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Abstract—Mechanism design is studied for aggregating renew-
able power producers (RPPs) in a two-settlement power market.
Employing an indirect mechanism design framework, a payoff
allocation mechanism (PAM) is derived from the competitive
equilibrium (CE) of a specially formulated market with trans-
ferrable payoff. Given the designed mechanism, the strategic
behaviors of the participating RPPs entail a non-cooperative
game: It is proven that a unique pure Nash equilibrium (NE)
exists among the RPPs, for which a closed-form expression
is found. Moreover, it is proven that the designed mechanism
achieves a number of key desirable properties at the NE: these
include efficiency (i.e., an ideal “Price of Anarchy” of one),
stability (i.e., “in the core” from a coalitional game theoretic
perspective), and no collusion. In addition, it is shown that a
set of desirable “ex-post” properties are also achieved by the
designed mechanism. Extensive simulations are conducted and
corroborate the theoretical results.

Index Terms—Cost allocation, Nash equilibrium, mechanism
design, coalitional game, renewable energy, electricity market

I. INTRODUCTION

Renewable energies play a central role in achieving a
sustainable energy future. However, renewable energies such
as wind and solar power are inherently non-dispatchable, and
yet highly uncertain and variable. As a result, integrating
renewable energies into power systems to serve loads raises
significant reliability and efficiency challenges [1], [2]. A
variety of approaches have been proposed to compensate for
the uncertainty of renewable energies, such as improving
renewable power generation forecast [2], employing better
generation dispatch methods [3], energy storage deployment
and control [4], [5], [6], and demand response programs [7],
[8], [9].

Another solution that has received considerable attention
is to aggregate statistically diverse renewable energy sources
[1], [10], [11]. In an aggregation, renewable power producers
(RPPs) pool their generation together so as to reduce the
aggregate uncertainty and risk, and hence the corresponding
cost of compensation for their uncertainties. Accordingly, by
forming an aggregation, RPPs can in total earn a higher payoff.
A key question in aggregating RPPs is thus how to allocate
the total payoff of an aggregation among its member RPPs.

Notably, aggregating renewable energies has been studied
extensively in the context of a two-settlement power market
model, consisting of a forward power market and a real time
one. As such, RPPs participate in these markets in the same
way as conventional generators do. With this model, allocating
payoffs in an aggregation of RPPs has been studied in a
coalitional game framework based on the joint probability
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distribution of all the RPPs’ uncertain generation [10], [11].
The primary interest in this setting is to find a payoff allocation
solution that is stable/in the core of the game. This is in
general computationally hard in the sense that the number of
constraints of the corresponding optimization problem grows
exponentially with the number of RPPs. To this end, the core
is proven to be non-empty in [10], and a closed-form solution
of a payoff allocation in the core is found in [11].

While this line of works achieve efficiency (with an optimal
forward contract) and stability (with a payoff allocation in
the core) in aggregating RPPs, an underlying assumption is
that the aggregator knows the joint probability distribution
of the RPPs’ generation. In practice, however, an aggregator
typically does not have the best or full knowledge of such
information about the RPPs: not only the amount of relevant
information can be overwhelming to glean, but also the RPPs
themselves often have better information privately about their
own generation than the aggregator does. As a result, to
aggregate renewables in practice, it is essential to consider
an information collection step by the aggregator with the
RPPs. Consequently, with this step, aggregating renewable
energies in a two-settlement market constitutes a mechanism
design problem (as will be shown in details in Section II-C).
In short, the primary goal of such mechanism design is the
following: Granted that all the RPPs behave strategically for
their own interests under this mechanism, the aggregation can
still achieve the same desirable outcome as if all the RPPs’
information are indeed known to the aggregator.

In general, there’s complete freedom in designing the infor-
mation collection step of the mechanism. In particular, when
the aggregator does not elicit all available information from the
RPPs, the mechanism is called an “indirect” one , (in contrast
to a “direct” one when all information from the RPPs are
requested by the aggregator upfront) [12]. Indeed, we would
like an aggregator to elicit as little information as possible
from the RPPs, while still guaranteeing the performance of the
overall mechanism. To this end, a simple interface between
aggregator and RPPs has been proposed in [13]: each RPP
submits just a single number to the aggregator, and the
aggregator simply passes on the sum of these numbers as
the forward power contract for the entire aggregation. Based
on this simple interface, the central design task is again on
the payoff allocation among the RPPs, for which a number
of payoff allocation mechanisms (PAMs) have been proposed
[13], [14], [15], [16], [17], [18]. Under any given PAM, the
RPPs’ strategic decision making entails a non-cooperative
game (as will be described later in Section II-E), and properties
of the Nash Equilibria of this game have been studied in
[13], [14], [15], [16]. The existing PAMs in the literature,
however, have only gained limited success, as some essential



and highly desired properties still cannot be achieved. In
particular, achieving efficiency and stability/in the core at the
Nash Equilibria remains to be an open question. Lastly, we
note that mechanism design methods have also been employed
in power markets for problems other than renewable energy
aggregation, e.g., for incentivizing conventional generators to
reveal truthful information [19].

In this paper, we investigate indirect mechanism design un-
der the framework of the above simple interface. We propose
a new payoff allocation mechanism, and show that all the
essential desirable properties are achieved by this PAM. We
first show that, given the designed mechanism, the outcome of
the mechanism can be predicted by a unique Nash equilibrium
(NE) among the RPPs, for which we provide a closed-form
expression. Moreover, this unique NE is efficient, meaning that
it achieves the maximum total payoff as if all information are
known a-priori to the aggregator. Next, we show that, the
proposed payoff allocation is stable/in the core at this unique
NE, meaning that no subset of the RPPs have any incentive
to leave the aggregation as they cannot possibly earn a higher
payoff on their own. Furthermore, we show that the designed
mechanism guarantees no collusion among the RPPs at the
unique NE, as they cannot earn a higher payoff by colluding.
Lastly, we show that a set of ex-post properties are achieved
by the proposed mechanism (with results reported in part in
[17]). We note that similar ex-post results have also been
independently developed in a recent work [18].

The remainder of the paper is organized as follows. The
problem is formulated in Section II, and the indirect mech-
anism design framework for aggregating RPPs is introduced.
The design goals, i.e., the desired properties of the PAM are
described in Section III. The main results are presented in
Section IV, in which we show that the proposed PAM achieves
all the desired properties. Analysis and proofs of the main
results are provided in Section V. Another set of properties
achieved in an “ex-post” sense by the proposed PAM are
presented in Section VI. Simulations are conducted in Section
VII. Conclusions are drawn in Section VIII.

II. PROBLEM FORMULATION

A. System Model

We consider RPPs participating in a two-settlement power
market consisting of a day-ahead (DA) and a real time (RT)
market. As a baseline case, we first consider an RPP i who
participates in the market separately from the other RPPs.

In the DA market, RPP i’s generation at the time of interest
in the next day is modeled as a random variable, denoted by
Xi. (We assume that the joint probability density function for
the vector of random variables X1, . . . , XN exists.) RPP i then
determines a forward power supply contract in the amount of
ci to sell in the DA-market. Interchangabely, ci is also termed
a day-ahead commitment. RPP i gets a payoff of pfci where
pf denotes the price in the DA market.

At the delivery time in the next day, RPP i obtains its
realized generation xi: a) If it faces a shortfall, i.e., ci−xi > 0,
it needs to purchase the remaining power from the RT market
at a real-time buying price pr,b, b) if it has excess power, i.e.
xi−ci > 0, it can sell it in the RT-market at a real-time selling

price pr,s. In case excess power needs to be penalized as
opposed to rewarded, we model such cases by having pr,s < 0.
We make the assumption that pr,s ≤ pr,b, which must hold
for no arbitrage. Intuitively, the higher uncertainty an RPP’s
generation has at DA, the more cost it incurs to the RPP.

Specifically, the realized payoff of an RPP i who separately
participates in the market is given by

Psepi , pfci − pr,b (ci − xi)+ + pr,s (xi − ci)+ (1)

where (·)+ , max(0, ·)1. We denote the expected payoff of
RPP i at the time when ci is determined one day ahead by

πsepi (ci) , E[Psepi ], (2)

where the expectation is taken over the random generation Xi.
Remark 1 (Model Assumptions on Prices): In this paper,

we consider a price taking environment for the RPPs in
the DA market, and thus the price pf is given. We also
consider that some fixed values for the RT buying and selling
prices pr,b and pr,s are assumed at DA. These values can
be interpreted as the RPPs’ expectations of the RT prices if
they were to experience a shortfall or a surplus, respectively.
We note that the price taking assumption is a simplifying
one, which assumes that none of the RPPs can affect the
price significantly at DA due to its relatively small size.
This provides a first order approximation of the problem that
allows us to perform effective analysis and gain insight. The
results will lay the foundation for further investigation of more
general scenarios. In particular, we would like to note that our
latest result following this paper has achieved some success
in relaxing these assumptions, and has addressed the price-
making scenarios in both DA and RT markets [20].

B. Aggregating Renewable Energies

We consider an aggregator that aggregates the power gen-
eration from a set of N RPPs, denoted by N , and participates
in the DA-RT market on behalf of the RPPs. Intuitively, ag-
gregation reduces the total uncertainty for the RPPs due to the
statistical compensation among the random power generation
at DA, and hence brings economic benefit to them. In this
paper, transmission network constraints are not considered,
and are left for future work.

In general, the aggregator takes actions in the DA and RT
markets as follows:

a. In the DA market, the aggregator determines an amount
of forward power contract to sell, denoted by cN .

b. At the delivery time, the aggregator collects all the
realized generation from the RPPs, denoted by xN =∑
i∈N xi, to meet the commitment cN . The deviation is

settled in the RT market in the same way as in Section
II-A. The realized payoff of the aggregator is thus

PN , pfcN− pr,b(cN−xN )++ pr,s(xN−cN )+ (3)

Next, the aggregator returns a payoff Pi to each RPP i.

1We use the symbol , to define notations.



Remark 2 (Budget Balance): In this paper, we require the
aggregator’s budget balance be satisfied in all circumstances:

N∑
i=1

Pi = PN . (4)

We note that this is a stronger condition than just requiring
budget balance be satisfied in expectation.

Accordingly, there are two decisions an aggregator needs to
make: a) the total commitment cN at DA, and b) the set of
payoff allocations {Pi} at RT. In making these decisions, two
fundamental goals an aggregator would like to achieve are:
• Efficiency: The total expected payoff of the aggregation
πN = E[PN ] is maximized.

• Fairness / Stability: The payoff allocation within the
aggregation {Pi} are fair to each RPP. In this paper, we
interpret fairness using the notion of stability/in the core
from a coalitional game perspective, as will be described
in detail in Section III.

In particular, a) achieving efficiency depends on the aggrega-
tor’s decision on the total DA commitment cN , and b) with
the optimal cN , achieving stability depends on the decisions
on the RT payoff allocation {Pi}.

The Ideal Case of Aggregator Having Full Information: To
achieve efficiency and stability, making decisions on cN and
{Pi} requires the aggregator to know sufficient information
from the RPPs. The ideal case would be an aggregator with
full information from the RPPs, in particular, the DA joint
probability distribution of all the random generation {Xi}.
Based on the joint probability distribution of {Xi}, closed-
form solutions of cN and {Pi} that achieve efficiency and
stability have been found in [11], and will be used for
numerical comparisons later.

C. The Mechanism Design Problem

In practice, however, it is unlikely for an aggregator to
precisely know the DA joint probability distribution of {Xi}
for a number of reasons: a) the best information on future
power generation may only be privately known to the RPPs,
and b) the amount of information can be overwhelmingly
large and difficult to glean for a single aggregator, especially
when the number of RPPs becomes large, (consider, e.g.,
hundreds of thousands of distributed energy resources in a
power distribution system).

In this paper, we do not assume the aggregator knows any
information a-priori at DA on the RPPs’ random generation
{Xi}. Instead, we consider a general framework in which
the aggregator elicits information from the RPPs, based on
which decisions on cN and {Pi} are then made. As such, the
aggregator’s actions involve the following three general steps:

a. Information Collection: At DA, the aggregator elicits
certain information from the RPPs.

b. Commitment: At DA, the aggregator determines a total
DA commitment cN .

c. Payoff Allocation: At RT, the aggregator allocates a
payoff Pi to RPP i, i = 1, . . . , N .

Specifying how these three steps are performed constitutes
a mechanism design problem. It is important to note the

generality of this design problem, as there is complete freedom
in choosing what information to request from the RPPs, how
they are used to determine cN , and how payoffs are allocated.

D. An Indirect Mechanism Design Framework

In this mechanism design problem, it is not imperative for
the aggregator to elicit all information from the RPPs. When
the aggregator does elicit all information upfront, such a mech-
anism is called a “direct mechanism”; Otherwise, it is called an
“indirect mechanism” [12]. Rather than restricting ourselves to
direct mechanisms, more generally, we will investigate indirect
mechanism design: We would like to elicit as little information
from the RPPs as possible, while still guaranteeing efficiency
and stability of the aggregation.

In particular, we will investigate the following framework
of indirect mechanisms employing a simple design of Steps a.
(Information Collection) and b. (Commitment) [13].

a. At DA, the aggregator elicits a single number ci from
each RPP i.

b. At DA, the aggregator commits cN =
∑N
i=1 ci.

c. At RT, the aggregator allocates a payoff Pi to RPP i, i =
1, . . . , N .

We term the number ci submitted by RPP i its DA commitment.
Accordingly, the aggregator simply passes on the sum of the
RPPs’ DA commitments as the aggregate commitment. As
Steps a. and b. are now fully specified, the central design task
is Step c. – Payoff Allocation. As such, the design and analysis
of Payoff Allocation Mechanisms (PAMs) that determines Pi
would be the focus of the remainder of the paper.

E. Mechanism’s Outcome in a Non-Cooperative Game of
Strategic RPPs

Given any PAM that specifies the rule of determining Pi,
a key question is how one predicts the outcome under this
mechanism. To answer this question, we must understand the
behavior of the RPPs given any mechanism. As an RPP i is
free to submit any DA commitment ci to the aggregator, a
rational and strategic RPP i would submit a ci at DA that
maximizes its expected allocated payoff E[Pi]. It is important
to note that, given a PAM, E[Pi] can also depend on the other
RPPs’ submissions of commitments. Accordingly, we denote
the expected payoff of RPP i by

πi (ci, {c−i}) , E[Pi], (5)

where {c−i} denotes the set of the commitments of the RPPs
other than i. Note that πi (ci, {c−i}) depends on the particular
design of the PAM.

Therefore, the strategic decision making of the N RPPs on
their submissions {ci} at DA can be studied under a non-
cooperative game framework, (termed a “contract game” in
[13].) To predict the outcome of any designed mechanism,
a natural solution concept is the Nash equilibria of this
non-cooperative game2. Specifically, given a PAM, a set of

2We note that, in practice, NE may not be achieved in a dynamic market.
Investigation of other solution concepts is left for future work.



commitments {cnei } is at a pure Nash equilibrium (NE) if
they satisfy

cnei ∈ argmax
ci

πi
(
ci,
{
cne−i
})
, ∀i. (6)

As such, an NE offers a stable3 outcome of the RPPs’ decision
making on their commitments, as no RPP has any incentive
to deviate from its already best responding commitment. In
the remainder of the paper, we devote the notation {cnei } to
denoting a set of commitments at a pure NE.

As a mechanism designer for aggregating RPPs, we are
interested in designing a PAM so that a set of essential and
desirable properties can be achieved at equilibria of this non-
cooperative game, given the designed PAM.

III. DESIGN GOALS:
DESIRED EFFICIENCY AND STABILITY PROPERTIES

In this section, we provide a detailed description of the
desired properties in designing PAM for aggregating RPPs.

1) Existence and uniqueness of pure Nash equilibrium: For
a mechanism to have predictable outcomes, it is desired
that the non-cooperative game among the RPPs induced
by the mechanism has a unique pure NE, which would
be the unique outcome that one shall predict from the
RPPs’ strategic decision making.

2) Efficient computation of NE: In particular, we are inter-
ested in whether the unique pure NE, if exists, can be
computed in closed form.

3) Efficiency: A PAM is efficient if, at the NE, the ag-
gregation achieves the maximum expected payoff for
the entire group of RPPs. Specifically, this means that
cneN ,

∑N
i=1 c

ne
i is equal to the optimal commitment for

the entire aggregation

c?N , argmax
cN

E[PN ] (7)

(cf. (3)). This optimal commitment can in fact be
computed as a solution to a news-vendor problem (for
which we refer the readers to [21] for more details):
c?N = F−1N

(
pf−pr,s
pr,b−pr,s

)
, where FN (xN ) is the cumula-

tive distribution function (cdf) of the aggregate random
generation XN =

∑N
i=1Xi. In this paper, we assume

that the inverse function F−1N (·) exists.
4) Individual rationality: At the NE, the expected payoff of

RPP i should be at least as high as the maximum payoff
it could have gotten had it separately participated in the
DA-RT market. Specifically,

∀i ∈ N , πi
(
cnei ,

{
cne−i
})
≥ πsepi

(
c?,sepi

)
, (8)

where
c?,sepi , argmax

ci

πsepi (ci) (9)

(cf. (1) and (2)). It is important to note that, the
(separately) optimal commitment c?,sepi is in general
not equal to the equilibrium commitment cnei . With

3This notion of stability from NE is not the coalitional game theoretic
stability which will be described as Property 5) in the next section.

individual rationality satisfied (8), not a single RPP has
any incentive to leave the aggregation.

5) Stability / In the core: A generalization of individual
rationality to a much stronger sense of stability is being
“in the core”, a property celebrated in coalitional game
theory [22]. Specifically, being in the core means that the
RPPs’ expected payoffs satisfy the following condition:
if any subset T of the RPPs leave the aggregation,
separately form their own aggregation, and then partic-
ipate in the market based on their aggregate generation
XT ,

∑
i∈T Xi, their highest possible expected payoff

would be no higher than the sum of their expected
payoffs originally from the PAM at the NE. Specifically,

∀T ⊂ N ,
∑
i∈T

πi
(
cnei , {cne−i}

)
≥ πsepT

(
c?,sepT

)
, (10)

where
πsepT (cT ) , E

[
pfcT − pr,b (cT −XT )+
+ pr,s (XT − cT )+

]
, (11)

and c?,sepT , argmaxcT π
sep
T (cT ). As such, being in

the core means that, not only every single RPP, but all
subsets of RPPs do not have any incentive to leave the
aggregation. This implies a very strong sense of stability
of an aggregation.

6) No collusion: Suppose a subset of RPPs join together
as a single player before participating in the aggregation
with the remaining RPPs. For now, we assume the re-
maining RPPs know the joining of these RPPs as a single
player. Later, we will show that the DA commitments of
the remaining RPPs at the NE actually do not depend on
whether or not they know there is a collusion. Because of
the change of the set of players, a new game, and hence
new NE would arise. The expected payoff of this “joint
player” at the new NE should be no higher than the sum
of these RPPs’ expected payoffs at the NE of the original
game. Otherwise, some RPPs could have incentives to
collude, join together, and collectively interface with the
aggregator as a single (and larger) RPP in order to earn
a higher total payoff.
Rigorously, no collusion is defined as follows: ∀T ⊆ N ,∑

i∈T
πi
(
cnei ,

{
cne−i
})
≥ π̃T

(
c̃neT ,

{
c̃ne−T

})
, (12)

where
{
c̃neT ,

{
c̃ne−T

}}
is the new NE of the new non-

cooperative game for the case when the RPPs in T join
as a single player.

IV. MAIN RESULTS

We now present the main results of this paper: a proposed
payoff allocation mechanism, and how it achieves all the above
desired properties 1) - 6). First, we propose the following
payoff allocation mechanism:

Pi =


pfci + pr,b (xi − ci) if xN − cN < 0

pfci + p∗ (xi − ci) if xN − cN = 0

pfci + pr,s (xi − ci) if xN − cN > 0

, (13)



where pr,s ≤ p∗ ≤ pr,b, and p∗ can be chosen arbitrarily
within this range.

Remark 3 (Non-Concavity of the Non-Cooperative Game):
Given the proposed PAM (13), it is worth noting that
πi (ci, {c−i}) is not a concave function in ci. Thus, the
non-cooperative game of DA commitments among the RPPs
is not a concave game. As such, the behavior of the game
(e.g., whether an NE exists) cannot be predicted from existing
theories of concave games [23]. Nonetheless, we analyzed the
game with new techniques, and the main results are described
next.

Due to the non-concavity of the non-cooperative game
among the RPPs, the existence of a pure NE is not always
guaranteed. In the following, we first show the closed form
of the unique pure NE if any pure NE exists at all, and then
show a necessary and sufficient condition for a pure NE to
always exist regardless of the DA and RT prices.

Theorem 1: Employing the PAM (13), if the non-
cooperative game among the RPPs (cf. Section II-E) possesses
any pure NE, it must be unique, and is given by the following
DA commitments: ∀i = 1, . . . , N ,

cnei = E
[
Xi

∣∣∣XN = c?N

]
, (14)

where XN =
∑N
i=1Xi, c?N , argmaxcN E[PN ] =

F−1N
(
pf−pr,s
pr,b−pr,s

)
, and FN (xN ) is the cdf of XN .

Remark 4: To compute its equilibrium commitment, an
RPP needs only to know the bivariate probability distribution
function (pdf) of its own generation and the total generation
of the aggregation, i.e., fXiXN (xi, xN ). As such, knowledge
of the complete joint pdf of all the RPPs is not needed.

Theorem 2: The non-cooperative game among the RPPs
always possesses a pure NE if the following condition holds,

∀i ∈ N ,∀α,
dEXi|XN [Xi|XN = α]

dα
≤ 1. (15)

Conversely, if the condition (15) does not hold, then there
exists a set of DA and RT prices such that a pure NE does
not exist.

Remark 5: We argue that the condition (15) is a reasonable
one, as it holds when no single RPP “dominates” the entire
aggregation. Consider the case when

∃k ∈ N , α, s.t.,
dEXk|XN [Xk|XN = α]

dα
> 1. (16)

Because EXk|XN [Xk|XN ] +
∑
i 6=k EXi|XN [Xi|XN ] = XN ,

we have that
dEXk|XN [Xk|XN = α]

dα
+
dEX−k|XN [X−k|XN = α]

dα
= 1,

(17)

where X−k ,
∑
i 6=kXi. From (16) and (17), we have

dEX−k|XN [X−k|XN = α]

dα
< 0. (18)

This means that the aggregation of all the RPPs other than k
is negatively correlated with the entire aggregation. Intuitively
speaking, this means that the single RPP k is not only
negatively correlated with the aggregation of all the other
RPPs, but also dominates them, and hence dominates the entire

aggregation. However, this is an unlikely situation especially
when the number of RPPs is relatively large, and no single
RPP can dominate the entire aggregation.

For the rest of this paper, we assume that the condition
(15) holds, and thus the unique pure NE of the game is given
by (14) as in Theorem 1. The closed form of this pure NE
immediately implies the following:

Corollary 1: Given the PAM (13), efficiency of the aggre-
gation is achieved at the unique pure NE, i.e.,

cneN = c?N , (19)

where cneN ,
∑N
i=1 c

ne
i .

In other words, Corollary 1 implies that the designed mecha-
nism achieves an ideal “Price of Anarchy” of one [12].

Furthermore, we have that all the remaining desired prop-
erties introduced in Section III are also achieved:

Theorem 3: Employing the PAM (13), individual rational-
ity, stability / in the core, and no collusion are achieved at the
unique pure NE specified in (14).

As a result of Theorems 1, 2, 3 and Corollary 1, we
conclude that the proposed PAM (13) induces a unique NE
among the RPPs, expressed in closed form (14), which is
both efficient and stable (i.e., in the core from a coalitional
game perspective) for the entire aggregation, and guarantees
no collusion. We further note that, interestingly, results and
techniques similar to our findings have independently been
developed for an energy storage sharing problem in the recent
works [24] and [25].

Lastly, while the proposed PAM (13) is shown to achieve
all the desired properties, an interesting question is how its
specific form is discovered. For this, we refer the readers to
Appendix D, in which we show the PAM (13) can be derived
from a competitive equilibrium of a specially formulated
market with transferrable payoff [22].

V. ANALYSIS AND PROOFS OF THE MAIN RESULTS

A. Understanding the Proposed PAM

1) The Excess Payoff from Aggregation: We first examine
the excess payoff from aggregating the RPPs given a set of DA
commitments {ci}, i.e., the difference between a) the realized
payoff of the aggregation, and b) the sum of the realized
payoffs of the RPPs had they separately participated in the
DA-RT market using the same DA commitments {ci}.

We define the following notations for the (realization depen-
dent) sets of RPPs with generation surpluses and shortfalls:

S+ , {i ∈ N | xi − ci ≥ 0} , S− , {i ∈ N | xi − ci < 0}
cS+ ,

∑
i∈S+

ci, xS+ ,
∑
i∈S+

xi, cS−,
∑
i∈S−

ci, xS−,
∑
i∈S−

xi.

For convenience, we define c∅ = x∅ = 0. We then have the
following lemma on expressing the excess payoff in terms of
the above notations, whose proof is relegated to Appendix A.

Lemma 1: The excess payoff from aggregating the RPPs is

PN −
∑
i∈N
Psepi

=
(
pr,b − pr,s

)
min ((xS+ − cS+) , (cS− − xS−)) (20)



Lemma 1 implies that the excess payoff from aggregation
is always non-negative. The excess payoff is zero if the
RPPs either all have excesses or all have shortfalls, i.e., no
compensation happens among the RPPs.

2) Intuition of the Proposed PAM: To understand the pro-
posed PAM (13), let us consider the following two cases:
• Case 1: The aggregation has a shortfall in total, i.e. xN−
cN < 0. In this case, Pi = Psepi ,∀i ∈ S−, i.e., those
RPPs with a shortfall earns exactly the same as if they
each participates in the market separately. In comparison,
∀i ∈ S+, Pi − Psepi = (pr,b − pr,s)(xi − ci). As a
result, only those RPPs in S+ can gain extra earnings
compared to if they participate in the markets separately.
In other words, when the aggregation has a shortfall, all
the excess payoff (20) are allocated to those RPPs with
a surplus.

• Case 2: The aggregation has a surplus in total, i.e.
xN − cN > 0. In this case, Pi = Psepi ,∀i ∈ S+, i.e.,
those RPPs with a surplus earn exactly the same as if
they participate in the market separately. In comparison,
∀i ∈ S−, Pi − Psepi = (pr,b − pr,s)(ci − xi). As a
result, when the aggregation has a surplus, all the excess
payoff (20) are allocated to those RPPs with a shortfall.
While this may seem unintuitive at first glance, it can be
understood as only rewarding those RPPs who “reduce
the total deviation”, even when the total deviation is a
surplus and reducing it means having a shortfall.

Remark 6 (Marginal Profit): The proposed PAM (13) can
also be understood as follows: At RT, given the total (possibly
negative) extra generation xN − cN from the aggregation of
RPPs, if an additional infinitesimal unit of energy is generated
by RPP i, the resulting additional profit the aggregation earns
dictates the price of (possibly negative) extra generation xi−ci
for RPP i.

B. Proofs of the Main Results
We relegate the proof of Theorems 1 and 2 to Appendices

B and C due to their mainly algebraic nature. In the following,
we present the proof of Theorem 3.

Proof of Theorem 3: We will first show that the pro-
posed mechanism (13) achieves individual rationality and no-
collusion, which would then be used to prove that stability /
in the core is further achieved.

a. Individual Rationality:
Comparing (1) with (13), we immediately have the
following inequality: ∀i ∈ N , {ci} and {xi},

Pi ({ci}, {xi}) ≥ Psepi (ci, xi) . (21)

As a heads up, we term (21) ex-post restricted individual
rationality, which we will describe in detail later in
Section VI-B (cf. Property 1 therein).
By taking expectation of (21) over {Xi}, we have

∀i ∈ N and {ci}, πi (ci, {c−i}) ≥ πsepi (ci) . (22)

We then apply this inequality for the following specific
choice of {ci} : ci = c?,sepi (cf. (9)) and {c−i} =
{cne−i}:

∀i ∈ N , πi
(
c?,sepi ,

{
cne−i
})
≥ πsepi

(
c?,sepi

)
. (23)

On the other hand, from the best responding property in
the definition of NE (6), we have

πi
(
cnei ,

{
cne−i
})
≥ πi

(
c?,sepi ,

{
cne−i
})

(24)

Combining (24) and (23), we have

πi
(
cnei ,

{
cne−i
})
≥ π?,sepi

(
c?,sepi

)
, (25)

which completes the proof of individual rationality.
b. No Collusion:

To prove no collusion (12), we begin with showing that

c̃neT =
∑
i∈T

cnei , ∀T ⊆ N . (26)

Without loss of generality (WLOG), consider RPPs
1, 2, · · · , T form as a joint player T . Based on Theorem
1, from the closed form expression of the unique pure
NE (14), we have

c̃neT = E
[
XT

∣∣∣XN = c?N

]
= E

∑
j∈T

Xj

∣∣∣XN = c?N


=
∑
j∈T

E
[
Xj

∣∣∣XN = c?N

]
=
∑
i∈T

cnei . (27)

Similarly, in the new game with RPPs in T joining as a
single player, the remaining RPPs’ commitments at the
new NE stay the same as at the original game’s NE:

∀i /∈ T , c̃nei = E
[
Xi

∣∣∣XN = c?N

]
= cnei . (28)

Now, from the special piece-wise linear structure of the
proposed PAM (13), it is straightforward to verify that

P̃T
(
c̃neT ,

{
c̃ne−T

}
, {xj}

)
=
∑
i∈T
Pi ({cnei }, {xj}) .

In other words, the total payoff allocated to the RPPs
in T remains the same before and after they form as a
joint player. As this holds in all circumstances, it also
holds in expectation:

π̃T
(
c̃neT ,

{
c̃ne−T

})
=
∑
i∈T

πi
(
cnei ,

{
cne−i
})
. (29)

As a result, the proposed PAM (13) achieves the no
collusion property (12): In particular, the inequality is
always achieved by equality (29). We term equation (29)
the No Collusion Equation.

c. Stability / In the Core: We now show that individual
rationality and no collusion collectively implies stability
of the proposed PAM (cf. Property 5 in Section III).
For any subset of RPPs T ⊆ N , consider the hypotheti-
cal case of them joining as a single player to aggregate
with the remaining RPPs T \N under the proposed PAM
(13). Applying individual rationality (cf. (8)) specifically
to this joint player, we have

π̃T
(
c̃neT , c̃

ne
−T
)
≥ π?,sepT

(
c?,sepT

)
. (30)

From (30) and the No Collusion Equation (29), we have∑
i∈T

πi
(
cnei ,

{
cne−i
})
≥ π?,sepT

(
c?,sepT

)
, (31)

completing the proof of Property 5) - Stability / In the
Core - of the proposed PAM (13).



VI. EX-POST PROPERTIES OF THE PROPOSED MECHANISM

In this section, we present another set of desirable properties
achieved by the proposed PAM (13): These properties are
termed “ex-post” properties because they are achieved for
all possible realizations of the random power generation
{Xi}. These properties, however, are distinguished from those
discussed in Section III by a key caveat — an assumption on
the RPPs’ DA commitments, as will be described next.

A. A Specialized Coalitional Game
Given any set of DA commitments {ci} and realizations of

generation {xi}, similar to the realized payoffs (1) and (3),
we define a function v(·) for the value of a coalition of any
subset of RPPs as follows: ∀T ⊆ N ,

v (T ) = pf ĉT − pr,b (ĉT − xT )+ + pr,s (xT − ĉT )+ (32)

where ĉT ,
∑
i∈T ci and xT ,

∑
i∈T xi. With the above

value function v(·), designing the PAM {Pi({ci}, {xi}), i ∈
N} can be studied in a well-defined coalitional game [22]. In
particular, in a coalitional game, a PAM {Pi} is said to be
stable/in the core if and only if it satisfies the following set
of inequalities:

∀T ⊆ N ,
∑
i∈T
Pi ≥ v (T ) . (33)

In other words, the total payoffs allocated to any subset of
the players should be no less than the value of this subset. In
particular, here the value of a subset of RPPs T (32) has a
specific meaning — the realized payoff of the subset of RPPs
T had they left the aggregation and collectively participate
in the DA-RT markets with a specific total commitment —
ĉT =

∑
i∈T ci. As such, if a PAM {Pi} is in the core (cf.

(33)), any subset of RPPs T in the aggregation earn at least
as much as they would otherwise earn outside the aggregation
provided that they stick to the same total DA commitments as
they do inside the aggregation.

Remark 7 (Restrictive Assumption on DA Commitments):
As with the previously discussed stability property in
Section III, one would ideally like stability / in the core
be satisfied without any restriction on how a subset of
RPPs determine their DA commitments. The requirement
of ĉT =

∑
i∈T ci, ∀T ⊆ N in this section is hence a

restrictive one, as it does not allow a subset of RPPs leaving
the aggregation to re-adjust their DA commitments. This
assumption nonetheless leads to a set of “ex-post” properties
of the proposed PAM (13) in the following.

B. Ex-post Restricted Stability and No Collusion
We now describe the properties achieved by the proposed

PAM (13) in an “ex-post” sense, meaning that they hold for
all possible {ci} and renewable generation realizations {xi}.

1) Ex-post restricted individual rationality:
Pi ({ci}, {xi}) ≥ Psepi (ci, xi), ∀i ∈ N , (cf. (1)
and (13), and mentioned earlier as (21)). In other
words, the payoff of RPP i is at least as high as the
payoff it could have gotten had it separately participated
in the DA-RT market with the same DA commitment ci
as originally submitted to the aggregator.

2) Ex-post restrictedly stable/in the core: Being restrictedly
stable/in the core in an “ex-post” sense is defined by
(33) and (32). In other words, if any subset of the
RPPs T leave the aggregation, separately form their
own aggregation, and then participate in the market with
the same sum of DA commitments ĉT =

∑
i∈T ci as

originally submitted to the aggregator, they would get a
realized payoff no higher than the sum of their realized
payoffs originally from the PAM.

3) Ex-post restricted no collusion: Suppose any subset of
RPPs T join together as a single player before participat-
ing in the aggregation with the remaining RPPs, and sub-
mit the same sum of DA commitments ĉT =

∑
i∈T ci

to the aggregator. Their total realized payoff would be
no higher than the sum of their original realized payoffs
from the PAM. Rigorously, ∀T ,∑

i∈T
P ({ci}, {xi}) ≥ P̃T (ĉT , {c−T }, {xi}) , (34)

where P̃T (ĉT , {c−T }, {xi}) is the new payoff of a
subset of RPPs T if they a) join as a single player,
and then b) aggregate with the remaining RPPs N\T
under the proposed PAM (13), employing the original
total commitment of ĉT =

∑
i∈T ci.

We note that the reason for the above properties to be termed as
“restricted” ones is the assumption of ĉT =

∑
i∈T ci, ∀T ⊆

N (cf. Remark 7). We now have the following theorem.
Theorem 4: Employing the PAM (13), ex-post restricted

individual rationality, stability / in the core, and no collusion
are achieved for all possible {ci} and {xi}.

It is straightforward to verify from (1) and (13) that ex-
post restricted individual rationality and no collusion both
hold. To prove ex-post restricted stability/in the core, we again
refer the readers to Appendix D, in which stability/in the
core is implied by the competitive equilibrium of a specially
formulated market with transferrable payoff. We further note
that, interestingly, results similar to the proposed PAM (13)
in achieving ex-post properties have independently been de-
veloped in a recent work [18], using a cost causation based
analysis.

VII. SIMULATION

A. Data Description and Simulation Setup
We perform simulations using the NREL dataset [26] for

ten wind power producers (WPPs) located in the PJM inter-
connection. For each WPP, both the hourly DA forecasts and
the actual realized generation are available from the data set.
The generation of the WPPs for each hour t are modeled as

Wi (t) = Ŵi (t) + εi (t) , ∀i,

where Ŵi is the (point) forecast generation of WPP i, and εi
is the forecast error. For simplicity, we consider the WPPs
modeling their forecast errors using a zero mean jointly
Gaussian distribution, N(0,Σ). We fit the covariance matrix
Σ using the real data of these ten WPPs in Jan. 2004. The
simulations are then performed based on the real data of these
ten WPPs in Feb. 2004. We note that the WPPs’ (Gaussian)
probabilistic beliefs are only their crude statistical models of



Table I: Total payoff of all the WPPs

Cases 1 and 2 Case 3 Case 4
Total Payoff ($) 10, 428, 257 10, 352, 581 9, 148, 024

their generation, and all the data used in the actual simulations
are real data (as opposed to Gaussianly distributed). This,
however, is already sufficient to provide instructive numerical
results as will be shown in the remainder of the section.

To simulate the WPPs’ interactions with the DA-RT mar-
kets, we employ the hourly DA and RT locational marginal
prices (LMPs) in Feb. 2004 from where the ten WPPs are
located (all in the PJM interconnection). In particular, pf

in (1) is obtained from the hourly day ahead market price
pDA(t). To obtain pr,b and pr,s, the same approach as in
[11] is employed: we let pr,b = max

(
1.2pDA(t), 2pRT (t)

)
and pr,s = min

(
pDA(t)/1.2, pRT (t)/2

)
, where pRT (t) is the

hourly real time market price.
We evaluate four different cases of WPPs participating in

the DA-RT market, with and without aggregation:
• Case 1: An aggregator employs an efficient and stable/in

the core PAM previously derived in [11] to aggregate the
WPPs. This PAM assumes the knowledge of the joint
probability distribution of the WPPs’ random generation.

• Case 2: An aggregator employs the proposed mechanism
(cf. Section II-D and (13)) to aggregate the WPPs. At the
unique NE, each WPP i submits cnei (cf. (14)).

• Case 3: An aggregator employs the proposed mechanism
to aggregate the WPPs. Each WPP i submits the DA
commitment that would be optimal had it separately par-
ticipated in the markets, i.e., c?,sepi = argmaxci π

sep
i (ci).

• Case 4: Without an aggregator, each WPP i separately
participates in the DA-RT market, and makes the optimal
DA commitment c?,sepi = argmaxci π

sep
i (ci).

In particular, for Case 1, the simulated payoff allocation
mechanism based on the PAM in [9] is given by

P case 1
i = p∗i xi +

PN −
∑N
j=1 p

∗
jxj

N
, (35)

where p∗i is the “competitive price” given by eq. (15) in [11].

B. Simulation Results
The total payoffs of all the WPPs for the four cases are

summarized in Table. I. As expected from Corollary 1, the total
payoffs for Cases 1 and 2 are the same since both cases achieve
efficiency, i.e., maximum expected profit for the aggregation. In
comparison, since Case 3 does not achieve efficiency for the
aggregation, a lower total payoff is achieved than that in Cases
1 and 2. Lastly, Cases 1, 2, and 3 all achieve significantly
higher total payoffs than Case 4, demonstrating the benefit of
aggregating the WPPs.

Breaking down the total payoffs across WPPs and hours, a)
the daily average payoffs of the WPPs are shown in Figure
1, and b) the hourly average payoffs of the aggregation are
shown in Figure 2. It is observed that the payoffs in Cases 1
and 2 are consistently higher than that in Case 3, which are
further always higher than that in Case 4. For all the WPPs,
individual rationality is confirmed.
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Figure 1: Comparison of the daily average payoffs of the
WPPs.

0 5 10 15 20 25
Hours

0

0.5

1

1.5

2

2.5

H
ou

rly
 A

ve
ra

ge
 P

ay
of

f o
f A

gg
re

ga
to

r (
$) #104

Case 1 & 2
Case 3
Case 4

Figure 2: Comparison of the hourly average payoffs of the
aggregation.

Furthermore, we plot the real-time payoff traces of one of
the ten WPPs (#05711) in Figure 3.

• In Figure 3(a), we compare Case 2 against Case 4: it
is observed that, while for most of the times the WPP
earns a higher payoff in Case 2, there are a small number
of hours (e.g., hour #144 and #189) in which the WPP
earns a higher payoff in Case 4. This is not unexpected
for two reasons: a) Case 2 achieves individual rationality
in expectation (cf. Section III), and therefore does not
preclude some realized scenarios in which Case 4 turns
out better, and b) The WPPs and the aggregator only
employ a crude Gaussian model for the forecast errors in
our simulations (cf. Section VII-A), and thus the WPPs’
payoffs determined accordingly can potentially deviate
from the ideal ones had the “ground truth” probability
distributions are employed.

• In Figure 3(b), we compare Case 3 against Case 4: it
is observed that for all times the WPP earns a higher
payoff in Case 3. This is consistent with the ex-post
restricted individual rationality (cf. Section VI-B), in
particular because each WPP’s in Case 3 makes the DA
commitments in the same way as in Case 4 (c?,sepi ).

Similar observations have been made for the realized real-time
payoff traces for the entire aggregation: a) In Case 2, for most
but not all times, the aggregator’s total payoff is higher than
that in Case 4, and b) In Case 3, for all times the aggregator’s
total payoff is higher than that in Case 4. In light of these, it is
worth re-emphasizing that efficiency, i.e., maximum expected
profit for the aggregation is in fact achieved in Case 2, but
not in Case 3 (cf. Table I), even though for some realized
scenarios the payoffs in Case 2 are worse than Case 3.
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Figure 3: The payoffs traces over time of a WPP.

VIII. CONCLUSION

An indirect mechanism design framework is employed for
aggregating renewable power producers in a two settlement
power market. We have designed a payoff allocation mech-
anism by solving the competitive equilibrium of a specially
formulated market with transferrable payoff. We have proved
that the outcome of the designed mechanism is predicted by
a unique Nash equilibrium among the RPPs participating in
the aggregation, characterized in closed from. Moreover, at this
NE induced by the mechanism, the entire aggregation achieves
efficiency, i.e., the maximum expected profit as if all the RPPs
fully cooperate. This implies an ideal “Price of Anarchy” of
one. We have then proved that the NE is “in the core”, and
is hence stable from a coalitional game theoretic perspective.
Furthermore, we have proved that the NE guarantees no
collusion among the RPPs. In addition, a set of “ex-post”
properties are also achieved by the designed mechanism. We
have simulated the designed mechanism with data from 10
wind power producers in the PJM interconnection. Numerical
results consistent with theoretical predictions are observed.
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APPENDIX A
PROOF OF LEMMA 1

First, we have that

Psepi =

{
pfci + pr,s (xi − ci) , if i ∈ S+

pfci − pr,b (ci − xi) . if i ∈ S−



As a result,∑
i∈N
Psepi =

∑
i∈S+

Psepi +
∑
i∈S−

Psepi

= pf (cS+ + cS−)− pr,b (cS− − xS−) + pr,s (xS+ − cS+)
(36)

We now consider the case of xS+ − cS+ ≥ cS− − xS− , i.e.,
there is an excess power in total in the aggregation. In this
case,

PN = pf (cS+ + cS−) + pr,s (xS+ + xS− − cS+ − cS−)
(37)

From (36) and (37), we have:

PN −
∑
i∈N
Psepi = (pr,b − pr,s) (cS− − xS−)

=
(
pr,b − pr,s

)
min ((xS+ − cS+) , (cS− − xS−)) (38)

The case when xS+ − cS+ < cS− − xS− can be proved
similarly.

APPENDIX B
PROOF OF THEOREM 1

From the best responding condition of NE (6), a necessary
condition for a set of DA commitments {cnei } to be at a pure
NE is

dπi
dci

∣∣∣
{ci}={cne

i }
= 0, ∀i = 1, . . . , N. (39)

Given the proposed PAM, with a little algebra, the above
derivative can be expressed as

dπi
dci

= −
(
pr,b − pr,s

)
cifXN

xN =
∑
j∈N

cj


+
(
pr,b − pr,s

) ∫ ∑
j∈N cj

0

xifXN ,Xi

xN =
∑
j∈N

cj , xi

 dxi

+
(
pf − pr,s

)
−
(
pr,b − pr,s

)
FN

xN =
∑
j∈N

cj

 . (40)

With (40), the sum of all the N equations (39) simplifies as

0 =
∑
i∈N

dπi
dci

∣∣∣
{ci}={cne

i }

= N ×

(pf − pr,s)− (pr,b − pr,s)FN
∑
j∈N

cnej


(41)

From (41), we obtain that

cneN =
∑
j∈N

cnej = F−1N
(
pf − pr,s

pr,b − pr,s

)
= c?N , (42)

which in fact proves the efficiency of the NE (cf. Corollary 1).
Now, substituting

∑
j∈N cj = c?N into (40) and (39), we

get the unique solution

cnei =

∫ c?N
0

xifXN ,Xi (xN = c?N , xi) dxi

fXN (xN = c?N )

= E
[
Xi

∣∣∣XN = c?N

]
. (43)

APPENDIX C
PROOF OF THEOREM 2

From Theorem 1, if a pure NE exists, it must take the form
of (14). In this proof, we show that

1) If condition (15) holds, then (14) is indeed a pure NE,
and

2) If condition (15) does not hold, then there exists a set of
DA and RT prices such that a pure NE does not exist.

Part 1): Suppose condition (15) holds.
From Theorem 1, the unique candidate for a pure NE is

given by cnei = E
[
Xi

∣∣∣XN = c?N

]
,∀i ∈ N (cf. (14)). The

expected payoff of RPP i at this candidate pure NE is

πi
(
cnei ,

{
cne−i
})

= pr,s · µi +(
pr,b − pr,s

)
·
∫ c?N

xN=0

EXi|XN [Xi|XN = xN ] · fXN (xN ) dxN

(44)

For the strategy profile {cnei } to indeed be a pure NE, we must
also have:

∀i ∈ N ,∀ci ∈ R, πi
(
cnei ,

{
cne−i
})
≥ πi

(
ci,
{
cne−i
})
, (45)

where πi
(
ci,
{
cne−i
})

is the expected payoff of RPP i if it
chooses ci as its strategy (i.e., its DA-commitment), and the
other RPPs choose the strategies

{
cne−i
}

. πi
(
ci,
{
cne−i
})

can
then be expressed in closed form as follows:

πi
(
ci,
{
cne−i
})

=

pr,s · µi +
(
pf − pr,s

)
· ci +

(
pr,b − pr,s

)
·
{
− ci · FN (cN )

+

∫ cN

xN=0

EXi|XN [Xi|XN = xN ] · fXN (xN ) dxN

}
(46)

where cN = ci +
∑
j 6=i c

ne
j . Substituting (44) and (46), we

have that (45) is equivalent to

∀i ∈ N ,∀ci ∈ R,∫ cN

xN=c?N

{
EXi|XN [Xi|XN = xN ]− ci

}
· fXN (xN ) dxN

≤ 0. (47)

From Theorem 1, when ci = cnei , we have that
EXi|XN [Xi|XN = xN ]−ci = 0, and the left hand side (LHS)
of (47) equals to zero. Now, from the condition (15),
• If ci > cnei , then cN > c?N , and

EXi|XN [Xi|XN = xN ] − ci ≤ 0,∀xN ∈ [c?N , cN ].
Thus, (47) holds.

• If ci < cnei , then cN < c?N , and
EXi|XN [Xi|XN = xN ] − ci ≥ 0,∀xN ∈ [cN , c

?
N ].

Thus, (47) holds.
Part 2): Suppose condition (15) does not hold.

In other words, there exists an RPP k, for some α,
dEXk|XN [Xk|XN=α]

dα > 1.
Assuming continuity of EXk|XN [Xk|XN = α] as a func-

tion of α, there exists an interval [D1, D2], where
dEXk|XN [xk|XN=α]

dα > 1 for all α ∈ [D1, D2].



Now, under the mild technical condition that FN is invert-
ible, we can always find a set of prices

{
pf , pr,b, pr,s

}
that

satisfy

c?N = F −1N
(
pf − pr,s

pr,b − pr,s

)
= D1. (48)

We now examine, for this RPP k, any ck ∈
(cnek , c

ne
k +D2 −D1). Note that, for ck = cnek , the LHS of

(47) is zero; and for any ck ∈ (cnek , c
ne
k +D2 −D1), the

LHS of (47) is positive. Therefore, under this particular set
of prices, the unique candidate of a pure NE is not a pure
NE, and thus a pure NE does not exist.

APPENDIX D
DERIVING THE PAYOFF ALLOCATION MECHANISM FROM A

COMPETITIVE EQUILIBRIUM

In this section, we show that the proposed PAM (13) can in
fact be derived from computing the competitive equilibrium of
a specially formulated market with transferrable payoff. This
also offers a proof of Theorem 4.

A. Market with Transferrable Payoff

We first define the following market with transferrable
payoff [22]:
• The RPPs, denoted by N , are a finite set of N agents.
• There is one type of input goods — power generation.
• Each agent i ∈ N has an “endowment” in the amount of
xi ∈ R+ — the realized power of RPP i.

• Each agent i ∈ N has a continuous, nondecreasing, and
concave “production” function fi : R+ → R:

fi(xi) = Psepi = pfci − pr,b (ci − xi)+ + pr,s (xi − ci)+ .
(49)

Since all the “production” functions {fi} produce the same
type of transferrable output, i.e., monetary payoff, the above
formulation precisely defines a market with transferrable pay-
off.

Next, a coalitional game can be defined based on a market
with transferrable payoff [22]. Specifically, for any coalition
of a subset of RPPs T ⊆ N , define

v (T ) = max
{zi∈R+,i∈T }

∑
i∈T

fi(zi) (50)

s.t.
∑
i∈T

zi =
∑
i∈T

xi.

In other words, {zi, i ∈ T } denotes a redistribution of the
total realized power

∑
i∈T xi among the members of T . This

v(T ) represents the maximum total payoff that the members
of T can achieve among all possible redistributions, computed
according to fi defined in (49). The core of this coalitional
game is also called the “core of the market”.

We now prove that this coalitional game is exactly the same
as the coalitional game defined previously in (32).

Lemma 2: The values of coalitions (50) are the same as
(32).

Proof: Straightforwardly, (32) ≥ (50) because (32) is
the maximum achievable payoff by the subset T after their

aggregation. Next, we show that (32) can be achieved by (50),
i.e., (32) ≤ (50).

We define T + , {i ∈ T | xi − ci ≥ 0} and T − ,
{i ∈ T | xi − ci < 0}. The intuition of a redistribution {zi}
to achieve (32) is the following: We give as much of the excess
power of the RPPs in T + as possible to the RPPs in T − to
offset their deficit power.

Specifically, if xT − cT < 0, i.e.,
∑
i∈T − (ci − xi) >∑

i∈T + (xi − ci), we let

∀i ∈ T +, zi = ci, (51)
∀i ∈ T −, xi ≤ zi ≤ ci,

so that
∑
i∈T −

(zi − xi) =
∑
i∈T +

(xi − zi) . (52)

As a result,∑
i∈T

fi(zi) =
∑
i∈T +

fi(zi) +
∑
i∈T −

fi(zi)

=
∑
i∈T +

pfci +
∑
i∈T −

(
pfci − pr,b(ci − zi)

)
= pfcT − pr,b

∑
i∈T −

((ci − xi)− (zi − xi))

= pfcT − pr,b
(∑
i∈T −

(ci − xi)−
∑
i∈T +

(xi − ci)

)
(53)

= pfcT − pr,b(cT − xT ) = (32), (54)

where (53) is implied by (51) and (52).
The case of xT − cT ≥ 0 can be proved similarly.
As a result, from the property of market with transferrable

payoff (cf. Proposition 264.2 in [22]), we immediately have
that this coaltional game has a non-empty core.

Moreover, this formulation as a market enables us to
compute a solution in the core by deriving the competitive
equilibrium (CE) of the market, as follows.

B. Competitive Equilibrium
For the market with transferrable payoff defined in the last

subsection, a competitive equilibrium is defined [22] as a
price-quantity pair of p∗ ∈ R+ and z∗ ∈ RN+ , such that,

i) For each agent i, z∗i solves the following problem:

max
zi∈R+

(fi (zi)− p∗ (zi − xi)). (55)

ii) z∗ is a redistribution, i.e.,
∑
i∈N z

∗
i =

∑
i∈N xi.

The intuition of a CE is the following: At the price p∗, i) to
maximize its payoff, each agent i can trade any amount of the
input (realized power) on the market without worrying whether
there is enough supply or demand to fulfill its trade request,
and ii) collectively, the market of input supply and demand
still clears, i.e., the resulting z∗ from the optimal trades is
feasible.

At a competitive equilibrium (p∗, z∗), p∗ is called the
competitive price, and the value of the maximum of (55) is
called the competitive payoff of agent i.

We then have the following theorem (cf. Proposition 267.1
in [22]) dictating that all the CEs are in the core.



Theorem 5: Every profile of competitive payoffs in a mar-
ket with transferable payoff is in the core of the market.

Accordingly, to find a solution in the core of the market,
which is also the core of the coalitional game for aggregating
RPPs (cf. Lemma 2), it is sufficient to find a CE in the market
with transferrable payoff defined in the last section.

Deriving the Competitive Equilibrium:
For the market with transferrable payoff defined in the last

subsection, we have the following theorem:
Theorem 6: Competitive equilibrium exists, and the com-

petitive payoffs necessarily take the form of the proposed PAM
(13).

Proof: With the production function fi(xi) defined to be
Psepi as in (49), we observe that fi(xi) is a piecewise linear

function: f ′i(xi) =

{
pr,b, if xi < ci

pr,s, if xi > ci
.

As a result, at a CE, we must have pr,b ≤ p∗ ≤ pr,s.
Otherwise, by solving (55), either all RPPs would sell all of
their power, or all of them would buy an infinite amount of
power; Neither case would clear the market with

∑
i∈N z

∗
i =∑

i∈N xi.
We now analyze the optimal behavior of any agent i under

the following three scenarios of the competitive price p∗:
• If p∗ = pr,b, the maximum of (55) is achieved if and only

if zi ≤ ci.
• If p∗ = pr,s, the maximum of (55) is achieved if and

only if zi ≥ ci.
• If pr,s < p∗ < pr,b, the maximum of (55) is achieved if

and only if zi = ci.
To derive the competitive price p∗ that clears the market

with
∑
i∈N z

∗
i =

∑
i∈N xi, we consider the following three

scenarios:
Case i) xN − cN < 0: As result, at the CE,

∑
i∈N z

∗
i <∑

i∈N c
∗
i . From the above, we necessarily have p∗ = pr,b.

Indeed, with p∗ = pr,b, there exists z∗ such that a) z∗i ≤ ci,
and b)

∑
i∈N z

∗
i =

∑
i∈N xi < cN .

Moreover, it is immediate to check that the competitive
payoff of RPP i equals pfci + pr,b (xi − ci) (cf. (13)).

Case ii) xN − cN > 0: As result, at the CE,
∑
i∈N z

∗
i >∑

i∈N c
∗
i . From the above, we necessarily have p∗ = pr,s.

Indeed, with p∗ = pr,s, there exists z∗ such that a) z∗i ≥ ci,
and b)

∑
i∈N z

∗
i =

∑
i∈N xi > cN .

Moreover, the competitive payoff of RPP i equals pfci +
pr,s (xi − ci) (cf. (13)).

Case iii) xN − cN = 0: In this case, ∀p∗, s.t. pr,s ≤ p∗ ≤
pr,b, z∗i = ci,∀i achieves

∑
i∈N z

∗
i =

∑
i∈N xi = cN .

Moreover, the competitive payoff of RPP i equals pfci +
p∗ (xi − ci) (cf. (13)).

From Theorem 5 and 6, we conclude that the competitive
payoffs that equal (13) are always in the core of the market,
and hence the core of the coalitional game (32).


