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Abstract—Data-driven physical anomaly detection for solar
energy systems is studied. A fully unsupervised learning approach
based on traces of solar generation data and weather data is
developed. The idea is that, without needing any anomaly labels,
a) predictors that output expected solar generation can be trained
based on generation data under normal system operations, and b)
a variety of anomalies can be identified based on analyzing the
deviations between the actual and predicted solar generation.
This paper focuses on identifying physical anomalies that are
a) significant and sustained over long periods of time, yet b)
“latent”, i.e., can be easily missed by asset managers in practice.
Two types of predictors — weather-based predictors and cross-
inverter predictors — are developed that can provide complemen-
tary information in identifying major anomalies. Furthermore,
conditional probabilities of the prediction errors are estimated for
accurate probabilistic evaluation and statistical interpretations
of anomalies. As such, conditional log-error-probabilities are
employed as error metrics. Comprehensive experiments are
conducted based on rich real-world solar energy data sets that
span over 4+ years and across different states. It is demonstrated
that the developed method successfully identifies a variety of
high-significance physical anomalies that evade asset managers’
attention for sustained periods from weeks to years.

Index Terms—Solar energy system, anomaly detection, unsu-
pervised learning, data-driven, long-term anomalies, asset man-
agement, operations and maintenance

I. INTRODUCTION

As an important component of our society’s solutions to
address climate change, a large and growing amount of so-
lar energy has been installed worldwide. While significant
progress has been made over the past decades in reducing the
manufacturing cost of solar energy systems [1], another impor-
tant cost factor is the operation and maintenance (O&M) cost.
Reducing the O&M cost thus plays a key role in improving
the affordability and efficiency of solar energy supplies.

A key aspect of reducing the O&M costs of solar energy
systems is to effectively diagnose their underlying issues. This
is because, more accurate and timely awareness of physical
issues of solar energy systems can greatly improve the effi-
ciency and effectiveness of O&M practices. For example, a)
visits of maintenance personnel, a major component of O&M
cost, can be scheduled more efficiently to address the detected
underlying issues, b) on time maintenance of hardware can
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greatly prolong their life time and reduce the need of ex-
pensive replacement, and c) loss of energy production due
to unaddressed system issues can be significantly reduced.

There has been a plethora of recent work on PV system
diagnostics that utilize data-driven techniques. [2] develops a
diagnostic model for estimating inverter degradation severity
by learning from accelerated life testing data of full life cycles
of inverters. [3] (among others) develops deep learning sys-
tems for thermal image analysis to detect PV cell anomalies.
[4] develops a hierarchical method based on minute-level
SCADA data, including individual strings’ current data, to
identify string-level anomalies in PV systems. [5] develops
solar farm voltage anomaly detectors based on clustering of
µPMU data. [6] develops a PV fault detection toolkit that
utilizes self-organizing maps applied to SCADA data. [7]
presents a variational recurrent autoencoder with attention
for detecting short-term anomalies in time-series data of PV
production. Additionally, [8] develops a prognostic model
based on supervised learning that utilizes a variety of inverter
measurements and alert records for detecting PV failures.

Notably, each of these methods relies on specialized or
high-resolution data sources, such as thermal imaging, µPMU
measurements, or extensive event logs, which are not univer-
sally available across solar energy systems. Furthermore, while
some models excel in identifying short-term anomalous events,
they often lack the capability to detect gradual, long-term
anomalous patterns. These challenges highlight the need for
more robust and data-efficient models that can operate across
diverse data environments and effectively address short- and
long-term fault conditions in PV systems.

In this work, we develop fully data-driven methods for iden-
tifying major underlying physical anomalies of solar energy
systems that greatly impact their performance. The focus of
this paper is on identifying relatively long-term anomalies that
a) can persist for periods ranging from weeks to years, b) have
high significance due to their impact on system performance,
and yet c) are often latent and left unattended in practice,
as they can still escape asset managers’ attention for very
long periods. Notably, instead of relying on any specialized
or high-resolution data, this work utilizes only hourly solar
generation data at the inverter level, assisted with publicly
available weather data. As such, the developed methods are
widely applicable in practice.



Specifically, we propose a fully unsupervised learning-based
approach that trains predictors without relying on any anomaly
labels or other human-labeled data. The idea is to leverage
self-supervised learning to predict one part of the data using
other parts and to identify major anomalies based on the
prediction errors. In particular, two self-supervised learning
problems are formulated: weather-based generation prediction
and cross-inverter generation prediction. Notably, these trained
predictors provide complementary information for identifying
significant physical anomalies. Furthermore, we estimate the
probabilities of the observed generation using conditional ker-
nel density estimation. We then employ log-error-probabilities
as the prediction error metrics, based on which a variety of
informative curves are plotted for identifying anomalies. We
conduct extensive experiments with very comprehensive real-
world industry data sets to examine the effectiveness of the
developed methods. Notably, a variety of high-significance,
long-term physical anomalies have been discovered that were
previously unknown to the industry asset managers responsible
for the studied systems.

II. PROBLEM DESCRIPTION

For a solar energy site potentially with multiple inverters,
we consider that the hourly solar generation data from each
inverter is monitored and collected. While other types of
data, including event logs, could be available in practice, we
recognize that their availability may not be universal or by
any means complete. As such, our method does not assume
the availability of any system monitoring data other than solar
generation. In addition, publicly available weather data are also
utilized. We aim to develop predictors that, as solar generation
and weather data are updated over time, continuously pro-
duce outputs that effectively aid in identifying major physical
anomalies in solar energy systems. In particular, our focus
here is to identify physical anomalies that can persist for long
periods — from weeks to years — before being noticed, if at
all, by asset managers in practice. As such, we are interested
in identifying such latent yet significant physical anomalies
whose identification would allow very substantial savings in
O&M costs in practice.

Importantly, while we introduce methods and techniques
that are generally applicable, our study is entirely grounded
on comprehensive real-world data from the industry. Thus,
our method development needs to address all the challenges
that working with raw, real-world data entails. As such, we
aim to develop a complete pipeline of algorithms (starting
from dealing with missing data) that proves to be effective
in achieving our objective. While our method does not rely on
any anomaly labels whatsoever, thanks to the rich, real-world
data sets provided by our industry partners, we are indeed able
to cross-reference our discoveries with some available event
logs. Moreover, our discoveries are extensively vetted through
the profound firsthand experiences of the asset managers
responsible for the solar energy systems studied.

III. METHODOLOGY

To train detectors of major physical anomalies in a purely
unsupervised manner, we develop a self-supervised learning
approach that relies solely on production data from inverters,
supplemented by publicly available weather data. The high-
level idea is that, although physical anomalies can be of
various types and can often lack ample and accurate anomaly
labels in practice, normal operational data are typically abun-
dantly available. By learning from and predicting expected
inverter production under normal operations, our model can
effectively detect anomalies when actual production deviates
significantly from expected values.

Specifically, two complementary prediction strategies —
weather-based generation prediction and cross-inverter gener-
ation prediction — are designed to identify anomalies:

• Weather-based prediction: For each inverter, we use
weather and time-related features to model its expected
production under normal operations.

• Cross-inverter prediction: At a solar energy site with
multiple inverters, we leverage the correlations across in-
verters within the same site: for each inverter, we predict
its production by using data from the other inverters.

We note that, in case there is only one inverter at a solar
energy site, the method reduces to using weather-based predic-
tion only. Indeed, weather-based prediction alone can already
provide strong signals of abnormality in general. In practice,
an issue that we observe is that a weather-based predictor
can sometimes be trained to overfit the production data of
an inverter, in effect normalizing the abnormality to some
extent. Cross-inverter prediction thus offers a complementary
approach that independently provides strong signals when a
particular inverter behaves abnormally compared to others.

In Figure 1, we depict the complete anomaly detection
pipeline developed, which includes data imputation, weather-
based and cross-inverter predictions, and an error analysis
phase leveraging log error probability plots computed based
on conditional kernel density estimation.

A. Data Imputation

Data imputation is essential in our study because missing
and outage data can significantly hinder the performance
of data-driven unsupervised learning models. Notably, our
approach addresses both missing data and outage data (i.e., in-
stances where an inverter’s production is zero). We implement
a simple yet effective imputation method that leverages the
fact that inverters at the same solar energy site typically share
identical tilt and azimuth angles. Based on the physical models
of solar generation [9], the ideal production values across
different inverters at the same site would be approximately
proportional to their capacity given their identical orientations.
Thus, for an inverter i at a given timestamp t, we impute its
missing or outage data by computing a weighted average of



Fig. 1. Overall Pipeline for Identifying Significant Physical Anomalies.

the production values of other inverters on the same site that
have non-missing and non-outage data:

P̃i,t =
Ci∑

j∈S(t) Cj

∑
j∈S(t)

Pj,t (1)

where P̃i,t is the imputed production for inverter i at time t, Ci
is the capacity connected to inverter i, S(t) denotes the set of
inverters with available (non-missing, non-outage) production
data at time t, Pj,t is the production of inverter j at time t.
We will provide the details of how the imputed data are used
in training and testing in the remainder of this section.

B. Weather-based Generation Prediction

In this subsection, we develop predictors of inverter produc-
tion under normal operations based on weather data and time
information. For each inverter, we train a predictor based on
the normal operation data as well as the imputed missing and
outage data (as the expected normal data). In testing, in addi-
tion to normal operation data: a) Entries with outage data are
utilized without imputation because it is the ground truth data
(not the imputed one) to which we want the predicted values to
compare, and b) Entries with missing data are skipped because
there is no ground truth to compare with. Specifically, the input
features of the predictors include weather-related variables,
such as solar-irradiance-related features — Global Horizontal
Irradiance (GHI), Diffuse Horizontal Irradiance (DHI), Direct
Normal Irradiance (DNI), and zenith — as well as other
weather conditions such as temperature, relative humidity, and
wind speed. Time-related features, such as hour and month,
are also included.

Input features are also adjusted based on site-specific fac-
tors, such as potential snowfall. For example, snow depth is
included as a feature for systems in regions with snow (e.g.,
Washington D.C.) but omitted for regions like Florida where
snow is not observed. Such adjustment enables the model to
capture location-specific production patterns more effectively.
For the training objective, Huber loss is used so that the
predictor has some level of robustness to outliers.

Lδ(Pi, P̂i) =

{
1
2 (Pi − P̂i)

2 if |Pi − P̂i| ≤ δ,
δ · |Pi − P̂i| − 1

2δ
2 if |Pi − P̂i| > δ

(2)

where δ in Huber loss is set to be the standard deviation of
the inverter’s production.

Significant deviations of actual production Pi,t from P̂i,t
may signal physical anomalies potentially caused by faults,
degradation, etc. To precisely understand the levels of signifi-
cance of the detected anomalies, we will propose a probabilis-
tic evaluation framework later in Section III-D to estimate the
likelihood of the detected anomalies.

C. Cross-Inverter Generation Prediction

In this subsection, we develop cross-inverter predictors to
predict the production of an inverter at a solar energy site
based on the production of other inverters at the same site.
The predictor training is again based on the normal operation
data as well as the imputed missing and outage data. Unlike
weather-based predictor training where the imputed data are
used as training labels, for cross-inverter predictor training,
the imputed data are exclusively used as input features. The
reason for not using it as training labels here is because our
imputation method (1) is essentially a simple linear cross-
inverter predictor model, and it does not make sense to
learn a data-driven model from data that we impute with a
known simple model. The use of imputed data as part of
the input features is, however, particularly critical for cross-
inverter predictor training. This is because, when there are
many inverters at the same site, a missing/outage entry from
any single inverter could render the entire data vector of that
time unusable. Having imputed data would greatly increase
the amount of training data that can be utilized. In testing, we
again include the imputed data in the predictor input features.

For a given site with multiple inverters, the input features
of the predictor for any inverter i include the production data
(possibly imputed) from all the other inverters at the same
site, along with time-related features. A significant deviation
between actual production Pi,t of inverter i and the predicted
production P̂i,t suggests potential faults or degradation pri-
marily due to issues specific to Inverter i.

D. Conditional Probability and Kernel Density Estimation

With an observed solar generation Pi and its prediction
P̂i, we define the prediction error as ei = Pi − P̂i. As
such, positive/negative error implies generation above/below
expectation. For our purpose of physical anomaly detection,
negative errors are our primary focus. While a variety of
error metrics exist (e.g., squared error), we are particularly
interested in error metrics that provide rich probabilistic in-
formation and statistically sound interpretations of anomalous
behaviors. Accordingly, we would like to compute the cumu-
lative distribution function (CDF) of any observed error ei,

F (ei) = Pr(Ei ≤ ei), (3)

where Ei denotes the prediction error as a random variable
before it is realized.

While trained predictor models are generally unbiased, how-
ever, a “regression to the mean” phenomenon typically exists
[10]: Specifically, when the ground truth solar generation Pi is



high/low, the error ei would have a distribution skewed toward
negative/positive values. In other words, the predicted value P̂i
tends to be closer to the unconditional mean than the ground
truth Pi. This phenomenon motivates us to refine our goal
to further estimate the conditional CDF of ei. Specifically, as
solar generation heavily depends on irradiance, for an observed
prediction error ei, we estimate its conditional probability
density function (PDF) conditioned on the irradiance denoted
by irr, f(ei|irr), and the conditional CDF, F (ei|irr). By
estimating the conditional probabilities, we explicitly capture
the regression to the mean phenomenon and compute the like-
lihood of errors based on the skewed conditional probability
distributions, which provide more accurate information than
the unbiased unconditional probability distribution.

In practice, the exact error probability distribution is un-
known and needs to be estimated empirically. We esti-
mate these conditional probability distributions using non-
parametric kernel density estimation (KDE) [11] with Gaus-
sian kernel, applied across prediction errors from all the
inverters at the same site:

f̂(ei|irr) =
1

nhσ

1√
2π

∑
eirr,j∈E(irr)

exp

(
−(ei − eirr,j)2

2h2σ2

)

E(irr) = {ei,t|irr − µ <= irr(t) < irr + µ} (4)

where E(irr) represents all prediction errors obtained under
irradiance within µ units of the irradiance of interest, irr.
Here, σ is the standard deviation of the errors in E(irr), and
h is the bandwidth, determined using Scott’s Rule [12],

h = n−
1

d+4 (5)

where n = |E(irr)| and d is the dimension of the data. In
particular, the CDF F (ei|irr) = Pr(Ei ≤ ei|irr), capturing
the likelihood of its occurrence. A low F (ei,t|irr) would
quantify the rarity (and thus abnormality) of solar generation
for Inverter i at time t.

Last but not least, we use log-likelihood, log(F (ei,t|irr)),
as the error metric. For example, an extremely rare error would
lead to a close to zero probability and hence a significantly
negative log-likelihood. A major advantage of using log-
likelihood is the following: Collectively evaluating multiple
errors naturally corresponds to multiplying their error probabil-
ities, which is equivalent to summing their log-likelihood. This
implies that computing a moving average of the log-likelihood
curve log(F (ei,t|irr)),∀t — a common method for smoothing
out noise and capturing major trends — naturally provides a
statistically meaningful metric.

IV. EXPERIMENT RESULTS

A. Dataset Description

We conduct extensive experiments on datasets collected
from four solar energy system sites: Site A is located in
Washington, D.C. with 8 inverters. Sites B, C and D are located
in Florida with 7, 5, and 7 inverters, respectively. Across all
these sites, the past 4+ years of hourly solar generation data

of all inverters are collected [13]. Additionally, hourly weather
data (cf. Section III-B) at all these sites are obtained from
Solcast [14].

B. Training and Testing Procedures

Both the weather-based and cross-inverter predictors for all
the inverters are trained and tested in a way similar to cross-
validation. We partition the data into 5 folds. For each fold as
the test set, we use the other 4 folds for training and validation.
The testing is accordingly performed on all the folds.

For weather-based prediction, we employ a 4-layer Mul-
tilayer perceptron (MLP) with a residual block embedded
between the first and last fully connected layers. Batch nor-
malization and dropout are applied to mitigate overfitting. For
cross-inverter prediction, we employ XGBoost [15] as the
predictor model with hyperparameters optimized via a grid
search. To compute the prediction error metrics, we compute
F (ei|irr) = Pr(Ei ≤ ei|irr) where Global Horizontal
Irradiance (GHI) is used as irr. The parameter µ in (4) is
set to 5. We then take the log of the probabilities.

C. Discovering High-Significance Physical Anomalies from
Observing Log-Error-Probabilities

By observing the log probabilities of prediction errors, a
variety of significant and informative physical anomalies of
solar energy systems have been identified. Importantly, while
these anomalies are a) statistically significant according to the
log-probability metrics, they b) remain unnoticed by the asset
managers in practice for long periods of times (from weeks to
years). We summarize four major types of identified physical
anomalies:
• Seasonal performance anomalies, e.g., abnormally low

performance during winter or summer times.
• Performance abnormalities that precede system outages.
• Even without major failures, sustained low performance

of the solar system for long periods of time.
• Long-term performance degradation, including increas-

ingly frequent abnormally-low-performance instances.
Next, we present representative examples that demonstrate

the above. (Other examples have to be left out due to space
limits.) For clear and informative visualizations, we display a
set of 3 plots for each inverter. The first plot shows the 10-
day causal moving averages of the solar generation and GHI,
allowing a direct comparison of generation with irradiance
over time. We note that, the moving averages employed in
this work are all causal: at time t, an average is computed
over a window of time right before t. This ensures that
such moving averages are feasible to compute in practice in
real time. The second plot presents error metrics from the
weather-based predictor, including the raw hourly log-error-
probabilities (cf. the blue dots), the 30-day causal moving
average of the hourly log-error-probabilities (cf. the red curve),
and the 30-day causal moving average of the 4% quantile log-
error-probabilities (cf. the orange curve). Specifically, at each
time t, its 4% quantile log-error-probability (before moving
average) is collected from the 30-day window right before t.



Fig. 2. Site A, inverter 6 in Washington, D.C.

Fig. 3. Site B, inverter 2 in Florida.

Notably, while the red curve keeps track of the likelihood of
all the errors within a 30-day window, the orange curve keeps
track of the occurrences of the more extreme errors over time.
The third plot presents the same error metrics as the second
plot but for the cross-inverter predictor, offering a comparative
view of anomaly detection across the two different prediction
methods. We note that there are gaps and valleys in these plots
due to missing data or inverter outages.

The plots from 2020 to 2024 for Inverter 6 at Site A, Wash-
ington, D.C. are plotted in Figure 2. From both the second and
third plots, we see that a) as indicated by the blue and orange
curves, the system struggles with performance during winter
months, and (b) as indicated by the blue and red curves, clear
downward trends appear leading up to major outages (the
blank periods) around early 2023 (and late 2023). We note
that, these anomalous behaviors are not sporadic anomalies
(due to, e.g., malfunctioning communication systems that we
indeed sometimes observe) or noise; rather, they are significant
and sustained physical anomalies of the solar energy systems.

The plots from 2019 to 2024 for Inverter 2 at Site B, Florida,
are plotted in Figure 3. From the second plot, especially the
blue dots, a) clear seasonal performance abnormalities during
the summer months are observed, and (b) a clear sustained
long-term performance degradation is observed (cf. the red
curve), and c) a major performance drop is observed since
mid-2024. The third plot does not indicate the above issues
a) and b). However, it clearly indicates another severe and
sustained performance drop since mid-2021 that is, however,
not evident in the second plot.

The plots from 2019 to 2024 for Inverter 3 at Site C, Florida,
are plotted in Figure 4. Multiple periods of sustained low

Fig. 4. Site C, inverter 3 in Florida.

Fig. 5. Site D, inverter 6 in Florida

performance are observed from both the second and third plots,
notably throughout the majority of 2019 and ever since the
spring of 2022. While the weather-based prediction errors do
indicate some level of abnormality, the cross-inverter predic-
tion errors confirmed such abnormality much more decisively.
We note that, prior to the discoveries of this work, the low-
performance issues since the spring of 2022 still have not been
noticed in practice. The plots we generated thus can greatly
reduce the time to discover such low-performance issues and
save significant lost production from the asset.

The plots from 2019 to 2024 for Inverter 6 at Site D,
Florida, are shown in Figure 5. From both the second and
third plots, we observe: (a) a major performance anomaly
in 2019, and (b) recurrent seasonal anomalies during the
summer months are again captured, particularly in the second
plot, and (c) from late 2022 onward, the system begins to
show increasingly frequent signs of poor performance, as
indicated by persistently deteriorating log error probabilities
in both plots. This phenomenon is particularly pronounced
throughout 2023, and is further corroborated by the raw data
which reveal frequent abnormal short outage periods. We
note that, in both Site C, inverter 3 and Site D, inverter 6,
the major performance issues observed in 2019 were indeed
addressed by maintenance events that successfully restored
system performance by late 2019.

Notably, our observations highlight the important fact that,
while the weather-based (second plot) and cross-inverter (third
plot) predictions can often confirm each other’s discoveries,
they can also provide key complementary information, each
with its own unique strengths, in identifying different types of
anomalies.



Fig. 6. Site B in Florida: all inverters experience similar abnormality during
summer months.

For example, (a) In Figure 2, seasonal anomalies during
the winter are captured by both the weather-based and cross-
inverter log error probability plots, indicating that this inverter
experiences more pronounced issues during winter months
compared to its peer inverters at the site. (b) In Figure 3,
the weather-based log error probability plot reveals seasonal
anomalies during the summer. However, these anomalies are
not detected by the cross-inverter log probability plot because
all inverters at this site exhibit similar seasonal issues during
the summer months. Indeed, we plot the log error probabilities
of the weather-based predictors for all the inverters at this site
in Figure 6, and observe their abnormality patterns occurring
in unison during the summer months. As a result, the cross-
inverter predictor interprets these patterns as normal. In such
scenarios, weather-based predictor becomes essential, as it can
identify site-wide seasonal problems that the cross-inverter
predictor might overlook. On the other hand, the cross-inverter
log error probability plot shows a clear performance drop
beginning in mid-2021—an issue not apparent in the weather-
based plot. This discrepancy is likely due to overfitting in
the weather-based predictor, which may normalize abnormal
conditions. (c) In Figure 4, performance issues are more
effectively identified by the cross-inverter predictor. In this
case, nearly half of the production data used by the weather-
based predictor are affected by abnormal conditions, causing
it to overfit to abnormality and diminishing its ability to detect
anomalies. The cross-inverter predictor, by comparing relative
performance across inverters, is more effective at revealing
these issues.

Taken together, these examples underscore the complemen-
tary strengths of the weather-based and cross-inverter predic-
tors in capturing a broad range of anomalies. Although each
method has its limitations, one often performs well when the
other falls short. By combining insights from both predictors,
we can form a more comprehensive and reliable anomaly
detection framework. This dual-perspective approach enhances
the robustness of fault detection, helping to uncover subtle or
prolonged performance issues that can otherwise go unnoticed
by asset managers for weeks, months, or even years.

V. CONCLUSION

In this paper, we developed a fully unsupervised learning
approach for identifying significant and sustained physical
anomalies in solar energy systems. We employed two types
of predictors of expected solar generation — weather-based

predictors and cross-inverter predictors — that provide com-
plementary information. Furthermore, we estimate the con-
ditional prediction error probabilities, conditioned on solar
irradiance, using kernel density estimation. Log error prob-
abilities are employed as the error metrics, offering sound
statistical interpretations of the prediction errors. We conduct
extensive experiments of the developed methods based on rich
real-world datasets. A variety of significant and informative
physical anomalies have been successfully identified that a)
have sustained for long periods of time yet b) have evaded
asset managers’ attention without being addressed. Further
classification of anomalies with more detailed information
— such as their points of origin (e.g., inverter, PV module,
combiner box) and underlying causes (e.g., overheating, MPPT
fault, shading) — is left for future work.
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