Behind-the-Meter Disaggregation of Residential
Electric Vehicle Charging Load

Kang Pu* and Yue Zhao!
*Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
TDepartment of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
Emails: {kang.pu, yue.zhao.2} @stonybrook.edu

Abstract—With the rapidly evolving penetration of electric vehi-
cles (EVs) in power distribution systems, a major issue that utilities
face is the lack of visibility into the charging behaviors of the
behind-the-meter (BTM) EVs. Knowing the BTM EV charging be-
haviors can greatly enhance utilities’ system planning and operation
efficacy. In this paper, the problem of disaggregating BTM EV
load traces from smart meter data traces is studied. Based on the
characteristics of typical EV charging traces, three interdependent
sub-problems are formulated: a) Detecting the presence of BTM
EVs, b) Estimating the EV charging rate, and c) Detecting the
EV charging periods. A unified iterative algorithmic framework is
developed to solve all three sub-problems. Importantly, the proposed
algorithms do not assume or utilize the knowledge of ground
truth EV load traces but estimate BTM EV load traces in an
‘“unsupervised” fashion. Numerical evaluation is conducted based
on real-world 15-minute interval smart meter data from Austin,
TX, and demonstrates great performance achieved by the proposed
algorithms.

I. INTRODUCTION

Our transportation system is undergoing a major transition
with electrification as witnessed by the rapid increase of the
adoption of electric vehicles (EVs). This however brings new
and emerging challenges to the electric utilities as they strive
to ensure reliable and efficient operation of power distribution
systems [1], [2]. A major issue many utilities face is that they
often have poor visibility into the charging behaviors of the EVs
in the distribution system. In particular, in residential homes,
utilities typically do not have access to data from dedicated
sensors of EV charging activities. Such poor visibility of the EV
charging behaviors hinders the utilities’ objective to effectively
plan and operate power distribution systems with significant
penetration of EVs. On the other hand, there has been steadily
growing smart meter deployment in utilities all around the
world. By potentially extracting relevant information from the
smart meter data, this presents a great opportunity for utilities
to improve their visibility of EVs in their systems. Notably,
however, as EVs are typically connected “behind the meter”,
no separate metering of EV charging is available to utilities, but
the fotal load measured by smart meters.

To derive useful information about BTM EV charging from
smart meter data, our objective is to disaggregate smart meter
data traces into EV charging traces and non-EV/regular load
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traces. If successful, the utilities can then utilize the disaggre-
gated data traces to better perform key planning and operation
tasks such as system hosting capacity analysis, load forecast, and
running effective demand response programs.

There have been a large number of works on nonintrusive
load monitoring (NILM) that disaggregates smart meter measure-
ment to obtain energy usage information of different appliances
without installing BTM sensors (cf. [3], [4] among others).
Among the works studying EV loads, some studies focus on
detecting the presence of BTM EVs [5], [6]. For disaggregating
EV charging loads in residential homes, supervised learning
approaches are studied in [7], [8], [9], [10]. For unsupervised
learning approaches, A pattern recognition based approach is
developed in [11] for EV load estimation and evaluated based
on simulation data. A training-free algorithm is proposed in [12]
for EV load estimation, where an algorithm is developed to
mitigate the interference from AC loads by filtering out spike
trains generated by AC loads. A similar filtering step is also
employed in [13], where a statistical model of EV charging for
EV load estimation is established. Notably, however, all these
algorithms (supervised and unsupervised) are developed based
on smart meter data collected at 1-minute intervals. In contrast,
this paper does not assume the availability of 1-minute interval
data, but only 15-minute interval data which are the typical case
in most utilities with smart meters. Working with 15-minute data
however brings unique challenges as we can no longer exploit
the rich 1-minute level data features of various appliances.

In this paper, we develop a novel suite of algorithms that
disaggregate BTM EV charging load traces from the total load
traces measured by smart meters. Publicly available temperature
information is also used as input. Importantly, the algorithms
do not assume or utilize any knowledge of the ground truth
EV charging traces. Such “unsupervised” nature of the approach
ensures that our algorithms are widely applicable in practice.
The contributions of our work are summarized as follows:

o Our approach is a holistic one that jointly detects the
presence of BTM EV and estimates (if an EV exists) the
BTM EV charging trace.

o The proposed algorithms are “training-free” (cf. [12]).

o To the best of our knowledge, the proposed algorithms
are the first that demonstrate excellent performance with
data collected at 15-minute intervals (as opposed to more
granular data such as 1-minute). This allows our algorithms
to be readily applicable to most real-world smart meter
systems.



II. PROBLEM FORMULATION

We consider smart meter data collected from a set of residen-
tial customers. A customer can possibly have a BTM EV. For a
customer k, its smart meter measures its (total) load:

I(t) = di(t) + ex(?), (1

where [ (t), di(t), er(t) are the (total) load, regular/non-EV
energy demand, and the EV charging load at time ¢, respectively.
For customers who do not have an EV, their corresponding
EV charging loads would be zero at all times. In this paper,
we consider that the smart meter data are collected at discrete
time instances at every 15 minutes, which is typical in utilities’
practices.

Our objective is to disaggregate the load trace Iy (t) into dj(t)
and ey (t). In particular, we develop algorithms that perform this
disaggregation based on the smart meter measurements {l},(t)}
only, without any separate behind-the-meter measurements. As
I, (t) is measured, our objective is equivalent to estimating the
BTM EV charging trace ey(t).

To begin with, we observe in the real-world data set [14] the
following unique property of EV charging traces:

Remark 1 (Constant Charging Rate of an EV). For a customer
with a BTM EV, when the EV is charging, its charging rate is
typically closely around some constant, e.g. 3.3 kW [15][16].

We denote the constant charging rate of customer k by
E. Based on the above observation, BTM EV charging trace
estimation is equivalently transformed into two sub-problems:
a) estimating the constant charging rate, and b) detecting the
charging periods of the EV, i.e., in which periods of time the
EV is charging. As such, the EV charging trace can be modeled
(approximately) as follows: in periods in which EV is charging,
er(t) = Ey; otherwise, ey (t) = 0.

In light of this, in order to perform BTM disaggregation of
EV charging load trace for a customer k, the following three
related problems need to be solved:

« EV presence detection: We do not assume any prior
information about whether a customer has a BTM EV or
not, since such information is often not readily available to
utilities. Thus, it is essential to distinguish customers who
have BTM EVs from those who do not.

o Charging rate estimation: For a customer identified as
having a BTM EV, we estimate its (approximately) constant
charging rate (cf. Remark 1) which depends on the levels
of charging devices and the types of EVs.

« Charging period detection: For a customer identified as
having a BTM EV, with an estimate of its near-constant
charging rate, we detect the periods of time in which the
EV is charging.

III. ALGORITHM DESIGN

In this section, we introduce the methodology and algorithms
for disaggregating the load I (¢) into regular/non-EV demand
di(t) and EV charging load ey (t). Our approach is to employ
variations of a unified algorithmic framework for all three
problems — EV presence detection, charging rate estimation,

and charging period detection — with potentially different sets
of algorithm parameters.

A. Data Preprocessing

First, we perform a step of data preprocessing as employed in
[12] to identify and remove the load traces of air conditioning
(AC) from the total load trace Ij(t). The reason is that the AC
loads may have similar magnitudes as EV charging, and remov-
ing them by recognizing their unique properties can significantly
reduce the difficulties of estimating ey (¢). AC loads generally
exhibit two patterns: a) spike trains (i.e., fluctuating rapidly with
a short duration), and b) AC lumps (i.e., fluctuating slowly with
longer duration, see Fig. 1.(b) in [12]). This data pre-processing
step aims to filter out AC spike trains from the load trace: The
intuition is to find clusters of spikes where the duration of each
spike is relatively short and adjacent spikes should not be too far
away from each other. Due to space limit, we refer the reader to
[12]) for the detailed algorithm for filtering out AC load spikes.
We note that, while this pre-processing step works best with
1-minute data as in [12], it also works to some extent with 15-
minute data. This is because, for a relatively significant fraction
of the AC load spikes, their widths and the time gaps in between
them have lengths that can be captured in 15-minute data.

B. EV Presence Detection

For a customer, we do not know beforehand whether there is
a BTM EV or not. Our high-level approach is to a) assume as
if there is a BTM EV, and jointly estimate the charging rate and
detect the charging periods, and then b) perform statistical tests
on the obtained results to make a detection decision on whether
this customer indeed has an EV.

1) Daily Regular (Non-EV) Load Profile: First, we form an
initial estimate of the daily regular (non-EV) load profile (which
will be updated iteratively later), denoted by dy(¢). Specifically,
our algorithm works as follows: for each month,

o Minimum Load: We form an estimate of the minimum load
of the customer: [ = min, (). This represents the
“base load” of the customer even if there is little to no
activity at home.

o Non-Charging Periods: Among all the time slots in the data,
we select those time slots that clearly do not have an EV
charging by selecting those ¢ such that Iy (t) < E}, + [min,
where Ej, is a charging rate estimate. The initial value of
Ek is set to be 3kW for our data set, a conservatively low
value.

o Daily Regular/Non-EV Load Profile: For every time index
in a day (e.g., 10:00 am), we collect all the non-charging
time slots selected above that share this index and compute
the average as the fypical regular/non-EV load at this time
of a day. Accordingly, a daily regular/non-EV load profile
di(t) is formed for this month.

2) EV Charging Period Detection: Next, given the fact that
the EV charging rate is very significant compared with typical
regular/non-EV loads, we detect the charging periods of this
customer by exploiting the following two observations:

o Change Point Detection: Given the underlying smoothness
of the regular load, an onset of EV charging tends to



lead to a significant and immediate increase of the load
I (t). Similarly, the end of EV charging tends to lead to a
significant and immediate decrease of the load I (t).
o Sufficiently Higher than Regular: When an EV is charging,
the load [ (t) = di(t) + E) is likely significantly higher
than the daily regular load profile estimate dj(t).
We then detect a period of time as a charging period if both
of the following conditions are satisfied: a) the first time slot in
this period sees a sufficiently significant load increase, and the
last time slot sees a sufficiently significant load decrease, and
b) during this period of time, a sufficiently large fraction of the
time slots see loads that are sufficiently higher than the estimated
regular load profile dr (t). The thresholds used in making these
decisions are set based on the estimated charging rate Ey.

Algorithm Description: We now describe in detail the
proposed algorithm for EV charging period detection. To capture
a sudden increase or decrease of the load, we introduce the
following two variables:

Arli(t) = Uk(t) — le(t = 1) 2
Aalyp(t) = i(t) — le(t — 2) 3)

The reason that Aol (t) is needed is a nuanced one: a) when an
EV starts to charge at the beginning of time slot ¢, a significantly
positive A1lx(t) can be observed, but b) when an EV starts to
charge only toward the end of time slot ¢, the load increase
may not lead to a significantly positive Ayl (t), but surely a
significantly positive Aslg (¢t + 1). The similar phenomenon can
be observed when an EV stops charging. In our algorithm, we
use change point status cps(t) to denote whether time slot ¢
is identified as a potential start or end of a charging period,
determined according to the following rule:

1 if Aqlg(t) or Asli(t) > cpsip
eps(t) = ¢ =1 if Aqlg(t) or Aolg(t) < —cpsy,  (4)
0 otherwise

where cpsgp, is a threshold, an algorithm parameter.

Next, a time slot is more likely to have an EV charging if the
load is significantly higher than usual. On the other hand, any
time slot with a load lower than Ej, is very unlikely to have an
EV charging. In our algorithm, we use charging status cs(t) to
denote whether time slot ¢ is identified to be within a charging
period, determined according to the following rule:

1 if 1p(t) >

max(dy(t) + cs ,E‘ + [min
s(t) = A( k(t) + csen, B + 1) )
—inf if lk(t) < Ek

0 otherwise

where cs;, is a threshold, another algorithm parameter. Utilizing
cps(t) and cs(t), potential start and end points of EV charging
periods can be then identified. A potential start point of a
charging period i, denoted by s;, is defined if cps(s;) = 1 and
es(s;) = 1, and a potential end point e; is defined if either
cps(e;) = —1 and cs(e; — 1) < 0, or eps(k) = =1,k =
ei,e; +1,e; + 2. The rationale is as follows. When an EV stops

charging, the total load consumption will either be reduced to a
low level if few other appliances are in use, or if not, at least
a load decrease tends to be observed (which can be reliably
detected with the above rule).

Next, we use ¢s(t) to construct an accumulator rule [17] to
further decide whether a potential charging period is an actual
charging period. We set the initial value of the accumulator as
2. We then compare the actual load of all the time slots with
the regular load profile within each identified potential charging
period [s;.e;]. The accumulator will increase by 1 if cs(t) =
1, and decrease by 2 if cs(t) = 0. The accumulator will stop
counting and return false when it becomes negative or if cs(t) =
—inf, i.e., when the load in a time slot in this potential charging
period is lower than Ey. The set of detected charging periods
{[ss.€5]} is denoted by C.

Algorithm 1 EV Presence Detection

1: Input: Customer load trace [ (t)

2: Initialize Ej=3kW

. Construct regular load profile dj(t) for each month (cf.
Section III-B1)

: for epoch in 1 to maziter do

Detect charging periods by using Algorithm 2.

Update dy(t) and Ej.

Set Ej, = max(Ey, 3kW)

Go back to line 5 and detect the charging periods with the

newly estimated regular load profile dr, (t) and charging

rate E, again.

9: end for

10: Perform statistical tests based on the detected charging

periods (cf. Section III-B6).
11: Output: EV presence detection decision

[95]

® e

Algorithm 2 Charging Period Detection

Input: Customer load trace lj(t), estimated charging rate
B}, estimated regular load profile dj(t)
2: Calculate Aqlg(t) and Aglg(t).
for tin 1 to 7T do
4: Determine change point status for time slot ¢ (4).
Determine charging status for time slot ¢ (5).
6: Update C with any newly detected (s;,e;).
end for
8: for (s;,e;) in C do
Run an accumulator (cf. Section III-B2) to examine this
potential charging period and update C.
10: end for
Perform post-detection filtering of C.
12: Output: Detected charging periods

3) Post-Detection Tests and Filtering of Charging Periods:
Next, we further examine these detected charging periods based
on the following idea: within a detected charging period, the
regular/non-EV load should behave statistically similarly to that
immediately before and after this period. Accordingly, we use
one-sided hypothesis testing to further remove false positives
among the detected charging periods. Specifically, for a detected



charging period [s;, e;], we test if each I, (t) — Ey, ¥t € [s;, €;]
follows a normal distribution N (u, 02) — the “null hypothesis”,
where p and o2 are the mean and variance of all the load
measurements within the 2-hour window before and that after
[si,e;]. Given the length of [s;,e;] (and hence the number of
samples to test), we employ Bonferroni correction to control
the “family-wise error rate” (FWER), i.e. the probability that
at least one tested sample rejects the null hypothesis when the
null hypothesis is in fact true. With the controlled FWER, the
detected charging period will be removed from C if any sample
in it fails the test.

4) EV Charging Rate Estimation: With the set of all the
charging periods detected, an estimate of the EV charging rate
can then be formed by

By -+

IC| Z max (A1lg(si), Aolr(si)), ©)

[Si ,ei]eé

Where max (A1lx(s;), Aalk(s;)) denote the load increase when
an EV starts charging. Precisely speaking, we only use the
middle 50% of the load increases (from 25% quantile to 75%
quantile) in the data to compute the above average so that the
outliers can be excluded.

5) An Iterative Procedure: With the newly detected charging
periods and the estimated charging rate, we employ an iterative
procedure to refine these results:

a. Update the set of non-charging periods by selecting all the
time slots not in the detected charging periods. Update the
daily regular/non-EV load profile estimate d (t) (cf. Section
1I-B1).

b. Detect the charging periods based on the newly estimated
regular load profile and the charging rate.

c. Update the charging rate estimate E}, (6). Go back to Step
a.

6) Statistical Tests for EV Presence Detection: After sufficient
iterations of the above procedure, based on the final regular load
profile estimate dy,(¢) and the detected charging periods C, we
compute the following set of differences {lk (t) — dy(t),Vt e C }
(i.e., the raw estimates of charging rates). We then make a
decision on whether this customer indeed has a BTM EV by
checking several statistics of this set of differences, including the
total number of samples, the mean, the median, and the average
temperature (observed from weather data) over these samples.
The ideas are the following:

o The detected charging periods for a customer with an
EV should contain mostly “true positives”, (i.e., correctly
detected charging periods), whereas the detected charging
periods for a customer without an EV must all be “false
positives”. What we exploit here is the difference between
the statistical behavior of true positives and that of false
positives.

o The detected charging periods for a customer with an
EV should be relatively evenly distributed across times of
different temperatures. In contrast, false detection caused
by the AC (or furnace) load would tend to concentrate in
times of noticeably high (or low) temperatures.

For a customer with a BTM EV, it is expected that a) the
number of samples in C will be relatively large as it tends to
include all the true charging periods, (e.g. charging at least 2
hours/week on average), b) the mean and the median will fall
within an expected range of EV charging rate (e.g., between
3 kW and 4 kW [12]) as the differences are induced by true
EV charging events, and c) The average temperature over the
detected charging periods is moderate (e.g., between the 20%
and 80% quantiles of the temperatures).

In contrast, for a customer with no BTM EV, all the de-
tected charging periods are false positives, and the differences
computed have nothing to do with an actual EV charging rate.
As such, it is expected that a) the number of samples will be
fewer as only false positives are included, b) the mean and the
median may not fall within the normal range of EV charging
rate as the differences are purely due to idiosyncrasies irrelevant
to EV charging, and c) in case many false positives are caused
by using AC (or furnace), the average temperature over these
false positives will be noticeably high (or low). In Section IV,
we will demonstrate the effectiveness of using such statistics for
EV presence detection.

C. EV Charging Rate Estimation and Charging Period Detection

Once the EV presence detection decisions are made, we can
partition the customers into those who have BTM EVs and
those who do not. For each customer who has an EV, we then
estimate the charging rate and detect all the charging periods.
As shown above, in the algorithm for detecting EV presence,
these two tasks are in fact already solved as sub-problems. As
such, the same algorithmic framework is used for solving these
two tasks. Still, modifications and new elements are introduced
in the algorithm design to further enhance the performance.

a) Cross-Customer Similarity: In estimating customer k’s
regular/non-EV load profile, we further utilize those customers
without EV to form an estimate by averaging their load profiles,
as their loads are completely regular/non-EV loads. We note that,
this was not possible when detecting EV presence, as we did not
yet know which customers do not have EVs at that point. We
then combine the original regular load profile estimate based
on customer k’s own data (cf. Section III-B) with the estimate
based on the similarity between customer k and those customers
without EV, so that an improved regular load profile estimate is
obtained.

de(t) — (1 — a)dp(t) + ad',(t), 7)

where d’ «(t) is the average regular load profile of customers who
do not have EVs. In our numerical experiment, « is set to be
0.1.

b) Conservative Charging Period Detection for Accurate
Charging Rate Estimation: Importantly, we note that estimating
the charging rate and detecting the charging periods can be
viewed as two distinct objectives, each of which can utilize its
own tailored algorithm. Recognizing this, one useful technique
to improve the performance of charging rate estimation is to set
the algorithm parameters so that the false positive rate (FPR) is
minimized, at the expense of a lower true positive rate (TPR).
The rationale is the following. When estimating the constant



charging rate, false positives often lead to much larger errors than
true positives. If we can minimize the number of false positives
(e.g., by setting the detection criteria harsher, i.e., detecting the
charging periods more conservatively), even if it also inevitably
leads to fewer true positives, as long as the total number of true
positives is still reasonably large, the charging rate estimation
will be improved.

¢) Employing the Estimated Charging Rate for Charging
Period Detection: After the EV charging rate is estimated, the
final task is charging period detection. Here, since we already
have a very accurate estimate of the charging rate, we will no
longer update it as in the joint charging rate estimation/charging
period detection algorithm in Section III-B. Instead, we will
simply employ and fix the value of the estimated charging rate,
and just run the other steps of the procedure (i.e., iterations of
regular load profile estimation and charging period detection) to
detect the charging periods. Empirically, we use the following
post-detection correction to further enhance the performance:

é<—{(si—l,ei—&-l),V(si,ei)eé} ®)

These two extra time slots included serve as the “warm up” and
“cool down” stages of a charging period.

IV. DATA-DRIVEN EVALUATION

In this section, we evaluate the performance of the proposed
algorithms based on a real-world data set from Pecan Street
Inc. [14]. We note that, while there are three types of EVs
with different charging rates, our study focuses on the most
challenging type with the lowest charging rate (between 3 to
4 kW) which is also the only type with sufficient data in this
data set for a comprehensive evaluation. The lowest charging rate
presents the most challenge as it results in the lowest “signal to
noise ratio” for detection and estimation. Specifically, the data
was collected from 23 customers (5 of which with EVs and the
other 18 without EVs) in Austin, Texas, spanning a 12 months
period from 1/1/2018 to 12/31/2018. Crucially, the data set is
collected with EV traces measured separately so that evaluations
can be performed by comparing the estimated EV traces with the
ground truths. It is worth clarifying that the use of ground truths
is solely for evaluation, and our algorithms do not assume the
knowledge of these ground truths at all. The temperature data
is collected from National Solar Radiation Database (NSRDB)
[18].

A. EV Presence Detection

We first present the performance of BTM EV presence de-
tection. As described in Section III-B, for each customer (with
or without EV), we run an iterative procedure to compute a) a
daily regular (non-EV) load profile cfk(t) and b) a set of detected
charging periods C. Here, for this EV presence detection task,

we set cspy, and csy, to be %

We then collect the set of differences {lk(t) — dy(t),vteC }
(i.e., the raw estimates of charging rates), and examine its
statistics to detect whether this customer has a BTM EV or
not. In Table I and II, we present the statistics of the sets of
differences for the 5 customers with EVs and the 18 customers
without EVs, respectively. We expect the statistics for a customer
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Figure 1: A representative example that shows the disaggregation
performance of our algorithm.

Table I: EV Presence Detection (Customers with EVs)

D Mean Median Avg. Charging Average
Rate (kW) | Rate (kW) Hours/Week Temp. (°C)
1642 3.63 3.47 7.87 21.22
4373 3.48 3.30 11.91 21.81
6139 3.27 3.10 5.87 19.16
7719 3.12 3.02 2.70 23.86
8156 3.71 3.49 7.41 21.30

with an EV to be within reasonable ranges: in particular, 1)
mean and median charging rates are within (3kW, 4kW). 2)
EV customers charge at least 2 hours/week on average. 3) The
average temperature over the detected charging periods is within
(11.0°C, 28.9°C), i.e. from 20% quantile to 80% quantile of the
temperatures in the year of 2018 in Austin, TX. We observe
the high performance of our algorithm: a) for the customers
with EVs, all of them are successfully identified, and b) for the
customers without EVs, 16 out of 18 are successfully identified.

B. EV Charging Rate Estimation and Charging Period Detection

We next present the performance of BTM EV charging rate
estimation and charging period detection. Here, a) for the charg-

ing rate estimation task, we set csp;, and csy, to be % and
2?’“, respectively and b) for the charging period detection task,

we set cspy, and csy, to be b;" and ES’“, respectively.

We summarize the results for the 5 customers with EVs in
Table III. We observe that very accurate charging rate estimates
are achieved. For charging period detection, a) a binary detection
decision of whether an EV is charging is made for each time
slot, and b) the true positive rate (TPR) and false positive rate
(FPR) over all the time slots are computed as metrics for each




Table II: EV Presence Detection (customers without EVs).
Statistics that fail the test of expected EV charging behavior
are highlighted.

D Mean Median Avg. Charging Average
Rate (kW) | Rate (kW) Hours/Week Temp. (°C)
2335 3.49 3.42 375 25.57
2361 3.13 3.04 5.99 30.35
2818 3.55 3.21 0.03 18.10
3039 3.33 3.25 6.07 27.19
3456 3.20 3.26 0.54 24.41
3538 2.28 2.28 0.00 0.00
4031 3.82 3.70 1.92 20.81
5746 2.08 2.13 0.05 25.68
7536 3.33 3.18 1.03 30.01
7800 2.41 2.41 2.39 28.80
7901 3.78 3.71 1.61 22.00
7951 4.26 4.17 1.02 18.14
8386 2.80 2.63 0.40 28.06
8565 2.89 2.93 2.17 19.72
9019 2.73 2.77 0.31 32.67
9160 2.69 2.64 0.14 22.76
9278 4.34 3.85 4.46 10.16
9922 4.08 3.78 3.10 25.46

Table III: Performance of BTM EV Charging Rate Estimation
and Charging Period Detection

True Estimated
D Charging Charging TPR | FPR
Rate (kW) | Rate (kW)
1642 3.38 3.36 0.94 | 0.03
4373 3.35 3.28 0.92 | 0.04
6139 3.35 3.23 0.95 | 0.09
7719 3.27 3.19 0.88 | 0.03
8156 3.29 3.30 0.88 | 0.07

customer. From the high TPRs and low FPRs, we observe the
high performance of our algorithms. As a representative example,
Figure 1 plots the detected EV charging activities compared with
the ground truths, demonstrating how the proposed algorithm
captures the majority of the EV charging activities by disaggre-
gating the total load trace.

V. CONCLUSION

In this paper, we developed an effective algorithmic framework
that, based on smart meter data of total load traces, a) detects
the presence of BTM EVs, b) estimates BTM EV charging rates,
and c) detects BTM EV charging periods. The algorithm design
successfully exploits a) the characteristics of typical EV charging
traces and b) the temporal and cross-customer correlations of
non-EV/regular loads. Evaluation conducted on real-world 15-
minute interval smart meter data collected from Austin, TX
demonstrated great performance of the developed algorithms.
BTM load disaggregation for multiple EVs (e.g., at the feeder
level) is left for future work.
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