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Abstract—Preventing voltage collapse is critical for the re-
liable operation of the power grid. In this paper, the voltage
stability margin, which is defined as the distance from a given
power profile to the boundary of the stability region, is efficiently
estimated using a data-driven machine learning approach. The
key idea is to train a neural network classifier to learn the
boundary of the potentially nonconvex stability region, and
exploit the resulting score metric as the regressor for stability
margin prediction. No particular loading direction is assumed,
but rather the minimum distance to the boundary along all pos-
sible directions is captured. The training samples are generated
from both continuation and semidefinite relaxation power flow
methods. The performance and computational advantage of the
proposed approach are verified by numerical experiments.

I. INTRODUCTION

The resilience of the power grid to variations in genera-
tion, load, and grid topology is critical for power quality as
well as national economy and security. Volatile renewable
energy resources are increasingly integrated to the grid,
pushing the power grid operation to its physical capacity. In
this context, maintaining grid stability is becoming an issue
of utmost importance with prominent challenges.

Power delivery in the grid is governed by a set of nonlinear
power flow equations. As the grid operating point is driven
nearer to the boundary of the feasible region of the power
flow constraints, bus voltages start to fall gradually until they
experience a sudden and steep drop—a condition referred to
as voltage collapse. It is a manifestation of grid instability and
typically occurs when the power system is heavily loaded with
insufficient supply of reactive power [1]. Voltage collapse has
often been attributed as a contributing factor to cascading
failures and blackouts [2].

Voltage collapse occurs at the point of saddle-node bifur-
cation of the dynamic power system equations, which can be
characterized as the steady-state power flow Jacobian matrix
being singular [3], [4]. The distance between an operating
point and the bifurcation point represents the voltage stability
margin. To obtain a critical point, a simple approach would
be to utilize the ordinary power flow solver and increase the
loading along a certain direction until the solution diverges.
However, this still might not reveal the exact loadability limit
due to the convergence problem near a singular Jacobian.

The continuation method mitigates this issue by following
a predetermined loading direction and iteratively predicting
the next solution using the tangent to the solution path [3].
The point-of-collapse (PoC) method is another computation-
ally feasible method [5]. Both the PoC and continuation
methods were employed to find the voltage collapse points
in large AC/DC systems in [4]. However, these methods
require a loading direction to be specified and the loadability
margin is computed as the scalar loading factor in the loading
direction. Based on the observation that the dynamics of state
variables close to saddle-node bifurcation is determined by a
single degree of freedom, a novel indicator of voltage collapse
was obtained in [6]. A method for estimating the voltage
stability margin using real-time PMU measurements was
proposed employing a cubic spline extrapolation technique
in [7].

Recently, theoretical insights into the voltage stability
margin were gained by taking into account the network
topology and reactive power demands, where a close-form
estimate for the largest nodal voltage deviation was de-
rived [8]. However, the network was assumed to be lossless
and decoupled reactive power flow equations were used. As a
consequence, it was observed that the metric does not predict
well the actual margin when the reactive power demands were
low.

In [9], an artificial neural network was employed to predict
the loading margin. The neural network was trained using the
loading direction as the input and the distance from the base
loading to the boundary as the output. Based on this neural
network, the loadability margin from an arbitrary operating
point along an arbitrary loading direction could be estimated.
However, it was tacitly assumed that the feasibility region
was convex, which can be violated especially as the size of
the grid increases [10]. A similar technique was employed
to solve a security-boundary constrained optimal power flow
in [11].

Mitigating the issue of the non-convex feasibility region,
a sufficient condition for insolvability of the AC power flow
was obtained through convex relaxation techniques in [10],
[12]. The formulated optimization problem can provide the
distance to the outer-boundary of the feasibility region in a
given loading direction, where the outer-boundary is due to
the convexified set that contains the true nonconvex feasibility



region of nonlinear power flow equations.

A major limitation of the many existing works on ob-
taining voltage stability margin is that a particular loading
direction needs to be specified along which the margin is
computed. However, it is of great interest to determine which
direction is the most vulnerable one among all possible
directions, and what the stability margin is along this worse-
case direction.

In this paper, we aim to compute the voltage stability
margin that captures the minimum distance from a given
operating point to the stability boundary along all possible
directions. Our method trains a neural network as a classifier
that characterizes the boundary of the potentially nonconvex
stability region. Then, based on a score computed inside
the neural network, the minimum distance to the stability
boundary in the most vulnerable loading direction is predicted
using linear regression, without requiring a specific loading
direction. Since existing methods would need to perform
exhaustive search over all possible loading directions to
determine the most vulnerable one, our method has an over
105x speed advantage in approximately computing voltage
stability margins.

The rest of the paper is organized as follows. The problem
investigated is stated in Sec. II. A brief review on computing
the static voltage stability margin is presented in Sec. III.
The neural network architecture and its training are discussed
in Sec. IV. Numerical test results based on realistic grid
topologies are presented in Sec. V. Conclusions are discussed
in Sec. VI.

II. PROBLEM STATEMENT AND OVERVIEW OF
APPROACH

We consider a power network whose parameters are
arbitrarily given. In a network, a profile s of power injections
(real and reactive) at all the buses either induces a voltage
collapse, or not. We define the stability region of the given
network as the set of all power profiles that do not induce a
voltage collapse, denoted by S∗. We denote the boundary
of S∗ by B(S∗). We also interchangeably term s as an
“operating point” of the system.

A power profile s belongs to S∗ if the corresponding
power flow equations can be solved. More importantly, we
would like to know how far s is from the boundary of
the stability region B(S∗). We term this distance to the
boundary as the voltage stability margin of an operating point
s, denoted by dist (s,B(S∗)) , mins′∈B(S∗) ‖s−s′‖, where
the norm can be chosen according to practical interests. We
note that, the voltage stability margin does not specify any
direction along which a distance is computed, but considers
all possible directions. As a result, the voltage stability margin
provides the critical information of whether an operating point
s is safe or stable with a sufficient margin.

It is worth noting that a voltage stability margin
dist (s,B(S∗)) is computationally very challenging to obtain,
primarily for two reasons: a) the boundary B(S∗) does not
admit a computationally efficient representation, let alone any
closed-form expression; and b) the problem is typically a

high-dimensional one. We also note that S∗ is in general not
convex. As a result, it is very costly to compute, or accurately
approximate, the voltage stability margin dist (s,B(S∗)) us-
ing existing methods.

In this paper, we investigate efficient approximate compu-
tation of voltage stability margin dist (s,B(S∗)). The main
idea is to leverage a sufficient number of operating points
efficiently sampled inside and outside S∗ to learn a predictor
d̂(s) of the voltage stability margin. In particular, the pro-
posed method proceeds as follows:

1) Sample operating points inside and outside the sta-
bility boundary B(S∗).

2) Based on the samples, learn a binary classifier ĥ(s)
for classifying whether an operating point is stable
or not.

3) Based on the learned classifier ĥ(s), predict not only
the label, but also the voltage stability margin of any
operating point s, d̂(s).

Next, we first provide the details of computing the stability
region boundary in Sec. III, and then of the learning and
prediction steps in Sec. IV. It is worth highlighting that, in
the proposed approach, there are only minimal instances of
the costly computation of the actual voltage stability margin
dist (s,B(S∗)), as will be shown in Sec. IV.

III. COMPUTATION OF VOLTAGE STABILITY REGION
BOUNDARY

Here we briefly review two methods for computing the
boundary points of the voltage stability region, which will
be used in Sec. V-A to generate samples of the operating
points inside and outside S∗. Let PG,i, PL,i, PT,i represent
the generated real power, the real load, and the injected real
power, respectively, at bus i. Likewise, let QG,i, QL,i and
QT,i be the reactive power counterparts. The AC power flow
equations are given by

PT,i −
n∑

j=1

ViVjyij cos(δi − δj − νij) = 0, ∀i (1)

QT,i −
n∑

j=1

ViVjyij sin(δi − δj − νij) = 0, ∀i (2)

where n is the number of buses in the grid, Vi∠δi is the
voltage at bus i, yij∠νij is the (i, j)-entry of the network
admittance matrix Y, and

PT,i = PG,i − PL,i (3)
QT,i = QG,i −QL,i (4)

for all i. Set S∗ can be defined as {s =
({PL,i}, {QL,i}, {PG,i}) : (1)–(4) are satisfied}. To
simulate the changes in the power profile, a loading
factor η ≥ 0 is introduced to form a test power profile
s(η) := ({PL,i}, {QL,i}, {PG,i}) with

PL,i = P base
L,i + η(P targ

L,i − P
base
L,i ) (5)

QL,i = Qbase
L,i + η(Qtarg

L,i −Q
base
L,i ) (6)

PG,i = P base
G,i + η(P targ

G,i − P
base
G,i ) (7)
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Fig. 1. Power profiles in a nonconvex stability region

where the superscripts base and targ represent the base and
the target profiles, respectively. The goal is to find the critical
η∗ such that s(η∗) lies on B(S∗).

The continuation power flow method yields a path of
power flow solutions starting from a base power profile and
gradually increasing η until the stability limit is reached [3].
A predictor-corrector scheme is employed, where the next
point in the path is predicted using the tangent of the power
flow surface f({Vi}, {δi}, η) = 0. The additional parameter
η allows to avoid the singularity in the (augmented) Jacobian
across the solution path. The predicted point is then corrected
via the Newton-Raphson method. At the critical point, the tan-
gent component corresponding to η is zero. Thus, critical ηc
can be determined by checking whether η starts to decrease.

The entire solution path from the continuation power flow
is inside the feasible region of the power flow equations.
However, since the feasible region is not necessarily convex,
the obtained boundary point does not necessarily correspond
to the maximum η that can be achieved. The semidefinite
programming (SDP) relaxation approach in [12] yields an
upper-bound on η by searching over a convex superset of
the true feasibility region. One possible approach is to solve
the convex dual of

max η subject to (1)–(7). (8)

Due to the potentially non-zero duality gap, it is not guar-
anteed that the profile s(ηs) with solution ηs to (8) is in
the feasible region. On the other hand, s(ηs + ε) with small
ε > 0 is guaranteed to be outside the feasible region. Fig. 1
shows pictorially the base and target power profiles and
the corresponding boundary points for a nonconvex stability
region.

These methods yield the distance from an operating point
s to the boundary in a given direction by ‖sbase − s(η∗)‖.
In order to compute the margin dist (s,B(S∗)), one needs
to sample a sufficient number of directions and choose the
minimum distance, which is computationally very intensive.

IV. LEARNING STABILITY BOUNDARY AND PREDICTING
STABILITY MARGIN

In this section, we present methods to learn the stability
boundary B(S∗) and approximate voltage stability margin
dist (s,B(S∗)), exploiting sampled operating points gener-
ated inside and outside the stability region S∗ (cf. Sec. III).
For each sample of operating point s, there are two numbers
we are interested in: a) a binary label of whether it is stable
or not, i.e., I(s ∈ S∗); and b) a real number corresponding
to its voltage stability margin dist (s,B(S∗)).

As our ultimate goal is to predict the voltage stability
margin for any given operating point s, ideally, one may
want to train an “end-to-end” predictor d̂(s) based on a
sufficient number of sample pairs (s,dist (s,B(S∗))). How-
ever, for an operating point s, computing dist (s,B(S∗)) is
computationally very costly. In contrast, computing just the
binary label I(s ∈ S∗) is orders of magnitude faster (cf.
Sec. III). Due to the large number of samples needed for
accurate approximation in the high-dimensional space of s,
it is practically prohibitive to learn end-to-end with samples
of (s,dist (s,B(S∗))). Rather, we will work with samples of
(s, I(s ∈ S∗)), which can be much more efficiently generated.
Moreover, using methods described in Sec. III, operating
points very close to the stability boundary B(S∗) are gener-
ated, enabling us to learn accurate approximation of B(S∗).

The main question is, with samples of only point-label
pairs (s, I(s ∈ S∗)), how do we build a predictor of the
margin dist (s,B(S∗)), which is missing in these samples?
Our approach on addressing this problem is inspired by
support vector machine (SVM), in which hinge loss is used
in predicting labels.

A. Neural Networks with Hinge Loss

With a sufficient number of samples of (s, I(s ∈ S∗)),
we train multi-layer neural networks to learn classifiers that
capture the highly nonlinear boundary B(S∗) in the high
dimensional space of s. At the output layer, we employ the
hinge loss

L = max (−xy + 1, 0) (9)

where x is the score computed from the output layer, and
y ∈ {−1, 1} is the binary label. For more details on the score
and the hinge loss, the readers are referred to [13].

With a trained classifier, instead of the output label,
the critical information we will use is the score computed
before thresholding. In particular, we employ the score as
an indicator for the voltage stability margin. The intuition is
similar to SVM, where there is a clear relation between the
score of a point and the distance of it to the decision boundary.

B. Regression on Voltage Stability Margins

Now, with the scores computed, we will further build a
predictor to compute an approximation of the voltage stability
margin as a function of the score. As opposed to learning
in high dimensional spaces in the previous step, this score-
margin predictor is only one-dimensional. As a result, to fit
such a predictor, it is sufficient to generate a much smaller set
of point-margin samples (s,dist (s,B(S∗))), and perform a
regression from the scores of s to the margins dist (s,B(S∗)).

With the learned predictor from score to margin, and the
previously trained neural networks that produce scores for
points, we obtain end-to-end predictors from operating point
to margin, d̂(s). We note that, the proposed method leverages
the efficient sampling of binary stability labels of operating
points to generate a large set of samples of labels. It only
resorts to the costly sampling of margins in the last step of
one-dimensional regression, where only a small set of samples



of margins are generated. Accordingly, overall computational
efficiency is achieved. A similar idea was used in [14].

V. NUMERICAL EXPERIMENTS

A. Sample Generation for Learning the Stability Boundary

The samples with which to train the neural network
classifier were generated using the 39-bus New England case
included in the MATPOWER package [15]. A random power
profile vector s, which includes the real and reactive powers
for the loads and the real powers for the generators across
the network, was first generated. To do this, we sampled
uniformly the power factor for each load bus i in the interval
[0.4, 1]. Then the reactive powers were adjusted to yield the
sampled power factors. The lagging (or leading) power factors
were left lagging (or leading) after the adjustment. The load
buses with real or reactive power demands equal to 0 were
not changed.

Based on the sampled power profile, two boundary points
were then computed (with the base profile in (5)–(7) set to
zero). One was computed using the continuation power flow
method and the other using the SDP relaxation-based power
flow. For the continuation power flow method, the critical
ηc that rendered ηcs on the boundary of the feasible region
was computed. Then, the tuple (ηcs, 1) was recorded as a
training sample, where label 1 signifies that the profile ηcs is
inside the feasible region. Then, the SDP power flow was
used to calculate the critical ηs that rendered ηss on the
boundary of the insolvability set. Then, the tuple (ηss, 0)
was added to the training set, where label 0 signifies that
the profile ηss is outside the feasible region. This way,
we generated 10, 000 feasible boundary points and another
10, 000 infeasible boundary points.

B. Sample Generation for Learning the Distance to Boundary

In order to compute the minimum distance from an
operating point to the stability boundary, a feasible power
profile was picked from the dataset already generated in
Sec. V-A. Then, a profile s1 in the interior of the stability
region was obtained by shrinking the profile by a random
amount. Another feasible power profile s2 was similarly
obtained. Then, the continuation power flow method was
used to obtain a boundary point s1 + η(s2 − s1). That is, a
boundary point was computed starting from s1 and searching
the boundary in the direction of (s2 − s1). For an s1, we
performed this search Ns times (each with a different s2)
with Ns = 1, 200, yielding {ηn}n=1,2,...,Ns

. Then, profile s1
and the minimum distance ‖ηn∗(s2 − s1)‖ were recorded,
where n∗ = argminn ηn. In total, 1, 000 data points were
generated in this way.

C. Learning Stability Boundary

Based on the 10K points of (s, I(s ∈ S∗)) inside the
stability region, and the 10K points outside, we train a neural
network with one hidden layer for a binary classifier. We
choose the number of neurons of the hidden layer to be 256,
and we use hinge loss at the output layer. l2 regularization
is also used. Among the 10K data, 8K is used for training,
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Fig. 2. Stability margin vs score.

1K for validation, and 1K for testing. The trained neural
network achieves an testing classification accuracy of 99.9%.
As a result, the decision boundary of the trained classifier very
accurately approximates the stability region boundary B(S∗).

D. Predicting Stability Margin

With the trained binary classifier, we use the scores
computed at the output layer (cf. Sec. IV-A) to fit a predictor
of the voltage stability margin dist (s,B(S∗)). Using the 1K
points of (s,dist (s,B(S∗))), we plot a scatter plot of score-
margin pairs in Fig. 2. A clear positive correlation is observed.
We then fit a simple linear function αx + β based on the
1K points, and the fitted function is plotted in Fig. 2. The
fitted linear function achieves an R-squared measure of 0.71,
indicating reasonably good performance.

Finally, we highlight a key advantage of the proposed
method — its speed. With the trained predictor d̂(s), to
compute the approximate voltage stability margin takes under
1ms on a laptop computer with 2.8 GHz Intel Core i5 with
8 GB memory. In contrast, computing the margin using the
method described in Sec. V-B takes about 240 seconds. Thus,
the proposed method achieves a remarkable over 105x speed
advantage in approximately computing the stability margin.

VI. CONCLUSIONS

A computationally efficient learning-based method to es-
timate the voltage stability margin for an arbitrary operating
point was developed without restricting to a particular loading
direction. A set of operating points that are inside and outside
the feasibility region of AC power flow equations, and yet are
close to the stability boundary, were obtained using continu-
ation power flow and SDP power flow methods, respectively.
Based on these generated operating points, a neural network
classifier with a hinge loss at the output was trained to learn
the boundary of the potentially nonconvex voltage stability
region. The resulting score metric obtained at the output layer
of the neural network before thresholding was shown to be an
excellent indicator of the voltage stability margin, and used to
train an end-to-end stability margin estimator for an arbitrary
operating point. Some 105-fold computation speed up was
observed using the proposed approach. As a future work,
we will explore ways to characterize the vulnerable loading
directions as well corresponding to the predicted margin.
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