical

state-space representations for physical and cyber layers are

separately derived such that anomalies in measurement and

control data flows between the two layers can be explicitly

examined. Hypothesis testing is developed to check the

consistency of measurement and control signals against the

models of the physical and cyber layers, respectively. The

proposed framework is demonstrated to be effective for

tracking the internal states of an IBR under different transient

conditions. Further, the developed approach is examined to

have the capability to not only detect but also classify false

data in measurement signals and control signals. The proposed

approach could be helpful in enhancing the situational

awareness and cyber security of IBRs under diverse operating

scenarios.
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