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Abstract—Accurate knowledge of solar generation in power
distribution systems provides great values to utilities for efficient
and reliable distribution system operation. However, many solar
PV resources are installed behind-the-meter (BTM), and as a
result only the net load measurements are available to the utili-
ties. In this paper, a high-performance method for disaggregating
BTM solar generation traces from net load traces is developed.
The algorithm takes the net load data measured by smart meters
and other widely available environmental measurements (e.g.,
publicly monitored solar irradiance and temperature) as inputs,
and disaggregates the net load traces into BTM solar generation
and load traces. Notably, the proposed method does not rely on
any separately metered data of BTM solar generation. Rather,
in a fully unsupervised fashion, the proposed method effectively
exploits the self-similarity and cross-customer similarity of cus-
tomer loads to achieve accurate BTM solar disaggregation. The
developed unsupervised method is evaluated on two real-world
smart meter data sets collected from New York and Texas, and
exhibits very high performance that closely approaches the ideal
performance bound from supervised learning.

I. INTRODUCTION

There has been a rapid and continuing growth of distributed
generation, in particular rooftop solar, in the power distribu-
tion systems around the world. These distributed solar are
typically connected to the grid “behind the meters” (BTM)
installed by the electric utilities. Indeed, it is economically
infeasible for the utilities to deploy separate meters and
communication systems for all the distributed solar. As such,
the utilities do not have access to separate readings of BTM
solar, and only the “net loads” of customers are metered. It
is however immensely valuable for the utilities to estimate
the BTM solar generation traces [1]. Such estimation will
enable utilities to greatly improve its efficiency and reliability
of distribution system operation and planning.

There has been an extensive recent body of work addressing
the BTM solar generation estimation problem [2]. A majority
of them exploit the increasing deployment of advanced me-
tering infrastructure (AMI) in the distribution systems. On the
high level, some of the existing methods are fully data-driven,
while the others in addition seek to exploit the knowledge
from the physical models of solar generation. Data-Driven
Methods: In [3], a linear proxy-based estimator that disag-
gregates solar generation at the substation level is built. Solar
generation data from nearby PV systems are utilized to build
the contextually supervised source separation model in [4] to
disaggregate solar generation at an individual level. Dimension
reduction and mapping functions are deployed to estimate
total power generation of solar power sites in [5]. Information
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from customers without PV is utilized to build the consumer
mixture model in [6]. In [7], solar exemplars are utilized
for building a maximum likelihood based solar estimator. [8]
introduces a game theory based method which casts the solar
disaggregation problem as a bi-layer optimization problem.
Model-Based/Assisted Methods: Although fully data-driven
methods can achieve some success, however, many require
the ground truth solar generation of at least a subset of
the customers as supervision signals [4][7][8]. They also
tend to require a significant amount of data to learn from
especially if there is no ground-truth solar generation data
available. Model-based/assisted methods generally require less
data as the physical model can serve as strong regularization
in learning. A probabilistic model is introduced in [9] for
estimating BTM PV solar generation at an aggregate level.
In [10] a disaggregation algorithm is developed based on
(among other techniques) finding a sufficient amount of “clear
sky” periods of time in the data. In [11], an algorithm is
developed that iteratively learns a physical model and a mixed
Hidden Markov model to estimate solar PV generation and
electric load respectively. Other related works include [12]
which studies disaggregating an aggregate load into individual
loads by utilizing partially labeled data, and [13] which
further utilizes faster sensors in the distribution system such
as distribution Phasor Measurement Units.

In this paper, we developed a novel high-performance BTM
solar generation estimation method that disaggregates BTM
solar traces from net load traces measured by smart meters.
Our focus here is to estimate BTM solar generation at certain
aggregate levels (e.g., transformer and feeder levels). On the
one hand, this addresses important needs for utilities. On the
other hand, this also implies that the method can be adapted
to use cases even in the absence of smart meters, as long as
aggregate-level net load data are available. Importantly, our
algorithm does not utilize any ground-truth BTM solar gen-
eration data at all. Such “unsupervised” nature of our method
allows it to be widely applicable in practice. Specifically,
leveraging a general physical model of solar generation, our
method introduces a fundamental similarity-based principle
for estimating the unknown physical model parameters of
BTM solar. As such, the proposed approach is able to achieve
great performance in an unsupervised fashion even with a
limited amount of net load data. As demonstrated in our
performance evaluation on two real-world data sets collected
from NY and TX, USA, the latter of which containing only
four weeks of data, the performance of our unsupervised
learning method is very close to the performance bound



provided by the ideal supervised learning method.

II. PROBLEM FORMULATION

Consider a set of smart meter data. A customer can possibly
have solar PV behind the meter. The smart meters measure the
net loads of the customers. Customer k’s smart meter reading
at time t is denoted by

nkptq “ lkptq ´ gkptq, (1)

where nkptq, lkptq and gkptq are the net load, load and solar
generation (all of which are real power), respectively. The
smart meter data are collected at discrete time instances such
as every 15 minutes. We denote such time indices by t “
1, . . . , T . Furthermore, for a set of customers denoted by S,
we denote the total net load of the customers in this set by

nSptq “
ÿ

kPS
nkptq, (2)

and similarly define lSptq, gSptq. Based on the smart meter
readings, i.e., tnkptq,@k, tu, our objective is the following: for
an “aggregate” customer by summing over a set of individual
customers denoted by A, disaggregate the sum-net-load nAptq
into lAptq and gAptq, so that nAptq “ lAptq ´ gAptq.

Clearly, to perform the above disaggregation, additional
information beyond the metered net load data themselves is
needed. We will discuss in detail in the following sections
what and how such information can be exploited to achieve
our objective with high performance.

III. PROPOSED METHODOLOGY

In this section, we discuss the methods for disaggregating
net load nAptq into load lAptq and solar generation gAptq.
We first highlight the following remark in detecting whether
a customer has solar PV installed or not.

Remark (Detection of Presence of BTM Solar PV). By

observing the smart meter data of a customer, whether this

customer has solar PV or not can be detected with perfect ac-

curacy using the following simple rule: a) If the net load nkptq
has ever reached a negative value, meaning that gkptq ° lkptq,

the customer must have solar PV; And b) If no such negative

net load is observed within a sustained period (empirically,

one month is sufficient,) the customer must not have PV.

The above rule of detecting the presence of BTM PV
achieves perfect accuracy in all the real-world data sets we
examined. We now continue to address the main problem
in this section — BTM solar generation estimation for an
aggregation of customers.

A. Physical Model of Solar Generation

For an installed solar panel, its solar generation follows an
accurate physical model that depends on a number of physical
quantities including technical parameters of the solar panel
and weather related variables. We start with the following
equation [14]:

Pt « C
IPV,t

Iref
r1 ´ µ pTPV,t ´ Tref qs , (3)

where Pt is the solar generation; C denotes the capacity of
the panel; IPV,t denotes the solar irradiance that strikes on
the solar panel pW {m2q; TPV,t denotes the temperature (˝C)
of PV cells; Iref and Tref are reference irradiance and cell
temperature with 1000 pW {m2q and 25 ˝C as their typical
values respectively; µ denotes the temperature coefficient with
´0.5%{˝C as a typical value [10]. The cell temperature is
related to many factors such as weather metrics and solar
irradiance, and can be approximated by the following [14]:

TPV,t “ TA,t ` IPV,t

800
ˆ pNoct ´ 20q , (4)

where TA,t denotes the ambient air temperature (˝C) and Noct

is the Nominal Operating Cell Temperature with 48 ˝C as
a typical value [10]. The solar irradiance received on solar
panels can be calculated as follows:

IPV,t “ I0,t⌧b,tpsin↵ cos� ` cos↵ sin� cosp� ´ Aqq

` Id,t

ˆ
1 ` cos�

2

˙
` pIb,t ` Id,tq ⇢t

ˆ
1 ´ cos�

2

˙
. (5)

The notations are explained as follows. ⌧b,t and ⇢t denotes the
atmospheric transparent coefficient and surface albedo with
0.74 and 0.2 as typical values respectively [15]. I0,t, Id,t, and
Ib,t are the direct normal irradiance (DNI), diffuse horizontal
irradiance (DHI), and direct horizontal irradiance, respec-
tively. DNI and DHI are directly measured and can be obtained
from the NSRDB dataset [16]. The direct horizontal irradiance
can be calculated as follows:

Ib,t “ I0,t⌧b,t sin↵, (6)
↵ “ 90˝ ´ ⇣, (7)

where ↵ and ⇣ denote the elevation of the sun and zenith of
the sun receptively, and the latter can also be obtained from
the NSRDB dataset [16]. � and � in (5) are the tilt angle
and azimuth angle of the solar PV panels which are typically
unknown to the utilities and need to be estimated. A in (5)
denotes the sun’s azimuth and can be calcuated as follows:

cosA “ sin � cos� ´ cos � sin� cos!

cos↵
, (8)

where � and � denote the declination angle and geographical
latitude which can be readily calculated based on time.

In sum, we denote the overall physical model of solar
generation by fpxptq;✓q, where ✓ contains the three panel-
dependent model parameters — panel capacity C, tilt angle �,
and azimuth angle � — that are unknown and need to be es-
timated, and xptq contains all the relevant input measurement
data (i.e. DHI, DNI, solar zenith angle, temperature, longitude,
latitude, time of day, and day of year.) Notably, all these input
data x (or at least reasonable estimates of them) are indeed
available to the utilities. As such, the problem of BTM solar
generation estimation is then cast as the problem of estimating
the unknown physical model parameters ✓. While the above
physical model is derived for a single solar panel, we will use
it as an approximate model for the collection of a set of solar
panels of an aggregation of customers.



B. Fundamental Idea: Similarity Based Unsupervised Learn-

ing of Physical Model Parameters

In principle, as ✓ consists of only three parameters to
learn — panel capacity, tilt angle, and azimuth angle, if
we can obtain just three equations of these parameters, ✓
can then be solved. In an ideal “supervised learning” situ-
ation, if we can observe the solar generation gptq at three
different times t1, t2 and t3, by solving the three equations
tf pxptiq;✓q “ gptiq, i “ 1, 2, 3u, we can obtain an estimate
of the physical model parameters ✓.

However, BTM solar generation gptq is not known and
is precisely what we want to estimate based on the other
information that is indeed known — net load data nptq, and
other external input information xptq. To estimate the physical
model parameters ✓, we again seek to find a sufficient number

of equations that constrain ✓ but without relying on any

information of the solar generation g. To achieve this, let us
consider the following conceptual example.

If we know for a fact that, at two different time instances t
and t1, the loads are the same, we would have the following
series of equations:

lptq “ lpt1q ô nptq ` gptq “ npt1q ` gpt1q
ô nptq ` fpxptq;✓q “ npt1q ` fpxpt1q;✓q. (9)

We note that, as long as the external input variables at these
two time instances, xptq and xpt1q, are not identical, (9)
is a valid/non-trivial equation of ✓ because, other than ✓,
everything in (9) is known. In other words, even if we do
not know the BTM load lptq (or equivalently the BTM solar
generation gptq), knowing relations such as lptq “ lpt1q would
still provide a valid equation of ✓.

In practice, knowing only the net loads nptq, we cannot
know for sure if the load lptq at two different times are exactly
the same. Nonetheless, we can make predictions of when the
loads are likely to be sufficiently similar. As such, if we can
collect a sufficiently large number of pairs of time instances

at which the loads are sufficiently similar, an estimate of the
physical model parameters ✓ can be computed by solving an
over-determined set of equations as a learning problem. In the
next section, we formalize and present the details of the above
similarity based approach.

C. Algorithm Design for BTM Solar Generation Estimation

Consider a set of customers in an area with BTM solar
PV, denoted by SP , and the aggregate customer formed by
summing them up. In real-world situations, there are typically
also a significant number of customers who do not have PV.
Our first step is to form an aggregate “non-PV” customer

by summing up a set of customers in the same area but

without PV, denoted by SN . Given the regularities of human
behaviors especially on the aggregate level, we will exploit the
inherent similarity between the load pattern of the aggregate
PV customer and that of the aggregate non-PV customer:

1

|SP | lSP ptq « 
1

|SN | lSN ptq. (10)

For short, we term the aggregate PV customer “customer
SP ” and the aggregate non-PV customer “customer SN”.

Figure 1: Load scale correction for an aggregation of cus-
tomers in Austin, TX.

|SP |, |SN | are the total number of PV customers and non-
PV customers.  is a scale factor used to correct the load
scale difference between customer SP and customer SN . To
estimate , we first select a set of time slots, denoted by
slow, from 8am-6pm with very low solar irradiance (i.e.,
GHI † 20).  is then calculated as  “

∞
tPslow

nSP
ptq

∞
tPslow

nSN
ptq . An

example demonstrating the similarity between the loads of
customers SP and SN , before and after the scale correction,
is plotted in Figure 1.

Self-Similarity Over Time: The first key step in our
approach is to select pairs of time slots in which customer
SP likely has similar loads. We term such a pair of time slots
a “similar time pair”. Since the loads of customer SP are not
measured, we leverage the following facts to find such pairs:

‚ Temporal correlations: The loads in time slots close (or
similar) to each other are likely to be similar due to the
smoothness/regularity of the aggregate human behaviors.

‚ Cross-Customer correlations: If the loads of customer
SN , which are equal to the metered net loads due to the
absence of PV, are similar in a pair of time slots, it is
likely that the loads of customer SP are also similar in
the same pair of time slots due to the inherent behavioral
similarity between the two aggregate customers.

Accordingly, we design a scoring system to measure the
similarity between any two time slots. The similarity score s
is composed of day (of year) similarity s1, minute (of day)
similarity s2 and load similarity s3 which are calculated as
follows:

s1 “ 365
1
n1 ´ p|DOY ptiq ´ DOY pt1

iq|q 1
n1

365
1
n1

, (11)

s2 “ 1440
1
n2 ´ p|MOD ptiq ´ MOD pt1

iq|q 1
n2

1440
1
n2

, (12)

s3 “ MLD
1
n3 ´ p|lSN ptiqq ´ lSN pt1

iq|q 1
n3

MLD
1
n3

, (13)

spti, t1
iq “ s1 ` s2 ` s3, (14)

where DOY ptiq, MODptiq and MLD denotes the day of
year, minute of day of time ti and the maximum load
difference of customer SN . n1, n2, n3 are three parameters
that indicate our tolerance of dissimilarity (the higher the value



the lower the tolerance). In our experiment, n1, n2, n3 are set
to be 1.5, 2.0, and 3.0 respectively. Finally, a number (in our
study 250) of top time pairs with the highest similarity scores
are selected to form a training data set denoted by T . In a
spirit similar to (9), a loss term is then defined as

Lp1q “
ÿ

pti,t1
iqPT

ppnSP ptiq ` fpxSP ptiq;✓SP qq

´
`
nSP pt1

iq ` fpxSP pt1
iq;✓SP

˘
q2. (15)

Cross-Customer Similarity: We further define another
loss term motivated by the similarity between customer SP

and SN (cf. (10)):

Lp2q “
Tÿ

t“1

ˆ
nSP ptq ` fpxSP ptq;✓SP q ´ 

|SP |
|SN | lSN ptq

˙2

“
Tÿ

t“1

ˆ
nSP ptq ` fpxSP ptq;✓SP q ´ 

|SP |
|SN |nSN ptq

˙2

.

(16)

We then combine the two loss terms to form the final
loss function to minimize, and solve for the physical model
parameters ✓SP :

min
✓SP

Lp1q ` �Lp2q, (17)

where � is a weight that balances the two losses. Notably,
other than the model parameters ✓SP to learn, all the values
in Lp1q and Lp2q (cf. (15) and (16)) are either known or have
reasonable estimates based on measurements.

Algorithm 1 Similarity-based BTM Solar Disaggregation

Input: xptq and initialization of model parameters ✓
2: Select a set of time slot pairs T for customer SP

for epochs in 1 to maxiter do
4: Initialize Loss “ 0

for pti, t1
iq in T do

6: Calculate self-similarity loss Lp1q and cross-
customer similarity loss Lp2q as in (15) and (16)
Calculate total loss for this training pair Lossi “
Lp1q
i ` �Lp2q

i
8: Loss “ Loss ` Lossi

end for
10: Update model parameters ✓ by backpropagation

end for
12: Output: Estimated physical model parameters ✓

IV. NUMERICAL EVALUATION

A. Experimental Setup

In this section, we present numerical evaluation of the
algorithms developed above for BTM solar disaggregation.
The evaluation is performed on two real-world data sets
from Pecan Street Inc. [17], one collected near Ithaca, New
York and another in Austin, Texas. Crucially, these data sets
are collected with BTM solar generation measured, so that
evaluations by comparing the estimated solar generation with
the ground truths can be performed. The solar irradiance data,

Table I: Performance of BTM Solar Generation Estimation

RMSE MASE CV
Aggregate, Ithaca, NY (Supervised) 3.39 1.32 0.29
Aggregate, Ithaca, NY (Unsupervised) 3.63 1.43 0.31

Aggregate, Austin, TX (Supervised) 37.19 1.41 0.27
Aggregate, Austin, TX (Unsupervised) 37.94 1.49 0.28

solar zenith angle data, and temperature data are collected
from NSRDB with a 4 km ˆ 4 km grid resolution and a
30-min granularity. As we will perform BTM solar energy
disaggregation at a 15-min granularity, the NSRDB data is
converted into 15-min interval data using linear interpolation.

In what follows, three metrics will be used to measure
the performance of the method: a) Root-Mean-Square Error
(RMSE), b) Mean Absolute Scaled Error (MASE), and c)
Coefficient of Variation (CV):

RMSE “

gffe 1

N

Nÿ

k“1

1

T

Tÿ

t“1

`
gkptq ´ ĝ

kptq
˘2
, (18)

MASE “ 1

N

Nÿ

k“1

T ´ 1

T

∞T
t“1

`
gkptq ´ ĝ

kptq
ˇ̌

∞T
t“2 |gkptq ´ gkpt ´ 1q|

, (19)

CV “ 1

N

Nÿ

k“1

¨

˝

d∞T
t“1 pgkptq ´ ĝkptqq2

T
{ 1
T

Tÿ

k“1

gkptq
˛

‚.

(20)

B. BTM Solar Generation Estimation

The first data set on which we evaluate the performance
contains smart meter data collected from 25 customers near
Ithaca, NY, 14 of whom have BTM solar PVs spanning a
6 months period from 5/1/2019 to 10/31/2019. Importantly,
not only do we evaluate the performance of our unsuper-
vised learning method, we also evaluate the performance of
supervised learning by utilizing the ground truths of solar
generation in the data set to train the physical model pa-
rameters. Given the physical model, the supervised learning
approach provides the best possible performance and hence
a performance bound for all unsupervised learning methods.
The performance gap between the unsupervised and the su-
pervised learning methods can then be used to evaluate how
well the unsupervised learning method works.

For this data set, the achieved performance is summarized
in Table I. We observe that our algorithm (unsupervised)
achieves performance that is very close to the ideal perfor-
mance bound offered by the supervised approach. To visu-
alize the performance comparison, we plot in Figure 2 the
ground truths, estimates from supervised learning, and our
unsupervised estimates of the solar generation in four typical
weeks from May, July, August, and October respectively in
2019. We can indeed observe that our unsupervised learning
algorithm estimates the BTM solar generation very well, and
the estimates between the ideal supervised and our unsuper-
vised approaches are nearly identical. The fact that even the
supervised approach still does not recover the ground truth
perfectly can be explained by factors including a) our physical
model of solar generation, while accurate, is still imperfect,



Figure 2: Performance of BTM solar generation estimation
for an aggregation of customers, Ithaca, NY.

Figure 3: Performance of BTM solar generation estimation
for an aggregation of customers, Austin, TX.

and b) the solar irradiance data from NSRDB are collected at
locations not exactly where the customers are.

The next data set on which we evaluate our performance
contains smart meter data from 322 customers in Austin,
TX, spanning a 4 weeks period from 8/3/2015 to 8/30/2015.
182 of which have BTM solar PVs, and we evaluate the
performance for the aggregation of these customers with PVs.
The performance is also summarized in Table I. The traces of
the ground truths, estimates from supervised learning, and our
estimates of the solar generation in these four weeks are plot-
ted in Figure 3. We observe a similarly high performance of
our algorithm which approaches the ideal supervised learning
performance very closely.

V. CONCLUSION

We developed a novel unsupervised-learning-based method
that estimates BTM solar generation based on net load data
measured by smart meters. The method successfully exploits
the self-similarity and cross-customer similarity of customer
loads to achieve high BTM solar generation estimation accu-
racy. Evaluation of BTM solar generation estimation is per-
formed for aggregations of customers based on two real-world
data sets collected in New York and Texas. It demonstrates the
very high performance of the proposed unsupervised method
which closely approaches the ideal performance achieved by
supervised learning.
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