
Fast Security-Constrained Optimal Power Flow with
Time-Aware Critical Contingency Prediction

Reza Khalili
Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11791, USA

reza.khalili@stonybrook.edu

Yue Zhao
Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11791, USA

yue.zhao.2@stonybrook.edu

Abstract—Accelerating the solution process of preventive Se-
curity Constrained Optimal Power Flow (SCOPF) is studied. In
an iterative algorithmic framework, knowledge of the relatively
sparse critical contingencies can greatly reduce the problem size
and hence solution time. Predictors that can predict the critical
contingencies that must be included in the SCOPF formulation
are trained and integrated into an iterative algorithm. As
different types of prediction errors — false negatives and false
positives — have markedly different impact on algorithm solution
time, a novel time-aware loss function is designed and calibrated
for training predictors that directly minimizes algorithm run-
time. A multi-objective loss function that incorporates both this
time-aware loss and the accuracy promoting binary cross entropy
(BCE) loss is then designed and tuned. Comprehensive evaluation
of the time-aware predictor-assisted iterative algorithm is con-
ducted based on the IEEE 118-bus system. Effective re-balancing
of false negatives and false positives is observed, and significant
reduction of algorithm run-time is achieved with the developed
time-aware predictors.

Index Terms—SCOPF, Contingency Analysis, Run-time, Multi-
Objective Optimization, Learning-Accelerated Optimization

I. INTRODUCTION

As the global expansion of renewable energy sources and
the electrification of energy demands continue, reliability has
become an even more critical objective for power system
operations. To ensure reliable and secure operations of power
systems at all times, a key problem that needs to be solved
quickly and repeatedly is the Security Constrained Optimal
Power Flow (SCOPF) problem. Solving large-scale SCOPF is
however a computationally very heavy task. Indeed, significant
recent research efforts have been devoted to solving SCOPF
efficiently [1]. Moreover, the rapidly advancing computational
resources world-wide offer great promises for accelerating
SCOPF, both from optimization and machine learning perspec-
tives. In particular, machine learning techniques could reduce
the size of the optimization problem of SCOPF by effectively
predicting and hence eliminating unnecessary constraints. The
high level idea of this work is to incorporate such predictive
capability with efficient optimization algorithms so that overall
solution run-time can be effectively reduced.

A. Literature Review
For SCOPF, there are two types of security constraints: cor-

rective security and preventive security, both of which involve

This work is supported by the National Science Foundation under Grant
ECCS-2025152.

solving large-scale optimization problems. For corrective secu-
rity, in [2], the authors highlighted the importance of solving
these optimization problems within the required time frame
and implemented corrective post-contingency assessments. In
[3], the focus was on system re-dispatch and load shedding as
corrective measures to maintain system security. The authors
proposed a method for recalculating pre-contingency matri-
ces, which significantly reduced computation time. Another
study, also centered on corrective solutions, employed an
approximate DC-OPF to generate initial results, followed by
the application of tighter constraints to improve accuracy
[4]. In [5], sparse optimization techniques and decomposition
algorithms were used to develop a tractable model.

In the realm of preventive SCOPF, [6] applied decompo-
sition techniques and quadratic convex relaxation to solve
SCOPF by dividing the large-scale problem into more man-
ageable subproblems. Notably, leveraging the potential of
Artificial Intelligence (AI) can further reduce optimization
time. In [7], the authors proposed physics-aware fast learning
and prediction of active constraints of OPF that greatly reduced
the optimization time. [8] utilized Deep Neural Networks
(DNN) to predict the decision variables of the optimization
problem, subsequently enforcing feasibility. Moreover, the use
of different loss functions can lead to improved results by
aligning the model more closely with the required criteria.
In [9], a two-stage approach was adopted, where primal-dual
learning was employed to obtain near-optimal solutions within
milliseconds. Their loss function incorporated both opera-
tional cost and penalties for contingency constraint violations.
[10] framed the problem as constraint-satisfying training for
Deep Reinforcement Learning (DRL), where actor gradients
were approximated by solving the KKT conditions of the
Lagrangian. DNNs were also used for initialization.

However, AI-based techniques can potentially compromise
system security. Addressing this concern, [11] examined
the vulnerabilities associated with AI applications in power
systems and proposed a more secure DRL-based SCOPF
framework. In line with [8], [12] used neural networks to
predict the decision variables of the SCOPF problem and
validated the feasibility of the output. They also designed a
modified loss function based on operational cost and constraint
violations, tailored to the specific needs of the problem. In
[13], the authors integrated a neural network layer into an



iterative algorithm to predict active constraints of SCOPF.
Notably, however, existing studies have not directly focused
on optimization time as their design objective.

B. Research Gap & Contributions
Given the importance of preventive SCOPF and the need to

solve it in a timely manner, iterative algorithms have proved to
be an effective approach. Adapting AI tools that are better inte-
grated with such optimization algorithms could greatly reduce
optimization time. In this context, a learning objective directly
focusing on optimization time could be particularly advanta-
geous, which has however not been thoroughly explored in the
literature. The main contributions of this paper are as follows.
We start with an iterative algorithm enhanced with a contin-
gency screening procedure for efficiently solving SCOPF with
N-1 contingencies. We then integrate a predictor of critical
contingencies into the iterative algorithm, trained based on
a Binary Cross Entropy (BCE) loss function for maximizing
prediction accuracy. Next, we design a novel time-aware loss
function that directly approximates the overall run-time of
the predictor assisted iterative algorithm. This loss function
is then integrated with BCE to form a multi-objective loss
function. Comprehensive performance evaluation is conducted
and demonstrates that the developed time-aware predictor-
assisted iterative algorithm significantly improves the overall
algorithm run-time.

II. PROBLEM DESCRIPTION

A. Security Constrained Optimal Power Flow
We consider the preventive SCOPF problem as follows. The

objective function represents the cost of generators’ dispatch.
Three types of constraints are considered: a) the constraints re-
lated to generators’ production limits; b) the constraints related
to the “baseline” OPF without considering security measures
(i.e., contingencies); and c) the constraints related to security
measures. In this work, we consider N−1 contingencies of the
transmission lines, and DC-OPF is employed as the problem
model. As such, the mathematical formulation of an SCOPF
is as follows:

min
G,θ,{θc}

∑
g

Cg(G) (1)

s.t. 1TG = 1T d, (2)
gmin ≤ G ≤ gmax, (3)
− Fmax ≤ F ≤ Fmax, (4)
f(G, d, F, θ) = 0, (5)
− F ′

max ≤ F c ≤ F ′
max, for all c ∈ C, (6)

f c(G, d, F c, θc) = 0, for all c ∈ C. (7)

Here, Cg(G) represents the cost function of generator g, and
G denotes the power outputs of all the generators. The equality
constraint (2) ensures power balance, where d is the demand
vector. Generator limits are enforced in (3). Constraints (4) and
(6) maintain transmission line security: Fij represents power
flow on line ij under normal conditions; F cij denotes post-
contingency power flows for contingency c in a set of line
outage contingencies C; Fmax and F ′

max are the corresponding

thermal limits. (5) and (7) are the power flow equations that
relate nodal power injections, line flows, and nodal voltage
angles. We let the set of line outage contingencies C include
all the single line outages that preserve the connectivity of
the entire system. While we employ quadratic generator cost
functions in our study, the developed methods apply to general
cost functions.

B. Iterative Algorithm for Solving SCOPF

Conventionally, the SCOPF problem can be solved as a
one-shot full optimization (Eqs. (1)–(7)), incorporating all the
contingency constraints from C. Notably, the total number of
contingency constraints (6) (7) grows quadratically with the
size of the system. This could limit the practical feasibility of
this solution process especially under stringent time require-
ment.

Alternatively, if which contingency constraints are eventu-
ally active is known beforehand, one can simply include the
active constraints in the problem formulation, thereby greatly
reducing the size and solution time of the problem. In practice,
while one cannot assume the availability of such knowledge,
this indeed inspires an iterative algorithm that utilizes iterative
screenings to include only the critical constraints. Such an
algorithm is presented in Fig.1-a. Specifically, the set of
contingencies to consider, C, is initialized as an empty set.
In the first iteration, the problem is solved considering only
the baseline case Eqs. (1)-(5), i.e, without any line outage
contingencies. Based on the corresponding dispatch solution,
power flow (PF) is computed for all the N − 1 contingencies:
notably, each line outage would result in a modified network
topology, leading to a new PF solution. These PF results are
then utilized to identify any violated constraints in all the
contingencies, and the potentially “critical” contingencies are
thereby indicated by the violations and added to the set C for
the next iteration of the solution. This process is repeated until
no violations are detected any more. As will be demonstrated
later in Section IV-B, such iterative algorithms are indeed
significantly faster than solving a one-shot SCOPF with all
the N − 1 contingencies included in the constraints.

III. PROPOSED METHOD

A. Predictor-Assisted Iterative Algorithm

A key idea for accelerating the solution process of the
SCOPF problem is to obtain a predictor that can effectively
predicts the active contingency constraints of the optimal
solution. In this work, we focus on predicting the critical
contingencies among all the N − 1 contingencies: For a
contingency c, if any of the inequality constraints in (6) is
active with the optimal solution, it is a critical contingency.
Such a predictor can then be employed as the initialization of
the contingency set C in the iterative algorithm: intuitively,
an accurate predictor can thus further improve the efficiency
of the iterative algorithm significantly. This predictor-assisted
iterative algorithm is presented in Fig. 1-b.

Notably, if the predictor outputs completely cover all the
critical contingencies, meaning that there is no false negative,
the iterative algorithm will end after just one iteration. There



Fig. 1. Flowcharts of: a) iterative algorithm b) predictor-assisted algorithm.

are thus two different mechanisms by which prediction errors
could lead to solution time inefficiencies. On the one hand, if
any constraint violation is still detected after one iteration due
to false negatives, the algorithm would need to run at least one
additional iteration which would lead to significant additional
solution time. On the other hand, having false positives would
also lead to additional solution time due to the (unnecessarily)
increased size of the problem to solve. For example, one can of
course try to cover all the critical contingencies by including
a large number of them (the extreme case being including
the entire set C), but such an approach would clearly lead to
significant greater solution time per iteration.

B. Binary Cross Entropy Loss for Maximizing Accuracy
The predictor we aim to train a) takes the system’s nodal

load profile as the input, and b) outputs a binary vector
indicating each contingency as critical or not critical. We begin
with training predictors to achieve high accuracies. For this
purpose, we employ the Binary Cross Entropy (BCE) loss:

LBCE = − 1

N

N∑
i=1

[yi log(Pi) + (1− yi) log(1− Pi)] (8)

In this loss function, N represents the number of training sam-
ples, yi is the ground truth binary label, and Pi is the predicted
probability. As the predictor has multiple binary outputs (each
for one contingency), the BCE losses are averaged across all
outputs.

C. Time-aware loss for minimizing algorithm run-time
While BCE as the loss function promotes the highest pre-

diction accuracy, it assigns equal weights to false positives and
false negatives. As noted above, there are however important
nuances on how prediction errors impact solution time which
are not captured by BCE. As shown in Fig. 1-a and Fig. 1-
b, if a false negative occurs, the contingency screening step

— which detects all violated constraints and hence the false
negatives — will trigger an additional iteration. In contrast,
a false positive would also increase the optimization time
although it does not trigger an extra iteration. As such, we
will develop a predictor loss function that aims to approximate
the solution time, directly incorporating the different impact
of ground truths, false positives and false negatives on the
run-time of the predictor-assisted iterative algorithm.

Specifically, we define the loss function as the difference
between the optimization time with ground truths (i.e., perfect
predictions) and that with the predictions potentially with
errors, modeled as follows:

∆T =Tp − Tgt = [α1Np + β1 − α1Ngt − β1] + [Ts − Ts]
+ Ifn[α2(Np +Nfn) + β2 + Ts] (9)

=[α1(Np −Ngt)]
+ Ifn[α2(Np +Nfn) + β2 + Ts] (10)

Here, Tp denotes the optimization time based on the predictor
outputs, and Tgt represents the optimization time with ground
truths/perfect prediction. Np is the number of predicted critical
contingencies; Ngt is the ground truth’s number of critical
contingencies; Nfn is the number of false negatives in the
current iteration (to be included in the next iteration). The
solution time of each iteration’s SCOPF is modeled as a linear
function of the total number of positives (true and false) with
parameters α and β. Ts denotes the time of the contingency
screening step. Ifn is a binary variable which equals to 1
if there is any false negative from the prediction, triggering
another iteration. It is also convenient to express this time
difference in terms of false positives and false negatives:

∆T = [α1(Nfp −Nfn)]

+ Ifn[α2(Np +Nfn) + β2 + Ts]
(11)



In practice, however, using (11) as the training loss function
introduces numerical challenges due to the lack of differen-
tiability. Specifically, the numbers of positives, false positives,
and false negatives are counted integers. Moreover, Ifn is a
binary indicator. To address the numerical issue, we introduce
the following relaxations. First,

Np ≈
∑
i∈Cp

Pi (12)

Nfp ≈
∑
j∈Cfp

Pj (13)

Nfn ≈
∑
k∈Cfn

Pk (14)

where Cp, Cfp and Cfn are the sets of indices for positives,
false positives, and false negatives of critical contingencies.
In other words, we approximate counting binary outputs
by summing probabilities. Next, to approximate the binary
indicator function Ifn, let ygt be the binary vector indicating
the ground truth critical contingencies, and y the binary vector
of predictor outputs. The binary indicator of existence of any
false negative can then be written as

Ifn = max(Vfn) (15)

where

Vfn = ygt · (1− y) (16)

To approximate Ifn with a differentiable function, first, we let
y′ be the vector of probabilities from the predictor output as
opposed to the binary vector y, and let

Pfn = ygt · (1− y′) (17)

Next, we approximate max by a log-sum-exp function, result-
ing in the approximate run-time loss function LT :

∆T ≈ LT = [α1(
∑
j∈Cfp

Pj −
∑
k∈Cfn

Pk)]

+ (1/γ)log(
∑
i

eγPfn,i)[α2(
∑
i∈Cp

Pi +
∑
k∈Cfn

Pk) + β2 + Ts]

(18)

Notably, (18) is differentiable, allowing numerically efficient
training of the predictors.

D. Multi-objective Loss Function
Finally, we employ a multi-objective approach by com-

bining both the run-time-based loss function LT and BCE,
essentially using BCE as a strong regularization term. As
such, we aim to a) promote high prediction accuracy via
BCE and b) seek an effective balance between false positives
and false negatives via LT . To begin with, a straightforward
combination using a weighting factor λ ∈ [0, 1] is as follows:

Ltotal = λLT + (1− λ)LBCE (19)

However, we recognize the following challenge: as training
progresses, the scales of LT and LBCE may evolve differently
so that there is no single λ that can balance the two well

at all times. We thus employ the following normalization
approach to address this issue. Specifically, a moving average
is used to compute and update the average values of the
two loss functions over iterations. These averages serve as
normalization factors. Using these averages brings both loss
objectives to approximately 1, which is on the same scale.

L̄
(k+1)
T = µ · L̄(k)

T + (1− µ) · L(k+1)
T (20)

L̄
(k+1)
BCE = µ · L̄(k)

BCE + (1− µ) · L(k+1)
BCE (21)

In the above, k represents the iteration index, or more
specifically, the epoch index in the training process. L̄ denotes
the average values of the losses. µ is the momentum for
incorporating new inputs into the average value. By dividing
L by their respective average values, we have the following:

L̃T =
LT
L̄T

(22)

L̃BCE =
LBCE
L̄BCE

(23)

The final objective function is thus:

Ltotal = λL̃T + (1− λ)L̃BCE (24)

By varying λ, effective weighting of the two objectives can
then be found.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed method based
on the IEEE 118-bus test system [14]. The system comprises
99 load buses and 54 generators that supply the demand. A
total of 186 branches are considered for the N-1 contingencies.
Four different solution processes of SCOPF are evaluated
for comparison: 1) full optimization of SCOPF, 2) iterative
algorithm, 3) vanilla predictor-assisted algorithm with BCE
loss, and 4) time-aware predicted-assisted algorithm (Eq(24)).

A. Data generation and predictor architecture
To generate training samples for the predictor, 100,000 load

profiles across all buses are created. Uniform distributions are
employed: Each demand varies independently between 50%
below and 100% above its nominal value. Fig. 2 illustrates
the demand samples generated in all the scenarios for both
predictor training and testing.

Each load profile leads to a different solution for SCOPF.
The iterative algorithm as in Fig. 1-a is used to compute these
solutions. The dataset generation is performed based on two
AMD EPYC 7643 CPUs with 96 cores, of which 85 cores are
used with parallel processing. Among the 100,000 generated
scenarios, 63,520 of them resulted in feasible solutions, while
the remaining ones are in a sense too extreme and not even
feasible. Among these feasible scenarios, 43 lines among all
the 186 lines (i.e., 23% of them) appear at least once as critical
contingencies.

To understand how often these 43 lines appear as critical
contingencies, in Fig. 3, we plot the cumulative percentage of
the lines vs. rate of being critical. Specifically, a point on this
curve shows what percentage of all these 43 lines are critical
for no more than a particular rate. For example, among these



1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Bus Indices

0

1

2

3

4

5

D
em

an
d 
Va

lu
es

Min-Max Range
Mean ± Std
Mean

Fig. 2. Load profile scenarios across all the load buses.

0 20 40 60 80 100
Rate of being critical(%)

0

20

40

60

80

100

C
um

ul
at
iv
e 
Pe

rc
en

ta
ge

 o
f 
Li
ne

s 
(%

)

50% activity
80% of lines

Fig. 3. Cumulative percentage of the lines vs. rate of being critical in all
feasible scenarios.

43 lines, about 80% of them are critical for only no more
than 50% of the feasible scenarios. Importantly, we observe
that critical contingencies are relatively sparse occurrences,
offering great potentials for predictor-assisted reduction of
problem size and hence solution time.

The predictor used for predicting critical contingencies is
a fully-connected neural network with one hidden layer. The
input layer transforms input to 512 neurons, the hidden layer
transforms 512 to 256 neurons, and the output layer transforms
256 to output. Two dropout layers with 30% dropout rates are
implemented. There are 43 binary outputs: Each output takes
the value 1 if the corresponding line is predicted to be a critical
contingency, and 0 otherwise. 80% of the dataset is used for
training and 20% for testing. The Adam optimizer is adopted
with a learning rate of 0.001. 70 epochs were used to train the
model with a batch size of 256.

B. Time function estimation

To estimate the parameters (α and β) of the solution run-
time model, the iterative algorithm is used to evaluate the op-
timization times for 500 scenarios: the exact times consumed
by the screening and optimization steps are measured. The

averages over these values are employed for estimating how
much time each step of the solution process generally takes.
The linear model for the second iteration time is distinguished
from the first iteration and is estimated separately. We note
that, in the vast majority of the cases, the algorithm ends after
no more than two iterations; only 2.6% of scenarios require a
third iteration. The estimated time model parameters are shown
in Table I.

TABLE I
TIME MODEL PARAMETERS

Parameter α1 α2 β2 Ts
Estimate 0.008582 0.01106587 0.110013 0.219247

C. Tuning λ for the multi-objective loss
Using BCE as the loss function for training the predictor

results in the highest predictor accuracy. In this approach,
the predictor treats false positives and false negatives on
an equal footing as both decrease accuracy. In practice (cf.
Fig. 1-b,) however, a false negative tends to have a much
more significant negative impact than a false positive on
optimization time due to the necessity of a second iteration. On
the other hand, a false positive adds unnecessary constraints
to the problem, and hence increases optimization time. As our
ultimate objective is to minimize overall optimization time,
a carefully balanced trade-off between false negatives and
false positives is needed. While our model of solution run-
time captures the time-based objective, it is however only
approximate. As such, in the multi-objective loss (24), it is
not advisable to choose either λ = 1 (i.e., fully relying on
the approximate run-time objective) or λ = 0 (i.e., fully
relying on accuracy as the objective). As such, λ is selected
between 0 and 1. In particular, λ = 0.25 is selected based
on validation, and the corresponding progression of training
and testing losses are illustrated in Fig. 4. We observe that
the training and testing losses decreases over epochs without
overfitting, demonstrating effective learning.

0 10 20 30 40 50 60 70

Epoch

400

600

800

1000

1200

1400

1600

1800

2000

B
C

E
 L

o
s
s

(a)

0 10 20 30 40 50 60 70

Epoch

40

50

60

70

80

T
im

e
-b

a
s
e
d

 L
o
s
s

(b)

Fig. 4. The loss vs epoch curves: a) BCE loss function, b) Time-based loss
function.

D. Accuracy comparison
To illustrate the impact of combining BCE and time-based

loss functions, the confusion matrices with λ = 0 (i.e.,



Not Active Active

Predicted
(a)

Not Active

Active

A
c
tu

a
l

430,385 2,859

4,022 109,006

BCE Loss Model

Not Active Active

Predicted
(b)

Not Active

Active

A
c
tu

a
l

429,385 3,859

3,094 109,934

Time-aware Loss Model

50000

100000

150000

200000

250000

300000

350000

400000

50000

100000

150000

200000

250000

300000

350000

400000

Fig. 5. The confusion matrices: a) BCE loss, b) Multi-objective with time-
aware loss incorporated.

BCE loss only) and λ = 0.25 (i.e., multi-objective loss) are
presented in Fig. 5:

With the time-aware loss function incorporated, the number
of false negatives decreased, whereas the number of false
positives increased, demonstrating the heavier impact of false
negatives on optimization run-time that led to this trade-off.
Interestingly, the total number of false positives and false
negatives with the time-aware loss incorporated is 6,953, only
slightly higher than that with the BCE loss only (6,881).
This implies very similar prediction accuracies: 98.76% with
the BCE loss vs. 98.75% with the multi-objective loss. The
significant re-balancing of false negatives and false positives
thus demonstrates the effectiveness of incorporating time-
aware loss which strictly improves the predictor outcomes with
almost no sacrifice of accuracy.

E. Testing run-time comparison
Finally, 1,000 randomly selected scenarios are tested for

run-time evaluation of various solution algorithms. The aver-
age run-times per scenario are summarized in Table II.

TABLE II
AVERAGE RUN-TIME OF DIFFERENT METHODS

Method Full
opt.

Iterative
algorithm

Predictor
-assisted
algorithm
with BCE

Time-aware
predictor
-assisted
algorithm

Knowing
ground-truth

critical
contingencies

Run-time
(s)

1.790
(base)

0.927
(48.21%↓)

0.391
(78.15%↓)

0.356
(80.11%↓)

0.355
(80.17%↓)

We observe that, compared with the full optimization of
SCOPF, the average run-time is almost halved by the iterative
algorithm. With predictor-assisted algorithm with BCE, the
run-time is further reduced by 58%. Moreover, incorporating
time-aware loss yet again reduced the run-time by an addi-
tional 9%, indicating the importance of re-balancing false neg-
atives and false positives for run-time improvement. Finally,
we evaluate the average run-time with perfect prediction, i.e.,
knowing the ground-truth critical contingencies. We observe
that the time-aware predictor-assisted algorithm achieves a
run-time that is in fact very close to this performance bound.

V. CONCLUSION

We studied accelerating the solution process of preventive
SCOPF problems. Predictor-assisted iterative algorithms are

developed so that predictions of critical contingencies are
incorporated to reduce both the size of SCOPF and the number
of iterations of the solution process. Recognizing the markedly
different time impact of false negatives and false positives of
critical contingency predictions, a novel time-aware loss func-
tion is designed and calibrated for training critical contingency
predictors that directly minimizes overall run-time. A multi-
objective loss function that incorporates both the time-aware
loss and the binary cross entropy loss is designed and tuned so
that efficient learning is achieved. We evaluated the developed
method comprehensively based on the IEEE 118-bus system.
Compared with the full SCOPF optimization, we observed an
over 80% run-time reduction using the developed time-aware
predictor-assisted iterative algorithm. The employment of the
time-aware loss itself offers a 9% run-time reduction compared
with the standard BCE loss, and achieves an average run-time
very close to having perfect prediction.

REFERENCES

[1] Advanced Research Projects Agency-Energy, “Grid optimiza-
tion competition challenge 1: Problem formulation,” 2020,
challenge concluded February 18, 2020. [Online]. Available:
https://gocompetition.energy.gov/challenges/challenge-1

[2] A. Gholami, K. Sun, S. Zhang, and X. A. Sun, “An admm-based dis-
tributed optimization method for solving security-constrained alternating
current optimal power flow,” Operations Research, vol. 71, no. 6, pp.
2045–2060, 2023.

[3] M. Vistnes, V. V. Vadlamudi, and O. Gjerde, “A fast and scalable iterative
solution of a socio-economic security-constrained optimal power flow
with two-stage post-contingency control,” IET Generation, Transmission
& Distribution, vol. 19, no. 1, p. e70055, 2025.

[4] M. I. Alizadeh and F. Capitanescu, “A tractable linearization-based ap-
proximated solution methodology to stochastic multi-period ac security-
constrained optimal power flow,” IEEE Transactions on Power Systems,
vol. 38, no. 6, pp. 5896–5908, 2022.

[5] D. T. Phan and X. A. Sun, “Minimal impact corrective actions in
security-constrained optimal power flow via sparsity regularization,”
IEEE Trans. on Power Systems, vol. 30, no. 4, pp. 1947–1956, 2014.

[6] H. Sharadga, J. Mohammadi, C. Crozier, and K. Baker, “Optimizing
multi-time step security-constrained optimal power flow for large power
grids,” in 2024 IEEE Texas Power and Energy Conference (TPEC).
IEEE, 2024, pp. 1–6.

[7] H. Khazaei and Y. Zhao, “Physics-aware fast learning and inference
for predicting active set of DC-OPF,” in 2022 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT), 2022,
pp. 1–5.

[8] A. Velloso and P. Van Hentenryck, “Combining deep learning and
optimization for preventive security-constrained dc optimal power flow,”
IEEE Trans. on Power Systems, vol. 36, no. 4, pp. 3618–3628, 2021.

[9] S. Park and P. Van Hentenryck, “Self-supervised learning for large-
scale preventive security constrained dc optimal power flow,” IEEE
Transactions on Power Systems, 2024.

[10] Z. Yan and Y. Xu, “A hybrid data-driven method for fast solution of
security-constrained optimal power flow,” IEEE Transactions on Power
Systems, vol. 37, no. 6, pp. 4365–4374, 2022.

[11] L. Zeng, M. Sun, X. Wan, Z. Zhang, R. Deng, and Y. Xu, “Physics-
constrained vulnerability assessment of deep reinforcement learning-
based SCOPF,” IEEE Transactions on Power Systems, vol. 38, no. 3,
pp. 2690–2704, 2022.

[12] B. N. Giraud, A. Rajaei, and J. L. Cremer, “Constraint-driven deep
learning for n-k security constrained optimal power flow,” Electric Power
Systems Research, vol. 235, p. 110692, 2024.

[13] S. Liu, Y. Guo, W. Tang, H. Sun, W. Huang, and J. Hou, “Varying
condition SCOPF based on deep learning and knowledge graph,” IEEE
Transactions on Power Systems, vol. 38, no. 4, pp. 3189–3200, 2022.

[14] MATPOWER Development Team, “IEEE 118-bus test case,”
https://github.com/MATPOWER/matpower/blob/master/data/case118.m,
2024, mATPOWER software package.


