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Abstract—A novel method that integrates learning and physics
based computation is developed for greatly accelerating the
simulation of full power system transient trajectories. To solve
the dynamic algebraic equations, the method replaces the time-
consuming dynamic computation for generator dynamics with
trained predictors, while retaining the time-efficient algebraic
computation of solving AC-power flow (PF) for power systems.
In particular, a predictor is trained for each generator, and the
system trajectories are computed by alternating steps of calling
the predictors and solving AC-PF. The proposed method also
allows fully parallelizable training strategies and a flexible trade-
off between training time and testing accuracy. Comprehensive
evaluations of the proposed method for transient/dynamic con-
tingency analysis of the New York/New England 16-machine
68-bus power systems demonstrate excellent performance and
significant acceleration of computation.

I. INTRODUCTION

Security and stability are of paramount importance to power
systems. Power system operations often conduct contingency
analysis (such as N − k security analysis) to ensure the
system’s continued functionality and stability under potential
generator and line failures. Ideally, such contingency analysis
should be performed in an online fashion (e.g., every 5
to 15 minutes), so that the security and stability risks are
analyzed for the most up-to-date power system states. Indeed,
power system operators often perform such online static
(i.e., power flow based) contingency analysis. In contrast,
dynamic contingency analysis are only performed in offline
settings. The reason is that the computational complexity and
hence time for full-scale dynamic analysis is typically orders
of magnitude greater than that for static analysis, and the
sheer amount of computing time would make online dynamic
contingency analysis impractical. The motivation of this work
is to significantly accelerate dynamic contingency analysis so
that such analysis can eventually be performed online.

The key task in performing dynamic contingency analy-
sis is to simulate full system transient/dynamic trajectories
under different contingencies which entails solving large-
scale differential-algebraic equations (DAEs) many times. The
common practice of solving such DAEs relies on numerical
integration methods [1]. While this approach provides accurate
time-domain simulations, however, it is very time consuming
which renders online dynamic contingency analysis infeasible.
An alternative approach is the direct method [2]. However,
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notable challenges and limitations remain and must be over-
come for it to be practical [2]. The direct method also does
not generate system trajectories which are often needed for
operators’ decision-making.

Recently, machine-learning-based approaches for perform-
ing transient analysis have received increasing attentions. For
post-fault binary stability classification, ML technologies have
seen successes (see [3] among others). [4] estimates a stability
margin by taking transient trajectories as image-like data and
learning from them with a convolutional neural network based
hierarchical model. To further explore the inherent temporal-
spatial correlations, [5] proposes a heuristic learning method
towards critical sequential features. However, knowing only
a binary stability indicator and/or a stability margin may not
be sufficient as a tool for the system operators, who would
also like to know the trajectories of various quantities in the
grid during and after the faults. For generating full dynamic
trajectories, physics-informed neural networks are developed
to solve ordinary/partial differential equations (ODEs/PDEs,
see [6] [7] among others). However, scalability challenges
arise when using these approaches for dynamic contingency
analysis of larger-scale systems. Moreover, when there are
structural changes in the system due to, e.g., faults that change
the underlying ODEs, re-training has to be performed.

In this work, we develop a learning-physics-based hybrid
approach that is, to the best of our knowledge, the first work
that can both a) produce full system trajectories in a fast
and accurate way and b) handle system changes (e.g., due
to faults) very easily. The key idea is to train a predictor for
each generator (as opposed to training an overall predictor for
the entire system), and connect the predictors via the algebraic
equations that characterize the system’s AC power flow (AC-
PF). Alternating steps of calling the trained predictors and
solving AC-PF will then be performed to faithfully produce
the full system trajectories. We demonstrate the effectiveness
of the proposed method on a comprehensive data set of
N − 2 dynamic contingency responses simulated with very
sophisticated generator control and dynamics in the New
York/New England 16-machine 68-bus power system.

II. PROBLEM DESCRIPTION

We consider a power system that consists of N buses, on
K of which there are synchronous generators. The electrome-
chanical dynamics of the generators based on their physical



models and control strategies can be captured by a set of
dynamic equations [1]:

ẋ = f(x, z) (1)

where x describes a collection of generator dynamic states and
z describes algebraic variables such as voltages and currents.
In addition to the generator dynamic equations, the algebraic
equations of the system are described by the standard AC-PF
equations. As such, the dynamic algebraic equations (DAEs)
that describe the entire system can be summarized as:

ẋ = f(x, z) (2)
0 = g(x, z) (3)

where (3) represents the algebraic equations. Given an initial
set of values of x and z, the DAEs (2) and (3) can be
solved together via various numerical integration methods
to determine the subsequent trajectories of all the quantities
over time. Moreover, when faults occur in the system and
are subsequently cleared, the algebraic equations (3) can
experience multiple changes as the underlying power system
model changes. In this paper, we partition the set of all the
buses into K generator buses and N−K non-generator buses.
We let a) the state variables of a generator at bus i and b) the
algebraic variables at a non-generator bus j be

xi = [|Vi|, ̸ Vi, δi]
T
, (4)

zj = [|Vj |, ̸ Vj ] , (5)

where Vi (Vj) represent the generator bus’ (non-generator
bus’) complex voltage and δi is the generator’s rotor angle. We
note that, the internal generator state variables implemented
in all our simulations include many more than the above.

The goal of this work is to greatly accelerate the solution
of the DAEs to generate all the dynamic trajectories in the
system, and hence achieve significant speed-up of dynamic
contingency analysis of hypothetical faults in the system.
The high level idea of our approach is to a) replace the
time-consuming dynamic computation of the generators with
trained predictors, while b) retaining the time-efficient alge-
braic computation of solving AC-PF for the power system. As
such, to generate all the trajectories, our algorithm iteratively
alternates between calling trained predictors and solving AC-
PFs, and does not invoke any numerical integration method
at all that is traditionally required for solving DAEs.

III. PROPOSED METHODOLOGY

In this section, we provide the details of our proposed
methodology that integrates both learning (for dynamic) and
physics (for algebraic) based computation to simulate system
trajectories. We first describe the overall architecture of the
method in the following. First, for each generator, a predictor
is trained for iteratively producing the dynamic states of the
generator. In testing, at each time index, a) the output of all the
predictors are used as inputs (similar to boundary conditions)
to a AC-PF solver, and the states of the power system are
solved, and b) each predictor then reads in (a corresponding
small subset of) the solved system states as inputs (additional
to the already computed previous system states), and produces
as outputs the generator state for the next time index. This

procedure iteratively alternates between these two steps to
produce the full system trajectories. The general algorithm
is summarized in Algorithm 1 with detailed explanations to
follow. Next, we first describe a) how the learning-physics-
based DAE solver is structured and used, and b) how the
predictors in this solver are trained.

Algorithm 1 Integrated Learning-Physics-Based DAE Solver

Input: Initial generator state variables {xi,0} at all gener-
ator buses, initial algebraic variables {zj,0} at all non-
generator buses.

Output: Generator state variables {xi,1:T } at all generator
buses, algebraic variables {zj,1:T } at all non-generator
buses.

1: for t← 1 to Trajectory Length T do
2: for i← Generators do
3: xi,t ← NN Predict(xi,1:t−1, zn(i),1:t−1)
4: end for
5: Update {zj,t} ← AC PF({xi,t})
6: end for
7: Return {xi,1:T }, {zj,1:T }

A. Predictor Architecture: One Predictor for Each Generator
Importantly, even though our method generates the trajecto-

ries jointly for all the generator and load buses in the system,
we do not rely on a single “overall” predictor that jointly
outputs all the trajectories. Instead, a separate predictor is
trained for each generator. For a generator i, to compute its
state at the current time t, its corresponding predictor takes
only the following as its inputs (cf. Line 3 of Algorithm 1):

• Its own states up to the previous time step, xi,1:t−1.
• The complex voltage(s) of its neighboring bus(es) n(i)

up to the previous time step, zn(i),1:t−1.
Notably, each generator typically connects to just one neigh-
boring bus. As such, the input features for a predictor include
a 5-dimensional times series (cf. (4) and (5)). There are two
major advantages of the proposed approach:
1) The model complexity of the predictors is relatively inde-

pendent of the power system size, which is a key enabler for
achieving scalability for large-scale systems. In contrast, if
a single predictor is trained to represent the entire system,
(as opposed to just one generator), the model complexity
of the predictor would necessarily increase significantly as
the power system size increases, hindering the scalability
of such learning-based approaches.

2) As a predictor only tries to capture the dynamics of one
generator, and the interactions of the generators are taken
care of by AC-PF, the predictor+ACPF hybrid approach
can straightforwardly handle changes in the power system,
such as topology changes due to contingencies, without
any need of re-training. In contrast, if a single predictor
is trained to represent the entire system, it will have to be
re-trained when any change occurs to the power system.

As the inputs to a predictor are time series, we employ a
Long Short-Term Memory (LSTM) based architecture for the
predictors: based on hyperparameter tuning, two LSTM layers
followed by one fully connected layer are used. The detailed
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Fig. 1: Predictor Architecture for a Generator i.
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Fig. 2: A High-level system diagram of the neural-physics
hybrid model. Each generator is represented by a NN predictor
model. All the load buses (including those with zero load) are
represented by the system-wise AC-PF model.

neural network (NN) architecture for a generator i is depicted
in Fig. 1. We note that c and h are the LSTMs’ hidden states
and are updated at each time.

B. Physical Model: AC Power Flow
While Fig. 1 depicts the architecture of one generator’s

predictor, the other generators’ predictors share similar archi-
tectures. As shown in Fig. 1, at every iteration, the algebraic
variables z are computed based on the AC-PF solution given
the latest generator state variables output by the predictors.
Note that, a) this step uses the predicted generator states x for
all the generators, b) the AC-PF is solved for the entire system
and generates the algebraic variables z for all the buses, and c)
each generator’s predictor then takes only the inputs it needs
— its own states and its neighboring bus’ algebraic variables
— to predict its states for the next time step. As such, the
dynamic model of the entire power system is represented by
a hybrid NN-ACPF model: each generator is represented by
a NN that captures its dynamic model, and they are then
connected by an AC-PF model that represents the entire power
system. A high level system diagram is depicted in Fig 2.

C. Training the Predictors: Jointly, Locally, and Singularly
The predictors in the NN-ACPF model are trained based on

a data set of simulated trajectories of the power system. The
offline trained predictors are then utilized for online dynamic
simulation of new/unseen cases. For a dynamic trajectory

of a generator i, denoted by xi = [xi,1, xi,2, ..., xi,T ], the
training labels are the state variables at the next time steps:
yi = [yi,1, yi,2, ..., yi,T−1], where yi,t = xi,t+1. We employ
the Relative Mean Square Error (Relative MSE) as the training
objective Li over the NN parameters θi:

Li(ỹ; θi) =
1

D

D∑
k=1

∑T−1
t=1 (ỹ

(k)
i,t − y

(k)
i,t )

2∑T−1
t=1 (y

(k)
i,t − y

(k)
i )2

(6)

where ỹ is the predictor’s output, D is the dimension of yi,t,

and y
(k)
i is the mean of y(k)i,t over t for a single trajectory.

As all the generators’ predictors are coupled by the AC-
PF solutions at each time step during testing, one predictor’s
output at a time step will be fed back not only directly into the
inputs of itself, but also indirectly into those of all the other
predictors via AC-PF. Based on the principle that predictors’
training should match how they are used in testing, all the
generators’ predictors should ideally be trained jointly. We
indeed develop such a training procedure which we term
joint training. Specifically, the losses for all the predictors
are computed based on Algorithm 1. The losses thus reflect
the joint performance of all the predictors interacting via AC-
PF. Backpropagation is then performed for each predictor. As
such, the training for all the predictors are performed in a
coupled and “synchronous” fashion.

We next discuss an alternative to this joint training ap-
proach, termed local training. Instead of training all the
predictors in sync, we decouple their training processes to
be independent to each other. Specifically, when training the
predictor of generator i, instead of relying on other generators’
predictor outputs to solve AC-PF, we utilize certain ground
truth data of the simulated trajectories. To clarify the ground
truth data used, we introduce another key characteristic of
this local training as follows: Instead of solving the AC-PF
for the entire power system, for a generator i, we can limit
the perspective of AC-PF to some local system around the
generator. Specifically, the ground truth data at the boundary
buses of this local system are used as input to solving the
local AC-PF. As such, each generator’s predictor is trained
independently without dependence on each other’s outputs.

One key advantage of local training is that it allows
flexible control of the computational complexity and hence
the raw time of training. In particular, a) the training of all
the predictors do not have to be done jointly, but fully in
parallel, and b) the size of the local system for training each
predictor can be flexibly tuned, and can thus greatly reduce
the complexity of AC-PF. Understandably, there is a trade-
off between the training time and the testing performance of
the trained predictors: the smaller the local system, the faster
the training but also the less accurate the trained predictors
during testing. The framework of local training thus provides
a flexible tool for choosing an acceptable trade-off.

An extreme case of this trade-off is shrinking the local
system to just a single bus of the generator. In this case, there
is simply no AC-PF computation, and the ground truth of
the neighboring bus is directly fed into the predictor during
training: In Fig 1, this means that the ground truth data of the
algebraic variable inputs z are used, thus completely bypass-
ing any AC-PF. We term this extreme case singular training.



Fig. 3: Schematic diagram of the IEEE 16-machine 68-bus
system. The subsystem to be investigated is in the shaded
area, including 2 generator buses and 2 load buses.

We note that such singular training exactly corresponds to the
method we developed in our prior work [8].

Finally, we note that the use of the trained predictors during
testing is always the same (cf. Algorithm 1) regardless of how
they are trained (jointly, locally, or singularly).

IV. CASE STUDY AND DISCUSSION

A. Data Generation

We perform time-domain simulations to generate system
trajectories with a software tool EPTOOL that is based on
the Power System Toolbox (PST) [9]. The simulations are
performed on the New York/New England 16-generator 68-
bus power system (cf. Fig. 3). The generator dynamics are
modeled and simulated with full control schemes, i.e. turbine
governor, excitation systems, and power system stabilizers
(PSSs). The load buses contain 50% of constant current load
and 50% of constant impedance load. We then introduce
random N−2 contingencies to the system which would cover
most of the potential contingencies in practice. Each con-
tingency consists of double permanent 3-phase transmission
line faults at either of the two terminal buses of the faulted
lines. We adopt the fault patterns in a practical power system
[10]: The fault duration follows a normal distribution with a
mean value of 100.0ms (6 cycles) and a standard deviation of
11.11ms. Each trajectory is simulated with a sampling period
of 0.002s for a total length of 1.4s, and hence contains 700
time steps. The two faulted lines are then set as off-service
after the faults are cleared at near and far ends of the lines. In
total, we simulate 2, 460 N − 2 contingencies and collect the
simulated trajectories for learning the generators’ predictors.
The data set is split randomly with 1, 600 for training, 400
for validation and 460 for testing. In this paper, we focus on
a 4-bus subsystem (cf. the shaded area of Fig. 3): generator
1 located at bus 53, generator 8 located at bus 60, load bus 2
and load bus 25.

Singular

Local
Joint

Singular

Local

NN Physical

Fig. 4: Training strategies for the 4-bus subsystem.

B. Training and Implementation
We employ the three training strategies (cf. Section III-C):

joint, local and singular. Specifically, for joint training, AC-PF
is solved for the 4-bus subsystem, treating the rest of the power
system as known boundary conditions. The two generators’
predictor training are coupled via the 4-bus AC-PF. For local
training, each generator’s predictor training utilizes AC-PF of
only the 2-bus local system that includes the generator bus and
its neighboring load bus(es) (i.e., buses 53 and 2 for generator
1, and buses 60 and 25 for generator 8). For each generator’s
training, the ground truths of the physical quantities other
than its 2-bus local system are treated as known boundary
conditions. For singular training, no AC-PF is performed, and
the ground truths of the physical quantities other than those
of the two generator buses are treated as known boundary
conditions. A schematic of these three training strategies for
the 4-bus subsystem is depicted in Fig. 4.

For all the generators’ predictors in all of the above training
strategies, we use the same LSTM-based architecture (cf. Fig.
1) with the same set of hyperparameters for training.

C. Numerical Experiment Results
As noted at the end of Section III, during testing, the

performance of the predictors are always evaluated in the
same way, following Algorithm 1, regardless of the strategies
(joint, local, or singular) employed for training the predictors.
Specifically, a) Generator 1 and Generator 8 are replaced by
2 predictors, respectively, and b) AC-PF is iteratively solved
for the 4-bus subsystem connecting the 2 generators, treating
the rest of the power system as known boundary conditions.

To evaluate the performance of the trained predictors, we
employ the metrics of Root Mean Squared Error (RMSE) and
Relative RMSE (with the same variables as in (6)):

Relative RMSE =
1

D

D∑
k=1

√
1

T−1

∑T−1
t=1 (ỹ

(k)
i,t − y

(k)
i,t )

2√
1

T−1

∑T−1
t=1 (y

(k)
i,t − y

(k)
i )2

(7)

We note that Relative RMSE can provide a fair evaluation for
quantities of different units. We summarize the testing RMSE
and Relative RMSE in Table I for different training strategies.
We see that predictors from joint training performs markedly
better than those from local training, which again performs
significantly better than those from singular training.

A representative sample of the achieved performance is
plotted in Fig. 5, in which the trajectories of the three state
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Fig. 5: A representative testing sample showing the generated
trajectories after a contingency.

variables for generator 1 and those of the two algebraic
variables for bus 2 are plotted. The trajectories generated with
the predictors from the three training strategies are compared
with the ground truths. In this example, an N−2 contingency
occur at 0.49s and the two faults are cleared at 0.576s and
0.608s, respectively. We note that the trajectories include all
the periods before, during, and after fault clearances, in which
the power system model experiences significant changes. The
natural advantage of the proposed method in handling such
changes is clearly demonstrated. As our method is the first
learning-based approach that can address system changes
without the need of re-training for every contingency, no
available numerical comparison is available from the litera-
ture. We observe that the testing accuracy from the joint and
local training are both very high. Even for singular training,
while the accuracy is visibly lower, it still captures the voltage
magnitudes very accurately.

We next provide the computation times and memory usages
for our learning-physics-based DAE solver (in both training
and testing) and those for the traditional numerical-integration
based solver (in testing) in Table II. The training and testing
are performed on nVidia K80 GPUs with the machine learning
library PyTorch. We observe that, while joint training provides

TABLE I: Performance Comparison of Training Strategies

Training Strategy Avg. RMSE Avg. Relative RMSE

Joint 3.631 · 10−3 4.056 · 10−2

Local 5.372 · 10−3 5.684 · 10−2

Singular 8.720 · 10−3 8.861 · 10−2

TABLE II: Computational Efficiency

Model

Offline
Training

time
[min]

Offline
Compute
Memory
[MB]

Online
Compute

Time
[s]

Online
Compute
Memory
[MB]

Singular 229 2245 2.16 1545
Local 767 2247 2.16 1545
Joint 2609 2941 2.16 1545

Numerical - - 19.9 269

the highest accuracy, it takes a significantly longer time to
train. Local training provides a reasonable trade-off between
offline training time and online testing accuracy.

V. CONCLUSION

We have developed a novel learning-physics-based method
for fast and accurate computation of full power system tran-
sient trajectories. A predictor is trained for each generator,
and the system trajectories are computed by alternating steps
of calling the predictors and solving AC-PF. This algorithm
achieves much lower computational complexity than existing
numerical integration based approaches. The method also
allows different training strategies — joint, local, and singular
— that allow different trade-offs between offline training
complexity and online testing accuracy. We evaluate the
method for N − 2 transient/dynamic contingency analysis for
the New York/New England 68-bus 16-machine power system
with sophisticated generator control and dynamics. Excellent
performance and computation speed is demonstrated.
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