
LEARNING TO INFER VOLTAGE STABILITY MARGIN USING TRANSFER LEARNING

Jiaming Li∗, Yue Zhao∗, Young-hwan Lee† and Seung-Jun Kim†

∗Department of ECE, Stony Brook University, Stony Brook, NY 11794
†Department of CSEE, University of Maryland, Baltimore County, Baltimore, MD 21250

Emails: jiaming.li@stonybrook.edu, yue.zhao.2@stonybrook.edu, lee43@umbc.edu, sjkim@umbc.edu

ABSTRACT

Preventing voltage collapse is critical for reliable operation
of power systems. A challenging problem is that the voltage
stability margin, i.e., the distance from a given power profile
to the voltage stability boundary, is very computationally in-
tensive to obtain. A novel machine learning based approach
for real-time inference of voltage stability margin is devel-
oped, only needing a very small number of offline-computed
voltage stability margin data. An accurate margin predictor
is trained by first training a binary stability classifier and
then transferring this pre-trained model to fine-tune on the
small data set of margins. Numerical simulations demon-
strate that the proposed method significantly outperforms
Jacobian-based voltage stability margin estimation with even
faster real-time computation.

1. INTRODUCTION

Power system is a critical infrastructure that supports all sec-
tors of our society. The reliability of power system opera-
tion is thus of paramount importance. Voltage collapse has
been one of the major causes for large-scale blackouts [1].
With renewable energies increasingly integrated into power
systems, their volatilities need to be handled in system opera-
tions, pushing the system even closer to its physical capacity.
As a result, determining the system stability margin in real
time is greatly valuable for system operators to maintain situ-
ational awareness of the system and a safe operating margin.

1.1. Related Work and Challenges

Computing the power system voltage stability margin amounts
to finding the distance from the current operating point to
the boundary of the stability region. There have been con-
siderable efforts in developing methods for estimating the
voltage stability margin. A major limitation of the existing
approaches, however, is that they are primarily for exploring
the voltage stability limit along a specific loading direc-
tion. A classic tool is the continuation power flow (CPF)
method [2], which checks voltage stability from an operating
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point along a given loading direction until it reaches voltage
instability. An energy-function-based method has been pro-
posed in [3]. Another method is point-of-collapse (PoC) [4].
PoC and CPF methods have also been jointly used to find
the voltage collapse point in large AC/DC systems in [5].
Neural networks (NNs) are employed to predict the loading
margin in [6], and for solving security-boundary constrained
optimal power flow problem in [7]. A hybrid neural network
that contains a Kohonen network and a multi-layered neural
network is proposed in [8].

As mentioned above, the main drawback of these methods
is that they only address estimating voltage stability margin
along a particular loading direction. However, finding the true
distance of an operating point to the boundary of the stability
region requires identifying the “worst-case” loading direction
along which the current operating point is the closest to volt-
age instability. In other words, the voltage stability margin
is the distance from the operating point to the voltage insta-
bility region (i.e., the complement of the voltage stability re-
gion). Finding this worst-case direction is unfortunately very
computational challenging due to a number of reasons. First,
the voltage stability/instability region is defined with nonlin-
ear AC power flow equations. The voltage instability region
is not only non-convex, but also does not have an efficient
way of characterization. Thus, to find the worst-case loading
direction, one needs to resort to sampling a very large num-
ber of directions, and testing along each direction with, e.g.,
the CPF method. The heavy computational intensity of find-
ing the worst-case loading direction is further compounded by
the fact that power systems often have very high dimensional
voltage stability region. As such, it is impractical to run, in
real time, CPF along a large number of sampled directions to
obtain a satisfactory estimate of the voltage stability margin.

Sidestepping the problem of finding the worst-case load-
ing direction, another approach is to approximate the voltage
stability margin using easily computable metrics, notably the
smallest singular value (SSV) of the Jacobian matrix [9, 10],
computed from power flow algorithms. Such metrics, how-
ever, are only approximate, and we will show that signifi-
cantly more accurate margin estimates can be obtained with
our method to be proposed.



1.2. Learning-to-Infer with Transfer Learning

In this work, we develop a machine learning based approach
for fast inference of voltage stability margin. In particu-
lar, a “Learning-to-Infer” approach is employed [11]: Given
the power system model, offline computation are performed
which include a) generating samples of stable and unstable
operating points, and b) learning a predictor from these sim-
ulated samples. Then, the trained predictor will be employed
for online inference of voltage stability margin. Two key
advantages of this method are that, a) as offline computation
is much less time and resource constrained, intensive compu-
tation can be afforded to learn the complicated mapping from
operating points to voltage stability margins, and b) using
the trained predictors for margin inference is computationally
very fast, and can easily satisfy stringent real-time application
constraints. In particular, predictors based on neural networks
are employed in the current work.

However, granted that offline training can afford intensive
computation, a fundamental difficulty arises that makes even
offline training of a voltage stability margin predictor very
challenging: the lack of labels. As noted above, even for just
one operating point, it is very computationally intensive to ob-
tain an accurate approximation of its voltage stability margin.
Effective training, however, typically requires a very large
number of samples of operating points with their voltage sta-
bility margins computed as labels. It is impractical, even in
an offline fashion, to generate a sufficiently large labeled data
set. To address this critical challenge, the key idea we exploit
is one of transfer learning. In particular, while it is difficult
to generate the margin label for an operating point, it is very
computationally efficient to evaluate if the operating point is
stable or not. Accordingly, we generate two data sets: a large
set of operating points with easily computed binary labels of
stable or not, and a small set of operating points of intensively
computed (approximate) margin labels. With these, we first
train a binary classifier based on the large data set, and then
transfer the learned hidden layer of the neural network for
fine tuning based on the small data set. We will demonstrate
that the margin predictor trained with such two-step transfer
learning significantly outperforms existing benchmarks based
on Jacobians.

2. PROBLEM FORMULATION

With given parameters of a power system, a power profile s,
i.e., the real and reactive power injections Pk and Qk of all
the buses k1, can either induce a voltage collapse or not. A
voltage collapse means that, given s, the following AC power
flow equations do not admit a feasible voltage solution [12]:
∀k = 1, 2, ..., N,

1More generally, one can consider a subset of buses of interests, which
can also include PV buses in addition to PQ buses.

Pk = Vk

N∑
n=1

YknVncos(δk − δn − θkn), (1)

Qk = Vk

N∑
n=1

YknVnsin(δk − δn − θkn), (2)

where
[
Ykne

jθkn
]

is the complex bus admittance matrix. In
this case, we call this power profile s unstable. For a power
system, its voltage stability region is defined to be the set of
all power profiles that do not induce voltage collapse. We
denote the stability region of a given power network by S,
and its complement, i.e., the voltage instability region, by Sc.

The central question we seek to address is that, for an op-
erating point s, what is the minimum power injection pertur-
bation that, if applied, would lead to a voltage collapse? In
other words, what is the distance of s to the voltage instabil-
ity region Sc? Knowing this distance is immensely helpful for
system operators to assess the current system reliability sta-
tus, and take preventive actions for avoiding voltage collapse.
Formally, we would like to solve for

dist (s,Sc) , min
s′∈Sc

‖s− s′‖2. (3)

However, from the AC power flow equations (1) and (2), nei-
ther is the instability region Sc convex, nor does it have a
efficient (let alone closed form) characterization. As such, to
solve (3), one needs to sample a large number of directions
(a.k.a. loading directions), and search along each of them
starting from s by running CPF [2]. Clearly, the more di-
rections are searched, the better accuracy would be obtained
in approximately computing dist (s,Sc). However, search-
ing, e.g., 1000 loading directions for the IEEE 118-bus sys-
tem would take around 4 minutes for a computer with 3.6GHz
Intel Xeon CPU and 32GB RAM. For medium to large scale
power systems, s can easily have hundreds to thousands of
dimensions, and it would take a rather long time for even ap-
proximately computing dist (s,Sc) for one operating point.

3. OVERVIEW OF OUR APPROACH

Our goal is to not incur the computational cost of searching
many directions and running CPF, and yet achieve real-time
computation of equally accurate estimates of voltage stability
margin. The first idea we employ is to exploit offline compu-
tation to train margin predictors for online margin inference,
in a spirit similar to the “Learning-to-Infer” method proposed
in [11, 13]. In particular, given the power system, the offline
computation consists of a) simulating a data set of operating
points, ideally with their “labels”, i.e., voltage stability mar-
gins, and b) training a predictor based on the simulated data
set for future online margin inference.

However, one key challenge arises: As discussed in Sec-
tion 2, computing the label accurately even for just one simu-
lated operating point would consume a considerable time. As



such, to construct a relatively large data set, even to be done
offline, is not practical, and yet is crucial for effective training
especially for high dimensional inference as needed in power
systems of reasonable sizes. This difficulty practically lim-
its our ability to use direct supervised learning for training a
margin predictor, simply because it is too time consuming to
generate a sufficiently large labeled data set.

To overcome this challenge, the key idea stems from ex-
ploiting the following fact: For an operating point, while com-
puting its voltage stability margin by searching is very time
consuming (e.g., minutes), verifying whether it is stable or
not, nonetheless, is very fast (e.g., milliseconds). Thus, within
similar time limits, we can generate a data set of [operating
point, binary stability label] with a size many orders of mag-
nitude larger than a data set of [operating point, voltage sta-
bility margin label]. As such, while it is infeasible to gener-
ate a margin-labeled data set sufficiently large to capture the
high dimensional boundary of the voltage stability region S,
it is feasible to generate a sufficiently large binary stability-
labeled data set that does so. The problem is, however, train-
ing on a data set with only the binary stability labels does not
offer us a predictor that outputs stability margins.

To overcome this challenge, our key step forward is to use
transfer learning to jointly exploit both the information em-
bedded in a large binary stability-labeled data set and that in a
small margin-labeled data set, with the end goal of obtaining
an accurate voltage stability margin predictor. In particular,
we a) train a neural network (NN) based binary classifier from
a large binary stability-labeled data set, b) take the trained hid-
den layer of the NN as a feature extractor, with the hope that
it implicitly captures sufficient information of the boundary
of S, and c) add an additional layer of NN to fine tune based
on only a small margin-labeled data set. In a sense, we trans-
fer the knowledge learned in the binary classifier in order to
make it tractable to learn a margin predictor based on only a
small data set with stability margin labels.

4. DESCRIPTION OF DATA SETS AND LEARNING
METHOD

4.1. Data Set Generation

To construct a binary stability-labeled data set, we seek to find
a large number of pairs of stable and unstable operating points
(si, so) near the boundary of S. We work with the IEEE 118-
bus system, and use MATPOWER [14] to find such boundary
sample pairs (si, so) by running CPF starting from the ori-
gin along different directions toward different target points.
To generate the target points, we sample the power factor for
each bus with uniform distribution U [0.4, 1]. We record la-
beled data pairs as (si, 1) and (so, 0), where 1 indicates volt-
age stability and 0 indicates instability. We generate a total of
200K data points.

To construct a stability margin-labeled data set, for any

Fig. 1. Finding the margin distance

two feasible operating points s1 and s2 generated above, we
shrink them by some random factors. We then apply the CPF
algorithm with a starting point s1, searching along the direc-
tion of s2 − s1 to find the distance to Sc along this particu-
lar direction. For each randomly picked s1, we search along
7, 000 directions, each time with a different randomly picked
s2, and pick the minimum distance (among 7, 000 ones) as
the approximate margin for this s1. We repeat this procedure
for 1, 000 different s1 and generate 1K data points.

4.2. Training a Binary Stability Classifier

Based on the 200K data set of [operating point s, binary sta-
bility label 0/1], we train a neural network classifier ĥ(s)
with one hidden layer and ReLU activation [15] using Ten-
sorflow [16]. Hinge loss is applied at the output layer [17].

For weight initialization, we employ the strategy as in
[18]. We use a stochastic gradient descent (SGD) optimizer
with momentum and Nesterov acceleration. A mini-batch
size of 200 is employed. The learning rate is 10−5 and the
momentum is 0.9. l2 regularization is applied to the hidden
layer, with a factor of 6.0.

4.3. Training a Voltage Stability Margin Predictor using
Transfer Learning

Based on the only 1K data set of [operating point s, stability
margin dist (s,Sc)], we first import the weights of the hidden
layer from the pre-trained binary classifier ĥ(s) as a feature
extractor, and then add another hidden layer for regression
on the 1K margin-labeled data set to train an overall margin
predictor d̂(s). Mean squared error (MSE) is employed as the
loss function. In the SGD optimizer, the learning rate is set to
10−6 and the momentum is 0.9. During training, we do not
alter the weights of the first hidden layer transferred from the
binary classifier, but only fine tune the second hidden layer
and the output layer.



Fig. 2. Scatter plot from using the proposed method.

Fig. 3. Scatter plot from using Jacobian’ SSVs.

5. NUMERICAL EXPERIMENTS

5.1. Benchmark Method using the Jacobian

As a benchmark method, we employ a widely used voltage
stability margin approximator — the smallest singular value
(SSV) of the Jacobian matrix from running power flow al-
gorithms [9, 10]. In particular, we use the Newton-Raphson
method to solve the power flow equations (1) and (2). As the
iterations converge, the SSV of the Jacobian matrix is com-
puted. The SSV provides us a measure of how close the Ja-
cobian is to singularity, implying voltage instability. We eval-
uate the SSVs as the predictors to fit the 1K margin-labeled
data set. The resulting MSE is 15, 876.

5.2. The Proposed Method with Transfer Learning

In evaluating our method, for the 200K binary stability la-
beled data points, we use 160K data to train, and 40K for
testing. We have 64 neurons in the hidden layer for the clas-
sifier ĥ(s). The data are normalized, with per-bus mean sub-
tracted and per-bus standard deviation divided. The trained
classifier ĥ(s) achieves an testing accuracy of 0.98. From
this, we see that the classifier’s decision boundary accurately
approximates the boundary of the voltage stability region.

Next, we transfer the hidden layer of the trained classi-
fier ĥ(s) to learn a stability margin predictor d̂(s) based on
the 1K margin-labeled data set: 800 data are for training, and
200 for testing. We use 256 neurons for the newly added layer
in the predictor d̂(s). The trained predictor d̂(s) achieves a
testing MSE of 1, 624. A scatter plot is shown in Fig. 2. In
comparison, a scatter plot with the benchmark method using

Table 1. MSEs on the Testing Set

Method
Jacobian’s

SSV
Direct

Learning
Transfer
Learning

Testing MSE 15,876 4,817 1,624

Jacobian’s SSV is shown in Fig. 3. It is clear both from the
MSEs and the scatter plots that the proposed method signifi-
cantly outperforms the benchmark using Jacobian’s SSV.

To further validate whether transfer learning is the key
to the success that we observed, we also perform direct su-
pervised learning on the 1K margin-labeled data set, without
transferring from a pre-trained binary classifier. The best per-
formance we can achieve with this “direct learning” method
is a testing MSE of 4, 817. This is achieved by training a NN
with one hidden layer of 512 neurons. Interestingly, it already
outperforms the benchmark method based on Jacobian’s SSV.
However, using transfer learning further improves the perfor-
mance significantly. In summary, the performance compar-
ison of the benchmark (Jacobian’s SSV), the direct learning
and the transfer learning methods are compared in Table 1.

In addition to its accuracy, the learned predictor d̂(s) is
computationally very fast when deployed for real-time infer-
ence. In particular, a forward pass of the NN (margin pre-
diction for one operating point) takes only 2.5µs on a com-
puter with a 3.6GHz Intel Xeon CPU and a 32GB RAM. In
contrast, searching 7, 000 loading directions using CPF takes
over 25 minutes for a power profile on the same computer. As
such, our proposed method achieves about 7 orders of magni-
tude speed-up with only very small loss of accuracy.

6. CONCLUSIONS

We have developed a learning-based method for fast infer-
ence of voltage stability margin in real time. A Learning-to-
Infer framework is employed to exploit offline power system
model-based simulation and data-driven training. A transfer
learning scheme is developed to overcome the fundamental
challenge of lack of margin labels due to their extremely high
computation cost. Specifically, a large data set with easily
computable binary stability labels is generated, and used to
train a binary classifier that implicitly capture the voltage sta-
bility boundary. Next, a small data set with intensively com-
puted stability margin labels is generated. With the hidden
layer pre-trained from the binary classifier transferred as a
feature extractor, fine tuning for a margin predictor is then
performed based only on the small data set. The developed
method is demonstrated to significantly outperform the state-
of-the-art benchmark using the Jacobian’s singular values.



7. REFERENCES

[1] G. Andersson et al., “Causes of the 2003 major grid
blackouts in North America and Europe, and recom-
mended means to improve system dynamic perfor-
mance,” IEEE Transactions on Power Systems, vol. 20,
no. 4, pp. 1922–1928, 2005.

[2] V. Ajjarapu and C. Christy, “The continuation power
flow: A tool for steady state voltage stability analysis,”
IEEE Transactions on Power Systems, vol. 7, pp. 416–
423, 1992.

[3] R. P. Klump and T. J. Overbye, “Assessment of transmis-
sion system loadability,” IEEE Transactions on Power
Systems, vol. 12, no. 1, pp. 416–423, 1997.

[4] T. Van Cutsem, “A method to compute reactive power
margins with respect to voltage collapse,” IEEE Trans-
actions on Power Systems, vol. 6, no. 1, pp. 145–156,
1991.

[5] C. A. Canizares and F. L. Alvarado, “Point of collapse
and continuation methods for large AC/DC systems,”
IEEE Transactions on Power Systems, vol. 8, no. 1, pp.
1–8, 1993.
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Esquivel, A. Pizano-Martinez, and X. Gu, “Neural-
network security-boundary constrained optimal power
flow,” IEEE Transactions on Power Systems, vol. 26,
no. 1, pp. 63–72, 2011.

[8] H. Wan and Y. Song, “Hybrid supervised and unsuper-
vised neural network approach to voltage stability anal-
ysis,” Electric Power Systems Research, vol. 47, no. 2,
pp. 115–122, 1998.

[9] A. Tiranuchit, L. Ewerbring, R. Duryea, R. Thomas,
and F. Luk, “Towards a computationally feasible on-line
voltage instability index,” IEEE Transactions on Power
Systems, vol. 3, no. 2, pp. 669–675, 1988.

[10] P.-A. Lof, T. Smed, G. Andersson, and D. Hill, “Fast
calculation of a voltage stability index,” IEEE Transac-
tions on Power Systems, vol. 7, no. 1, pp. 54–64, 1992.

[11] Y. Zhao, J. Chen, and H. V. Poor, “A Learning-to-Infer
method for real-time power grid multi-line outage iden-
tification,” IEEE Transactions on Smart Grid, to appear.

[12] J. D. Glover, M. Sarma, and T. Overbye, Power System
Analysis & Design. Cengage Learning, 2011.

[13] Y. Lee, Y. Zhao, S.-J. Kim, and J. Li, “Predicting volt-
age stability margin via learning stability region bound-
ary,” in Proc. 2017 IEEE 7th International Workshop on
Computational Advances in Multi-Sensor Adaptive Pro-
cessing. IEEE, 2017, pp. 1–5.

[14] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J.
Thomas, “Matpower: Steady-state operations, planning,
and analysis tools for power systems research and edu-
cation,” IEEE Transactions on power systems, vol. 26,
no. 1, pp. 12–19, 2011.

[15] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings
of the 27th International Conference on Machine Learn-
ing, 2010, pp. 807–814.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 16),
2016, pp. 265–283.

[17] C. M. Bishop, Pattern Recognition and Machine Learn-
ing. Springer, 2006.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2015, pp.
1026–1034.


