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Abstract—DC-OPF stands as the cornerstone for efficient and
secure operations of power systems. The grid operators need
to solve DC-OPF repeatedly and in large numbers to maintain
the balance of electricity supply and demand, especially under
high penetration of renewable energies. Recently, research efforts
have been made in predicting the optimal active sets as a key
component in learning-based solvers for DC-OPF. In this paper,
we investigate the classifiers that inherently exploit a key physical
property of the optimal solutions of DC-OPF: the input space
corresponding to an optimal active set is a polyhedron, and the
classes of different active sets are linearly separable. In particular,
we investigate the effectiveness of linear discriminant analysis
(LDA) classifiers for predicting the optimal active sets for DC-
OPF. This is because LDA, as a natural multi-class classifier, by
definition guarantees that the decision regions for all the classes
are polyhedrons. Simulations are conducted on the IEEE–162 bus
test case with a 50% renewable penetration level provided by 37
renewable power producers. We examine LDA as well as other
classifier candidates, namely support vector machines, neural
networks, and gradient boosted decision trees. The numerical
results suggest that LDA a) achieves a testing performance in
accuracy and in run-time similar to carefully trained neural
networks, and b) is also much faster and easier to train than
the other more complicated algorithms compared. Given the
highly competitive testing accuracy, extremely fast training and
testing, and the straightforward application to any problem
setting without the need of algorithm tuning, we advocate that
LDA is a top choice of learning-based algorithm for predicting
the optimal active set for DC-OPF.

I. INTRODUCTION

Solving optimization problems are at the core of many
decision making processes in power system operations. In
some cases, the decision maker needs to repeatedly solve
optimization problems that are differ only in some input
parameters. For example, the optimal power flow (OPF)
problem that is an optimization problem for scheduling en-
ergy resources is solved as often as every 5 minutes. The
high frequency of these problems along with the short time
available to reach the solution leads to billions of dollars
in loss due to the suboptimality of the solutions [1]. With
the transition of power systems toward higher penetrations
of intermittent renewable energies, the necessity for fast and
reliable solvers become even more prominent: Not only the
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near-real-time OPF problems may see much higher variability
in the net-loads, but also there is an increasing need for the
hour-ahead/day ahead OPF problems to be solved for a large
number of renewable scenarios due to their high uncertainty.

Recently, researchers have investigated the potential of using
learning-based methods for solving optimization problems
including those in power systems. These methods try to find
the complex mapping from the input parameters (e.g., nodal
net-loads) to the optimal solutions (e.g., the optimal generation
dispatch). The learning-based solvers can be categorized into
two classes: end-to-end solvers, and two-step solvers. With
end-to-end solvers the trained predictors perform a direct
mapping from the input parameters to the optimal solution. An
example of end-to-end predictors can be found in [2] where
a deep neural network is used as an end-to-end model for
solving DC-OPF. To address the ensuing feasibility issues, a
post-processing procedure is used. Two-step solvers leverage
the idea that if we know the binding inequalities of the opti-
mization problem at the optimal solution, finding the optimal
solution would become a much less complex task. As such,
two-step solvers break down the optimization problem into two
steps: first, predicting the binding constraints, termed active
set, at the optimal solution, and second, given the predicted
active set, solving or predicting the optimal solution of the
overall optimization problem.

In the following we review the related literature. In [3] the
authors explore the idea of a two-step learning model for
solving DC-OPF where they use a neural network for the
classification of the active sets. [4] employs a similar idea
and proposes a two-step model where it first uses a neural
network to predict the active sets, and then it solves a reduced
OPF problem where the non-binding constraints are removed
from the problem. The loss function used for training the
neural network is a meta-loss objective. The neural network
in this model acts as an initialization method for the reduced
OPF solver. In [5] a similar idea has been investigated where
multi-candidates for the active set are used to increase the
accuracy of the model. [6] study the use of active sets in
solving optimization problems. The idea is to use the active
sets, predicted using the neural networks, as additional features
to the learning models that predicts the final optimal solutions.
In [7] authors improve the generalization of the model in [3]



by using the Input Convex Neural Network (ICNN).
In this paper we take a new look at predicting the optimal

active set in solving DC-OPF problems. The key property we
exploit for improving the learning efficiency is that (under
reasonable problem modeling) the set of input parameters
that lead to the same optimal active set are polyhedrons, i.e.,
linearly separable. This prompts us to investigate predictor
models that by definition guarantees that the boundaries be-
tween the convex decision regions of different classes are
linear: Linear discriminant analysis (LDA) and support vector
machines (SVM). In particular, we show that LDA achieves
a testing performance — both in accuracy and in run-time —
similar to much more complicated predictors such as carefully
tuned and trained neural networks. At the same time, the
simplicity of LDA allows it to be trained a) many orders of
magnitude faster than neural networks, and b) without the need
of hyper-parameter tuning and straightforwardly applicable to
any problem setting.

II. SYSTEM MODEL AND PROPERTIES

In this section we first study the general convex quadratic
program with parametric inputs. We show that the set of input
parameters corresponding to the same optimal active set is
a polyhedron. We then focus the rest of the paper on the
direct current optimal power flow (DC-OPF) problem. DC-
OPF is an application of the convex quadratic program with
parametric inputs which needs to be solved frequently and in
large numbers by power system operators.

A. Convex quadratic program with parametric input

The general form of the convex quadratic optimization
problem with parametric input is as follows:

min
x

1

2
xᵀHx+ gᵀx (1)

s.t. Cx+Dw = 0, (ν), (2)
Ax+Bw ≤ 0, (λ), (3)

In this formulation, w is the input parameter of the problem,
and λ and ν are dual variables of the constraints.

Any solution x needs to be feasible to be a valid candidate
for the optimal solution, meaning that it needs to satisfy
the equality and inequality constraints in (2) and (3). For a
solution, some of the inequality constraints in (3) may be
binding with the rest non-binding. We define active sets as
follows to include the binding constraints.

Definition II.1. Active Set: For a feasible solution of (1)-(3),
the corresponding active set is the set of equality constraints
in (2) as well as the set of binding constraints in (3).

Definition II.2. Optimal Active Set: An optimal active set
is the active set corresponding to an optimal solution of the
optimization problem.

We now have the following theorem.

Theorem 1. In convex quadratic program with parametric
input w in (1)-(3), the input space of w corresponding to
different optimal active sets are convex sets.

Proof. We assume that the matrix H is a positive definite
matrix, making (1)-(3) a strictly convex optimization problem.
Assume that w1 and w2 are two input vectors corresponding
to the same optimal active set, meaning that if we solve (1)-
(3) for w1 and for w2, we get the same optimal active set for
both of them, which we indicate it as AS+. Theorem 1 states
that, if we pick any convex combination of w1 and w2, the
corresponding optimal solution of (1)-(3) has the same active
set, i.e. AS+.
To be precise, it is clear that for the input vectors w1

and w2, if (x1, λ1, ν1) and (x2, λ2, ν2) are the solutions of
Karush–Kuhn–Tucker (KKT) conditions in (4) for w1 and w2,
then, ∀α ∈ [0, 1], for the input vector w3 = αw1 + (1−α)w2,{
x3 = αx1 + (1− α)x2, λ3 = αλ1 + (1− α)λ2, ν3 = αν1+

(1−α)ν2

}
with the same active set, i.e. AS3 = AS+, is also

a solution to the KKT conditions in (4):
(Ax+Bw)i = 0, i ∈ AS; λi > 0, i ∈ AS;

(Ax+Bw)i < 0, i /∈ AS; λi = 0, i /∈ AS;

Hx+ g +Aᵀλ+ Cᵀν = 0; Cx+Dw = 0.

(4)

This completes the proof.

Remark II.1. The uniqueness of the optimal solution of (1)-
(3) and the separating hyperplane theorem, cf. [8], indicate
that, given that the input spaces corresponding to different
optimal active sets of (1)-(3) are convex regions, their disjoint
interior are linearly separable. This implies that these convex
sets are all polyhedrons.

B. DC-OPF Formulation

Optimal power flow is a dispatch scheduling problem that
power system operators solve frequently to keep the supply
and demand for electricity balanced. We now review the
DC-OPF formulations which is an application of the convex
quadratic program with parametric input in (1)-(3).

The DC-OPF problem which is solved for economic dis-
patch is formulated as follows:

min
{pg,g∈G}

∑
g∈G

Cg(pg) (5)

s.t. T = [PTDF] · (w −U · p) (6)

|Ti,j | ≤ T i,j , ∀(i, j) ∈ T , (7)

pmin
g ≤ pg ≤ pmax

g , ∀g ∈ G, (8)∑
(i,j)∈T

Ti,j + wi −
∑
g∈Gi

pg = 0, ∀i ∈ N , (9)

The generator’s cost functions are quadratic functions in the
form of Cg(pg) = agp

2
g + bgpg + cg , where pg is the

generation amount of generator g, and ag , bg and cg are its
cost coefficients. Ti,j and T i,j are the power flow on the line
(i, j) and the capacity of the line respectively. pg , pmin

g and
pmax
g are the generator g’s dispatch and its lower and upper
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bounds. N , G and T are the sets of buses, generators and lines,
respectively. Gi is the set of generators located on bus i. The
matrix U maps the generators to the buses they are located on.
[PTDF] is the matrix of Power Transfer Distribution Factors
mapping the net nodal power injections, i.e. (w−U·p), to line
flows. The input parameter of this problem is the vector of net
demand on the buses, w, which is the total demand net of any
renewable power generation on the buses. The total number of
possible active sets (among the inequality constraints of line
flow capacities and generator bounds) for a DC-OPF problem
is 3|G|+|T |, where | · | is the cardinality of a set, as each
generator or line can either be at its upper/lower bound or be
strictly in between. In practice, however, the observed optimal
active sets of DC-OPF problem are limited [6].

Next, we note that given the optimal active set of (5)-(9),
solving the DC-OPF problem reduces to solving a system
of linear equations corresponding to the KKT equations, for
which its solution is moreover a linear function of the net
nodal demands w. The coefficients of the linear function,
denoted by Lk for the kth active set, can be computed directly
based on the power system parameters.

Notably, if one can correctly predict the optimal active set
for the DC-OPF problem, finding the optimal solution reduces
to a simple task of calling the appropriate linear function
corresponding to that active set. Hence, the main focus in the
two-step learning-based solvers is on predicting the optimal
active set. For the rest of the paper we focus on the DC-OPF
problem in (5)-(9). Without loss of generality, the proposed
approaches can be applied to the general quadratic program
in (1)-(3) as well.

III. FAST LEARNING AND INFERENCE OF OPTIMAL
ACTIVE SET IN DC-OPF

In this paper, similarly to [3] and [5], we use a two-step
learning-based approach for solving DC-OPF. At the first step
we use a classification model to return active set candidates
for the optimal active set. In the second step, for each active
set candidate, we find the corresponding solution to the DC-
OPF, check for feasibility, and finally pick the best solution
among them. The general structure of the two-step learning-
based approach for solving DC-OPF is depicted in Fig. 1.

Input:

𝒘 = Net nodal
demand

Pick the 
optimal 
solution

Generate top 
candidates for 
optimal active 

set

𝒜𝑆!

𝒜𝑆"

𝒜𝑆#

2𝑥) = 𝐿)𝑤

𝑥∗
2𝑥* = 𝐿*𝑤

2𝑥+ = 𝐿+𝑤 min +𝑥!, … , +𝑥#
𝑥∗ =

Fig. 1: Diagram of the proposed learning-based method for
finding optimal solution of DC-OPF.

The input of the predictor is the net nodal injections. By
“net” we mean the nodal demand net of any renewable power
generation on a bus. We then predict the optimal active set,
and find the optimal solution corresponding to that active set.
As detailed in Section II-B, once an active set is predicted
in step 1, the step 2 of computing the full optimal dispatch

solution is simply calling a pre-determined linear function of
the input parameter (i.e., the net demands). Accordingly, the
focus of this paper is on the first step of the solution process,
i.e. predicting the optimal active set, which is a multi-class
classification task.

Among different potential classification methods, existing
works have mainly focused on using neural networks for
predicting optimal active set. Undoubtedly, neural network is
a powerful tool for classification tasks, and our simulations
(cf. Section IV) confirms its high performance in predicting
optimal active sets. Nonetheless, the linear separability of
classes of active sets in the input space (cf. Theorem 1)
motivates us to explore other predictor models that can capture
this special property of DC-OPF.

In particular, we investigate LDA and SVM as the predictor
models for this problem, because the classification decision
boundaries for both of these models are by design linear.
Furthermore, instead of returning a single active set candidate,
we let the predictor return multiple candidates for the optimal
active set. As will be shown in Section IV, this strategy
can significantly increase the prediction accuracy at a modest
increase in computation time. In what follows we review SVM
and LDA. We then discuss the benefits of returning multiple
candidates of active set rather than one candidate.

Support Vector Machine: Theorem 1 and Remark II.1 show
that the classes of optimal active sets in the input parameter
space are linearly separable. As a result, SVM is an intuitive
model choice for the classifier. Its effectiveness is confirmed by
the numerical results to be shown later in Section IV as SVM
has the best performance when returning only one candidate
of active set. However, there are some major problems in
using SVM for active set classification that severely limit its
practicality for the DC-OPF problem:
• Quadratic number of classifiers and computation time:

Given that every pair of active set classes are linearly
separable, the best multi-class classification performance
using SVM can be achieved with a number of “one-vs-
one” SVM classifiers, one for every pair of classes. Now,
assuming that there exists Γ classes, we need to train
Γ∗(Γ−1)

2 SVM classifiers. While this complexity is not much
of a critical issue for training as the training phase is offline,
this computation complexity that grows quadratically with
the number of active sets is indeed a practical challenge
during online testing/usage of multi-class SVM. We will
provide a detailed cost-benefit analysis in the simulation
study (cf. Section IV).

• Inefficient extension to multi-candidate prediction: SVM
is a maximum margin method for classification, and hence
does not directly return probabilities for different classes.
When we would like multiple candidates for the optimal
class to be returned, we need a ranking of the classes. While
there are techniques to obtain approximate posterior prob-
abilities from SVM, such as Platt Calibration [9], however,
their performance is sometimes not as desirable. Moreover,
this extra step of calculating the probabilities for SVM can
add considerable computational time during online testing.
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Linear Discriminative Analysis: LDA is an alternative
choice that is by design tailored to classification tasks with
linearly separated decision regions, and is especially conve-
nient for multi-class classification. The intuition of LDA is
to maximize the between-class variances while minimizing
the within-class variances [10]. The advantages of LDA in
comparison to SVM for our problem are:
• Linear test time and fast training: The computational time

for testing a new data sample is linear in the number of
the active set classes. Furthermore, in the training phase,
LDA only needs to estimate the population parameters
from the samples (whereas SVM, on the other hand, solves
Γ∗(Γ−1)

2 optimization problems). As such, not only LDA’s
testing speed is much faster than multi-class SVM, the speed
advantage is even greater in training as LDA’s training is
extremely fast.

• Built-in extension to multi-candidate prediction: Since
LDA works with the posterior probabilities, it is straightfor-
ward to return multiple candidates.
Next we briefly discuss the idea of multi-candidate predic-

tions for active set classification.
Multi-Candidate Prediction: Classification algorithms usu-

ally assign scores to different classes, and pick the class with
the highest score as the predicted label of the data sample.
Alternatively, more than one candidate who have the highest
scores may be returned. This is particularly useful when
subsequent procedures exist to verify which of the multiple
candidates returned is the best among them. This is exactly
the case for the two-step approach we employ for solving
DC-OPF. After the classification algorithm assigns scores to
the classes, we pick the top-K active set candidates. We can
then calculate the full dispatch solution for each active set
candidate, check the solutions for feasibility, and compute
the corresponding system cost, i.e., the value of the objective
function in (5) for this solution. Only the feasible solution
with the lowest system cost can possibly be the correct optimal
solution, and should be the one we predict. Since computing
the optimal solution and the system cost for each active set is
just one pass of the second step and is computationally very
fast, returning multiple candidates can be very advantageous
as accuracy may be significantly improved with only a small
increase in run-time.

IV. SIMULATIONS

We use the IEEE-162-dtc (DC) system available at [11] for
the simulations. In the following simulations we placed 37
renewable power producers (RPPs) on the following buses 5,
6, 9, 17, 17, 18, 18, 18, 22, 27, 27, 28, 30, 36, 36, 38, 39,
47, 50, 57, 73, 74, 79, 82, 84, 87, 90, 91, 103, 108, 111, 114,
120, 125, 129, 151, and 160. We assume that there is a 50%
renewable penetration in the system, meaning that the average
total generation of the RPPs is 50% of the average total
load. We also simulate RPPs’ generation with i.i.d. normal
distributions. We assume that the coefficient of variation (COV)
of an RPP’s probability distribution equals 30%, which is the
ratio of the standard deviation to the mean of the generation

TABLE I: Accuracy for different classification methods
LDA% NN% XGBoost-71 % SVM-134 %

Top 1-Candidate 62.44 68.69 54.14 85.71
Top 2-Candidate 76.05 84.41 74.02 92.71
Top 3-Candidate 83.60 89.45 82.88 94.92
Top 4-Candidate 88.40 91.97 87.69 96.08
Top 5-Candidate 91.51 93.44 90.39 96.72
Top 6-Candidate 93.51 94.55 92.13 97.16
Top 7-Candidate 94.80 95.32 93.42 97.49
Top 8-Candidate 95.62 95.89 94.10 97.77
Top 9-Candidate 96.18 96.36 94.84 97.92

Top 10-Candidate 96.61 96.81 95.34 98.13
Top 11-Candidate 97.03 97.10 95.74 98.32
Top 12-Candidate 97.24 97.33 96.03 98.38
Top 13-Candidate 97.44 97.45 96.28 98.48
Top 14-Candidate 97.61 97.75 96.57 98.56
Top 15-Candidate 97.80 97.92 96.78 98.59

distribution. The 30% COV of renewable energies represents
typical day ahead renewable energy (e.g., wind) forecast error.
We further assume that the demand at each bus is independent
of that on other buses, follows a normal distribution with the
mean equal to the load data provided in the IEEE-162-dtc (DC)
benchmark case in [11], and a COV equal to 6%. The 6% COV
of demands is found to represent the day ahead forecast error
of large and aggregated demand [12]. We generated 55276
samples with 319 distinctive classes of active sets. 80% of data
is used for training and the rest for testing. Figure 2 shows
the cumulative probability of the classes in the data set where
the classes of active sets are sorted from the most likely to the
least likely. In other words, the most frequently appeared class
appears for just under 20% of the time, and so on. The input
for each classifier in the simulations is the net nodal demand
where RPPs’ generation are considered as negative loads, and
hence deducted from the nodal demand on the buses.
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Fig. 2: Cumulative probability distribution of the active sets.

We begin by comparing the accuracy of different classifica-
tion algorithms for classifying the active sets. These algorithms
include LDA, Neural Networks (NN), XGBoost-71 where the
71 most frequently appeared classes are considered [13], and
SVM-124 where the 124 most frequently appeared classes are
considered. The corresponding accuracy of these algorithms
is shown in Table I. The NN used in Table I is a 3-layer
neural network with 810 neurons in the first two layers and
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Relu activation functions. XGBoost-71 is a gradient tree
boosting classifier which considers the top 71 classes. We note
that we have also investigated many other algorithms and the
above presented are the top performing ones that are the most
competitive.

From Table I, we see that solely from the accuracy’s per-
spective, the best performance consistently belongs to SVM.
The intuitive reason is that SVM performs very well on
linearly separable data. The performance of the LDA and
NN are close, and the performance of the XGBoost algorithm
closely follows them.

However, the above results did not present an important
element of the algorithms — run-time. In learning-based
approaches (and in fact in all algorithms), there is always
a trade-off between accuracy and run-time: The longer time
an algorithm is allowed to run, the better accuracy can often
result from it. As such, to compare algorithms fairly, one
needs to compare the accuracy achieved under the same run-
time constraints. We now look into the accuracy/run-time
comparisons of the algorithms. Figure 3 depicts the accuracy
of the classification algorithms versus the actual total run-time
they take for evaluating a set of 11056 testing samples1.

Fig. 3: Accuracy vs testing time (over 11056 samples in total)
for different classification methods.

It is clear that, as expected, SVM requires significantly
higher run-times than the other tested algorithms to achieve
a similar accuracy. Note that, to maintain good readability of
the figure we only plot SVM with top 5, 7, 12, and 17 classes,
while the performance of the SVM in Table I is achieved
by SVM with top 134 classes. This reveals that, in practice,
SVM is in fact the least desired among the four algorithms.
In comparison, LDA, NN and XGBoost have much faster
computation in testing.

In particular, we would like to highlight the unique compet-
itive advantage of LDA. As a very simple algorithm, LDA’s
testing performance is as good as carefully trained neural
networks. This is quite remarkable because a) the training
time of LDA is many orders of magnitude shorter (at least

1All testing times are measured on a laptop with an Intel Core i7 2.6-GHz
CPU with 16 GB of RAM.

1000 times faster) than that of neural networks, and b) there’s
almost no hyper-parameter to tune for LDA’s training, whereas
training a good neural network often requires huge manual
efforts of tuning hyper-parameters. Moreover, LDA’s computa-
tion in testing can be trivially parallelized, which would further
reduce the test time significantly. Similar comparison remarks
can be made between LDA and XGBoost. The extremely fast
and simple training and testing, together with its very com-
petitive performance compared with much more complicated
algorithms, make LDA a very attractive active set predictor
model in practice. The key to such a success of LDA is that
it inherently captures the underlying physical property of the
problem — the input space for different active set classes are
polyhedrons and linearly separable.

V. CONCLUSION

This paper investigates the idea of using linear discriminant
analysis (LDA) classifier for predicting the optimal active sets
in DC-OPF, a critical step in computing the optimal solution
of DC-OPF. We show that LDA is particularly suitable for this
task because (a) it inherently captures the linear separability
of the classes of optimal active sets in the input space, leading
to highly competitive testing accuracy, and (b) it is extremely
fast in both training and testing, making it quickly and easily
applicable to new problem settings.
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