
Competitive Market with Renewable Power
Producers Achieves Asymptotic Social Efficiency

Hossein Khazaei and Yue Zhao
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Emails: {hossein.khazaei, yue.zhao.2}@stonybrook.edu

Abstract—A price-making two-settlement power market in
which both conventional generators and renewable power pro-
ducers (RPPs) participate is studied. It is proved that the Nash
Equilibrium (NE) of the market converges to the social optimum
as the number of RPPs increases. As a result, social efficiency
is asymptotically achieved with a simple market mechanism for
integrating RPPs, without the need for an independent system
operator (ISO) to perform a centralized stochastic optimization.
The analytical derivation of the NE offers an elegant charac-
terization of the market power of the competitive RPPs. The
market outcomes predicted by the developed theoretical results
are demonstrated by simulation studies.

I. INTRODUCTION

Power systems around the world have recently been expe-
riencing a significant growth of integrated renewable energies
such as wind and solar power. What mechanism power system
operation should employ to integrate renewable energies (feed-
in tariff as one example) has been under active ongoing
debates [1]. Considering that an independent system operator
(ISO) takes an extended responsibility of economic dispatch
(ED), now in the presence of uncertain renewable generation,
many works have studied ED approaches based on stochastic
optimization and control given probabilistic information of the
renewables [2], [3], [4]. Extensive evaluation of the impact of
renewable energy integration on the operation cost of power
systems and locational marginal prices (LMPs) have been
conducted [5], [6], [7].

A major alternative to treating renewable power generation
as uncontrollable negative loads is to let renewable power pro-
ducers (RPPs) participate in power markets, similarly to what
conventional generators do. Strategic behaviors of a single
RPP in multi-settlement power markets have been analyzed
with price-taking assumptions [8] as well as in price-making
environments [9], [10], [11], for which stochastic optimization
approaches have been explored. On analyzing the behaviors of
many RPPs, aggregation of RPPs has been studied with price-
taking assumptions in two-settlement markets [12], [13], [14].
In this context, Nash equilibrium (NE) among the aggregating
RPPs under several payoff allocation mechanisms has been
studied [15], [16], [17], [18], [19]. With a slightly stylized
price-making assumption in the day-ahead (DA) market and
a fixed real-time (RT) penalty, competition and coalition
behaviors of RPPs have been analyzed [20].

In this paper, we study participation of many RPPs in
general price-making DA and RT two-settlement power mar-
kets. We study a simple mechanism in which each RPP

submits a firm power commitment in the DA market, and,
by participating in the RT market, is fully responsible for any
deviation from it. We provide a closed-form characterization
of the NE among all the RPPs in this market. We prove that, as
the number of RPPs increases, the NE of the market converges
to the social optimum as if an omniscient ISO performs a
centralized minimization of the overall expected system cost.
The analytical derivation of the NE also offers an elegant
characterization of the market power of the competitive RPPs.
Simulation studies demonstrate the market outcomes predicted
by the developed theoretical results.

The remainder of the paper is organized as follows. Section
II establishes the system model of the price-making two
settlement market with competitive RPPs. Section III derives
the social optimum achieved by an omniscient ISO. Section
IV analyzes the market equilibrium with competitive RPPs.
Section V offers simulation results that corroborate the derived
theoretical results. Section VI concludes the paper.

II. SYSTEM MODEL

A. A Price-Making Two-Settlement Power Market

We consider a two-settlement power market consisting of
a day-ahead (DA) market and a real-time (RT) market, and
price making (as opposed to price taking) participants in both
DA and RT markets. We consider the presence of both con-
ventional generators and renewable power producers (RPPs):
the power outputs of the conventional generators are fully
controllable, whereas that of the RPPs are not controllable
(except for curtailing which will be discussed later), but
depend on external factors such as weather. As a result, in the
DA market, the power generation of the RPPs at the (future)
delivery time are modeled as random variables. Furthermore,
we consider that conventional generators are categorized into
DA “slow-ramping” ones and RT “fast-ramping” ones: the
slow-ramping generators (which are typically cheaper) are to
be dispatched in the DA market, and the fast-ramping ones in
the RT market.

The general steps of the two-settlement market mechanism
that we consider in this paper are summarized as follows:

1) In the DA market,
a) The DA conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs submit firm commitments for their

power delivery at the future time of the RT market.



c) Upon receiving these information, the ISO per-
forms an optimal dispatch of the DA conventional
generators to meet the load.

2) In the RT market,
a) The RT conventional generators submit their bid-

ding curves to the ISO.
b) The RPPs’ actual generation are realized.
c) The ISO computes the remaining difference be-

tween the total generation and load, and performs
an optimal dispatch of the RT conventional gener-
ators to resolve the difference.

Before specifying the details of the above steps, we list the
assumptions made in this paper as follows:

1) Transmission network constraints are not considered.
This is equivalent to considering all the generators, RPPs
and loads located at a single node.

2) The conventional generators submit their generation cost
functions truthfully. In other words, we do not consider
market power issues among the conventional generators.

3) The RPPs have zero variable cost in their generation.
With the above Assumption 1) and 2), it is convenient

to consider that the market has just a single equivalent
aggregate DA conventional generator and a single equivalent
aggregate RT conventional generator for the ISO to dispatch.
In addition, we consider N RPPs in the system. Our focus
is to understand the strategic behaviors of the RPPs and the
ensuing consequences on the social welfare. The notations of
the relevant variables are defined as follows:

qDAG , qRTG Power dispatch of the (aggregate)
DA and RT conventional generators.

CDAG (·), Cost functions of the (aggregate)
CRTG (·) DA and RT conventional generators.

L Total (inelastic) load.
ci Firm power commitment submitted by RPP i.
cN The quantity equal to

∑N
i=1 ci.

Xi, xi The random variable modeling the power
output of RPP i, and the realization of it.

XN , xN The random variable modeling the total
output of the RPPs, and the realization of it.

pf , pr DA, RT market clearing prices.
Pi, πi The realized and expected profit of RPP i.

We now specify the details of how the ISO and the RPPs
interact in the two-settlement market mechanism.
DA and RT market clearing: First, we consider that every
RPP takes responsibility of its RT deviation from its DA
firm power commitment. In particular, when performing DA
dispatch of the (aggregate) conventional generator, the ISO
takes the RPPs’ commitments as firm ones, and does not worry
about any possible RT deviations from them. As a result, the
ISO’s DA dispatch is simply given by

qDAG = L− cN . (1)

In the RT market, the only sources of a possible difference
between the total generation and load are the deviations of the
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Fig. 1. Three scenarios of the RT generation cost function CRT
G (·).

RPP’s realized generation from their DA commitments. The
ISO then dispatch the RT conventional generator to resolve
the difference. The ISO’s RT dispatch is thus given by

qRTG = cN − xN . (2)

With (1) and (2), the DA and RT market clearing prices
are the marginal costs for producing one more unit of power
using the DA and RT conventional generators, respectively:

pf =
dCDAG (q)

dq

∣∣∣∣
qDA
G

, pr =
dCRTG (q)

dq

∣∣∣∣
qRT
G

. (3)

Clearly, the DA and RT market clearing prices depend on the
RPPs’ decisions on {ci} and their realized generation {xi},
resulting in a price making two-settlement market.

Remark 1: In general, there are three possible shapes of
CRTG (·), as depicted in Fig. 1: a) In Scenario 1, RPPs can
sell their excess power in the RT market for profits; b) In
Scenario 2, RPPs cannot sell excess power for profits, but can
curtail them at no cost; c) In Scenario 3, RPPs are penalized
for having excess power, and thus both positive and negative
imbalances are penalized. We note that the results of this paper
are applicable to all possible scenarios.
RPPs’ profits: Last but not least, as the RPPs take respon-
sibility of their own deviations from their DA commitments,
they pay (or possibly get paid) for the dispatch of the RT
conventional generator (cf. (2)) in full. Specifically, the profit
earned by an RPP i in this two-settlement market is given by

Pi = pf (cN ) · ci − pr(cN − xN ) · (ci − xi), (4)

where the DA and RT prices are functions of cN and cN−xN ,
respectively.

B. Benchmark: The Social Optimization Problem

We now turn to a fundamental question that precedes the
analysis of the two-settlement market, that is, what is the
socially optimal two-stage dispatch? Specifically, in the ideal
case where the ISO has the information and control of all
the players (i.e., DA and RT conventional generators, and
RPPs,) we are interested in the DA and RT dispatch that
minimizes the expected overall generation cost to meet the



load. Understanding the social optimum not only is important
in its own right, but also provides a benchmark against which
the performance of the market mechanism discussed in the
previous sub-section can be compared.

In the following sections, we will first analyze the social
optimum of the two-stage dispatch problem, and then analyze
the social efficiency of the competitive DA-RT market in
which RPPs take responsibility of their own deviations from
DA commitments.

III. SOCIAL OPTIMUM FOR TWO-STAGE DISPATCH

In solving the social optimization problem, the ISO is
assumed to know all the information about the conventional
generators and the RPPs, including the joint probability dis-
tribution of the RPPs’ generation {Xi}. The goal of the ISO
is to minimize the expected overall cost of the system:

min
qDA
G

CDAG
(
qDAG

)
+ EXN

[
CRTG

(
L− qDAG − xN

)]
, (5)

where xN =
∑N
i=1 xi. Note that, the only free decision

variable for the ISO is the DA conventional generation dis-
patch qDAG . The RT dispatch must always satisfy qRTG =
L− qDAG − xN to meet the load.

Now, even though there is no commitment from the RPPs
when studying the social optimum, we still can define an
auxiliary variable cN = L− qDAG . This is for the convenience
of comparison later with the results in Section IV. Note that
this definition is consistent with (1). With a change of variable
with the so-defined cN , the social optimization problem (5) is
equivalent to the following,

min
cN

CDAG (L− cN ) + EXN

[
CRTG (cN − xN )

]
. (6)

Furthermore, even though there is no market when studying
the social optimum, we still can also define the DA and RT
prices as follows, again using the change of variable with cN :

pf = −dC
DA
G (L− cN )
dcN

, pr =
dCRTG (cN − xN )

dcN
(7)

Note that these are consistent with the prices in (3).
We now have the following lemma on characterizing the

social optimum.
Lemma 1: The optimal solution of (6), denoted by coN , is

computed from the following condition,

−pf︷ ︸︸ ︷
dCDAG (L− cN )

dcN

∣∣∣∣
cN=coN

(8)

+

EXN [pr]︷ ︸︸ ︷
dEXN

[
CRTG (cN − xN )

]
dcN

∣∣∣∣∣
cN=coN

= 0,

⇔ pf = EXN [pr] . (9)

The proof of Lemma 1 follows directly from the optimality
condition of (6).

Remark 2: An instructive interpretation of Lemma 1 is as
follows. Consider an ISO deciding the total commitment cN
on behalf of the RPPs: The socially optimal total commitment
coN equalizes the DA market clearing price and the expected
RT market clearing price.

While the social optimum can be achieved using Lemma
1, it however requires the ISO to a) know key probabilistic
forecast information from the RPPs, and b) performs central-
ized optimization and control. Instead, in practice, it is very
appealing to use market mechanisms to integrate the RPPs into
the power system as discussed in Section II-A, which is the
focus of the next section.

IV. COMPETITIVE MARKET WITH RENEWABLE POWER
PRODUCERS

In this section, we analyze the two-settlement market mech-
anism as described in Section II-A, where each RPP submits a
DA firm power commitment, and takes responsibility for any
RT deviation from it. From the RT realized profit of RPP i
(4), its DA expected profit is given by

πi = EXN [Pi] = pf (cN ) · ci − ci · EXN [pr (cN − xN )]
+ EXN [pr (cN − xN ) · xi] (10)

When participating in the two-settlement market, each RPP
has total freedom in choosing its DA commitment ci, and thus
a strategic RPP would like to choose one that maximizes its
expected profit πi (cf. (10)). The strategic behaviors of the
RPPs can thus be studied in a non-cooperative game theoretic
framework as in the remainder of the section.

A. Nash Equilibrium Achieves Asymptotic Social Efficiency

We study the following non-cooperative game modeling the
strategic behaviors of the RPPs in the two-settlement market,
which we term the commitment game:

1) Players: the set of RPPs participating in the DA-RT
market: N = {1, . . . , N}.

2) Strategies: the firm power commitments made by the
RPPs, {ci}.

3) Payoffs: Each RPP i’s payoff is its expected profit (10).
We now state the main result of this paper.
Theorem 1: Social efficiency is achieved at each pure Nash

equilibrium (NE) of the commitment game as N −→∞.
Proof: Suppose the strategy profile

{
c?,ne1 , · · · , c?,neN

}
is

a pure NE of the commitment game, and c?,neN =
∑N
i=1 c

?,ne
i is

the total commitment of the RPPs at this pure NE. Since each
RPP’s expected profit is maximized at this pure NE, {c?,nei }
must satisfy the following necessary best response conditions:

dπi
dci

∣∣∣
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne
N )

= 0, ∀i ∈ N . (11)

Summing up the N equations above, we have∑
i∈N

dπi
dci

∣∣∣
(c1,··· ,cN )=(c?,ne

1 ,··· ,c?,ne
N )

= 0. (12)



With some algebra, (12) simplifies to the following condition:

(N − 1) ·
(
pf
(
c?,neN

)
− EXN

[
pr
(
c?,neN − xN

)])
+
dEXN [PN ]

dcN

∣∣∣∣
c?,ne
N

= 0, (13)

where PN , pfcN − pr(cN − xN ) · (cN − xN ), which is the
total profit of the RPPs. As a result, when N > 1,

pf
(
c?,neN

)
− EXN

[
pr
(
c?,neN − xN

)]
= −

dEXN [PN ]

dcN

∣∣∣
c?,ne
N

N − 1
,

(14)

and the right hand side of (14) converges to zero as N →∞
(under mild technical conditions). Therefore, as the number
of RPPs goes to infinity, the social efficiency condition (9)
is achieved, meaning that the dispatch of the DA and RT
conventional generators achieves the minimum overall cost in
the system.

Remark 3 (Social Efficiency-RPPs’ Profit Tradeoff): The
result from Theorem 1, in particular (13), has a very interesting
and intuitive interpretation. As the number of RPPs vary, the
NE of the market makes a tradeoff between achieving social
efficiency (by equalling the DA price and the expected RT
price) and maximizing the RPPs’ total expected profit (by
setting dEXN [PN ]

dcN
|c?,ne

N
= 0). For the case of only one RPP, i.e.,

N = 1, the NE maximizes the expected profit of that RPP. As
the number of RPPs increases, the NE of the market moves
from generating the maximum expected total profit for the
RPPs to the social optimum. As N →∞,

(
pf − EXN [pr]

)
→

0, and social efficiency is achieved asymptotically (cf. (9)).

B. Discussion

We further make the following observations from the main
result presented above.
• Centralized Stochastic Optimization Not Needed: With

a simple design of the two-settlement market mechanism
that integrates RPPs in a competitive fashion, social
efficiency is achieved asymptotically. This is without
requiring a central decision making process by the ISO
for the RPPs, which would involve a) gathering neces-
sary information from the RPPs, and b) making optimal
dispatch decisions using stochastic optimization (cf. (5)).

• Market Power of RPPs: The tradeoff described in
Remark 3 in fact offers an interesting characterization of
the market power of the RPPs in a competitive market.
As an extreme case, consider all the RPPs are aggregated
as one giant RPP and participate in the two-settlement
market. Then, the NE of the market reduces to the
profit maximization strategy of the single aggregate RPP,
solved by (13) with N = 1. This extreme case is when
the RPPs has the maximum market power, due to their
full aggregation. As the number of RPPs increases, the
difference between the DA market price and the expected
RT market price decreases and converges to zero. This
represents decreasing market power of the RPPs. When

N →∞, RPPs do not have market power at all, and the
market becomes socially efficient.

V. SIMULATION

In this section, we conduct simulation studies to demonstrate
the main results in the previous sections. We use quadratic
functions to model the (aggregate) cost functions of the
conventional generators in the DA and RT markets as follows:

CDAG (q) =
1

2
αDAG · q2 + βDAG · q,

CRTG (q) =
1

2
αRTG · q2 + βRTG · q. (15)

Accordingly, with qDAG = L − cN and qRTG = cN − xN (cf.
(1), (2)), the DA and RT market prices become (cf. (3) and
(7))

pf = −dC
DA
G

dcN
= αDAG · (L− cN ) + βDAG ,

pr =
dCRTG
dcN

= αRTG · (cN − xN ) + βRTG . (16)

The socially optimal total commitment of the RPPs coN (cf.
(8)) and the total commitment at the NE of the market c?,neN
(cf. (13)) have closed form expressions as follows:

coN =
αDAG L+ αRTG µN + βDAG − βRTG

αDAG + αRTG
, (17)

where µN , E[XN ], and

c?,neN =
N ·

(
αDAG L+ βDAG − βRTG

)
+ (N + 1) · αRTG µN

(N + 1) ·
(
αDAG + αRTG

) .

(18)

To measure the social welfare, the expected overall system
cost is calculated as CDAG + EXN

[
CRTG

]
.

We employ the following parameters for the simulations.

αG
(
$/(MWh)2

)
βG ($/(MWh))

DA 0.01 15
RT 0.02 30

We simulate with all the RPPs’ generation being inde-
pendent and identically distributed (IID) Gaussian random
variables, Xi ∼ N

(
µ, σ2

)
,∀i ∈ N . Consequently, XN =∑

i∈N Xi ∼ N
(
µN , σ

2
N
)
, where µN = N · µ, and σN =√

N · σ. Throughout all the simulations, we consider a fixed
(aggregate) expectation and (aggregate) standard deviation of
the RPPs’ total generation XN , with µN = 500MW , and
σN = 30MW . The simulated mean and variance of each
individual RPP would thus depend on the number of RPPs
N . For example, if there are N = 100 RPPs, then each of
them would have µi = µN

N = 5MW and σi = σN√
N

= 3MW .
The total load is set to be 1000MW .

In our simulations, we vary the number of RPPs N , and
evaluate the social optimum and the NE of the two-settlement
market for the above setting. The expected overall system costs
are plotted in Figure 2. Because the probability distribution of
the total generation of the RPPs are kept fixed (µN = 500MW
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and σN = 30MW ), the social optimum stays fixed. As the
number of RPPs N increases, it is observed that the expected
overall system cost at the market NE converges quickly to
the social optimum. The DA market clearing prices and the
expected RT market clearing prices are plotted in Figure 3.
When N is small, there is a clear discrepancy between the DA
and the expected RT prices. As N increases, the two prices
converge to each other. Lastly, we plot the expected total profit
of all the RPPs in Figure 4. Clearly, as the number of RPPs
increases, competition among themselves becomes greater, and
their total expected profit decreases.

VI. CONCLUSION

We study a simple mechanism that integrates RPPs in a
price-making DA-RT two-settlement power market: each RPP
submits a firm DA power commitment, and, by participating
in the RT market, is responsible for any RT deviation from
it. It is proved that, the NE among the RPPs in the market
converges to the social optimum as the number of RPPs
increases. Thus, competition among the RPPs promotes the

social welfare. The analytical derivation of the NE offers an
elegant characterization of the market power of the RPPs. The
developed theoretical results are demonstrated by simulation
studies.
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