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Abstract—Wind power producers (WPPs) that sell power in
forward power markets would like to minimize their operating
costs which increase with generation uncertainty. In this work,
the value of energy storage for reducing such costs is studied.
In particular, profit maximization is considered for a WPP
who participates in a two-settlement (forward and real time)
market and utilizes energy storage by charging/discharging it
strategically. An infinite horizon discounted cost minimization
problem for the optimal use of energy storage is formulated as
a dynamic programming (DP) problem that includes the past
unfulfilled forward contracts in the state space. The optimal
storage operation policy is shown to have a structure with two
thresholds: after delivering its contracted power, if a WPP’s
energy falls below a lower threshold, it buys energy and charges
its storage up to this threshold; if its energy exceeds a higher
threshold, it sells the excess energy and maintains its storage
level at this threshold. Several heuristics for solving the DP
are derived based on approximating the problem model: a) a
discrete policy based on discretizing the state and action space,
and b) affine and look ahead policies derived by solving a Linear
Quadratic (LQ) controller whose parameters are fit from the DP.
The heuristics are tested both with simulated and real world wind
and price data. It is observed that while the discrete optimal
policy performs better on simulated data than either the look
ahead or the affine policies (except with a very high battery
capacity), the look ahead policy performs much better with real
world data. This suggests that the performance of look ahead
approximate optimal policy is more robust to the modeling errors
and mismatch between analytic models and real data traces. The
appropriate heuristic to use thus depends on modeling fidelity,
available computational resources and variability of wind and
price forecasts.

I. INTRODUCTION

Driven by greenhouse gas reduction goals, many countries
and areas have set ambitious target levels for incorporating
renewable energy into the electric grid. Wind energies, in
particular, have experienced significant growth in their in-
stallation, as their capital costs are rapidly decreasing [1].
While wind energies are clean and have low variable cost
in their operation, they are also intrinsically uncertain and
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variable. Hence, conventional generation assets must be used
to compensate for the uncertainty and variability of the wind
energies in the electric grid.

A primary approach for integrating wind energy into the
electric grid is to let wind power producers (WPPs) participate
in conventional power markets to sell their power generation
[2]. Typically, a vast majority of the power supply is traded
in forward markets (e.g., day-ahead wholesale market), with
the remaining supply and demand handled by the real time
markets. For a WPP, however, selling power in forward mar-
kets critically depends on knowledge of its future wind power
generation, which is inherently uncertain due to difficulties of
wind forecast [3]. Any shortfall between a WPP’s commitment
in a forward market and its actual generation at the delivery
time has to be made up by buying in the real time market,
which is typically costly. As wind power generation has very
low variable cost, the cost due to its generation uncertainty is
thus a WPP’s major operating cost. Consequently, there are
strong incentives for WPPs to reduce their uncertainty.

A variety of approaches for WPPs to reduce generation
uncertainty have been studied. These include exploiting sta-
tistical characteristics of wind generation, such as improving
wind forecast [3] and aggregating diverse wind sources [4].
In this context, energy storage promises to emerge as an
increasingly viable technology as its cost continues to decrease
[5]. For instance, co-located energy storage enables a WPP
to shift energy across time, and charge/discharge the stored
energy to compensate any generation shortfall required to meet
forward contracts. Nonetheless, as energy storage is currently
still expensive, assessing its value in reducing operating cost
and increasing profit is of primary interest to WPPs.

We consider a WPP participating in a dynamically evolv-
ing conventional two-settlement (day-ahead and real time)
market, with the help of co-located energy storage (i.e., a
battery). The problem of a WPP participating in a two-
settlement market without storage has been studied in [6], [7]
and [8], and optimal forward contracts based on the statistics
of wind generation have been developed. The problem of
using energy storage (in the absence of renewable energy)
to arbitrage in a real time power market has been studied in
[9] and an approximate dynamic programming solution was
proposed. Co-located with wind power participating in a real
time market only, the value of storage has been studied in
[10] and [11], for which dynamic programming (DP) solutions
and online algorithms have been developed, respectively. Day-
ahead market is considered in assessing the role of storage



co-located with wind power in [12], where the optimal day-
ahead contracts and storage operation are solved for a single
day period. Finally, a dynamically evolving two-settlement
market has been considered in [13] and [14] in which optimal
operation of co-located storage and wind power are studied.
There, the model is limited to one in which the forward market
trades power one time slot ahead. As will be clarified next,
this corresponds to the case of D = 1 in this paper. We note
that, when hourly day-ahead and hourly real-time markets are
considered, D can be as large as 24. This poses great chal-
lenges in computing the optimal policy as the computational
complexity grows exponentially with D.

In this work, we study a WPP that has co-located storage
in a general dynamically evolving two-settlement market,
where forward contracts are made D (≥ 1) time slots
ahead of delivery. We consider independent periodic wind and
price processes, and find optimal control policies for forward
contracts as well as battery charging/discharging levels. We
formulate the problem as a DP by including the committed
forward contracts for the past D time slots in the state space.
Based on the convexity of the value function of this DP, we
prove that the optimal energy storage control policy exhibits a
structure associated with two battery thresholds b and b: a) if a
WPP has remaining energy (after fulfilling its current delivery
commitment) below b, it buys energy from the real time market
to charge the battery up to b, b) if it has remaining energy
above b, it sells all its excess energy in the real time market
to maintain the battery level as b, and c) otherwise, it stores
the remaining energy in the battery without buying or selling
in the real time market. Even with such characterization of the
optimal policy, it is not clear how the WPP should optimally
grant contracts in the forward market. Furthermore, the DP
characterization suffers from the curse of dimensionality as
well as the infiniteness of state and action space.

To address the computational challenge of solving the
proposed DP formulation, two approximations of the problem
are studied and optimal policies for these approximations are
found. In particular, we determine an optimal discrete policy
based on discretizing the state and action space. We also
develop affine and look ahead policies by solving a Linear
Quadratic (LQ) stochastic control problem with quadratic
stage cost functions approximating costs in the original DP
formulation and uncertainty in price process not considered.
We test the approximate optimal policies first with simulated
wind and price processes whose statistics are learned from
the real world data, and then with real world wind and price
data directly. As one would expect, discrepancies between real
world wind and price processes and the ones derived from
a parameterized model can be significant. As a result, we
observe a notable performance penalty gap when the proposed
algorithm is applied to the real world data instead of simulated
data. An analytical characterization of this gap, in terms of the
statistical properties of the wind and price processes, is left for
future work.

The remainder of the paper is organized as follows. Section
II establishes the system model and formulates the DP prob-

lem. Section III proves the threshold structure of the energy
storage operation policy. Section IV develops computation
methods for approximate optimal policies. Simulations based
on simulated and real world data are presented in Section V.
Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

A. System Model

We consider a WPP with battery energy storage of capacity
B. We study the infinite horizon problem of maximizing
the expected discounted profits by selling wind power in a
two-settlement market accompanied by storage operation. The
system model is described as follows. At time t ≥ 0, t ∈ Z ,
• The WPP receives wind energy wt, which arises in-

dependently from a distribution with a time dependent
probability density function (pdf) pt(wt).

• The battery level is bt.
• The WPP participates in the forward market by commit-

ting to supplying st units of energy, to be delivered D
time slots later. It earns pft st, where pft is the price of
unit power in this forward market.

• The previously committed power delivery st−D is ful-
filled. The energy surplus (which is negative if there is a
deficit) after using the available energy (from wind and
battery) to fulfil st−D is denoted by et = bt+wt−st−D.

• The WPP decides the target battery level at the next
time slot, from which the charging/discharging amount
is implied. We denote this action by bt+1.

• If et > bt+1, there is remaining energy after storing the
next time slot’s battery amount bt+1, and this remaining
energy et − bt+1 is sold in the real time market. If et <
bt+1, the WPP must buy bt+1−et in the real time market
to charge the battery to bt+1. The selling price in the
real time market is denoted by pst , and the buying price
by pbt . We assume pbt > pst , and E

[
pbt
]
> pft > E [pst ]

to prevent arbitrage opportunities where the WPP can
purchase power from the real time markets at low rates to
satisfy past contracts or is motivated to sell power in the
real time market instead of contracting to sell this power
in the forward market.

• The price processes (pft , p
b
t , p

s
t ) arise independently from

a time dependent joint distribution.
• The wind and (joint) price processes are independent and

arise from distributions that are periodic with a period D.
We define a policy decision at time t to be ut ,

(st, bt+1) ∈ A, where A is the action space. Specifically, as
wind generation is always non-negative,

A = {(st, bt+1) : 0 ≤ bt+1 ≤ B, st ≥ 0} . (1)

We observe that the state of the system at time t consists of
the following tuple xt ,

(
t mod D, pft , p

s
t , p

b
t , wt, s

t−1
t−D, bt

)
.

We denote the state space by X . In particular, the past
unfulfilled contracts st−1t−D , {st−D, . . . , st−1} need to be
included in the state space in order to formulate a dynamic
program as follows.



B. Dynamic program

We consider expected discounted profit maximization as
the objective function, and formulate the following optimal
control problem:

V (x) , min
ut(·)

E

[ ∞∑
t=0

βtg(xt, ut(xt)) | x0 = x

]
s. t. xt+1 = f(xt, ut(xt), zt)

(2)

where
• β ∈ (0, 1) is some discount factor,
• Stage cost g(·, ·) is defined as
g(xt, ut) = gf (pft , st) + gr(p

b
t , p

s
t , bt+1 − et) + IBt

(bt+1),
(3)

where gf (·, ·) represents the forward market cost func-
tion, and gr(·, ·, ·) represents the real time market cost
function. gf (·, ·) and gr(·, ·, ·) are both convex in their
individual arguments. The third indicator function ensures
that the battery energy level satisfies the constraints (1),
and is defined for an appropriate set B as

IB(x) =

{
0 if x ∈ B
∞ otherwise.

The battery operation is modeled to be efficient such
that associated loss is neglected and the storage ramping
constraint is not considered. In other words, the battery
can be charged or discharged to any amount in the
subsequent stage with no losses 1. Cost functions are then
given by ((x)+ , max(0, x)),
Bt = [0, B], gf (pft , st) = −pft · st, (4)

gr(p
b
t , p

s
t , bt+1 − et)

= pbt(bt+1 − et)+ − pst (et − bt+1)+, (5)
• zt = [wt+1, p

f
t+1, p

s
t+1, p

b
t+1] captures the random wind

and price processes at time t+ 1.
• f(x, u, z) is the state transition function, and it is immedi-

ate to see that xt+1 can be simply determined by copying
appropriate entries from xt, ut, zt. Thus, f(x, u, z) is a
linear function in x, u and z.

Note that the optimization variables here are the (infinite-
dimensional) policies {ut(xt)}∞t=0. Each ut maps the state
xt to (st, bt+1). Thus, we have ut : RD+6 → R2. The
information pattern is such that at time t, the following
quantities are known exactly:
• Wind realization {wτ}tτ=−∞.
• Price processes

{
pfτ , p

b
τ , p

s
τ

}t
τ=−∞.

The above formulation provides a dynamic programming
problem. In particular, the Bellman operator is
T (V )(xt)(·) , inf

u∈A

(
g(xt, u) + βE [V (f(xt, u, z))]

)
.

The expectation is over randomness in z. The time at each
step is considered to be known. The optimality equation of
the dynamic program is given by the fixed point equation

V = T (V ). (6)

1The model can accommodate storage ramping constraints and the only
change that has to be made is Bt = [0, B] ∩ [bt −Br, bt +Br], where Br

is the ramping constraint at each stage.

We observe that the stage cost g(·, u) is uniformly bounded
above by a constant as the maximum wind, price and contract
levels are finite. T defines a contraction over functions, i.e.
‖T (V1)−T (V2)‖∞ ≤ β‖V1−V2‖∞, where ‖ · ‖∞ represents
the max norm. We thus have the result that a value iteration
converges to a fixed point [15], i.e. limn→∞ T n(V0) = V ∗.

III. STRUCTURAL PROPERTIES OF VALUE FUNCTION AND
OPTIMAL POLICY

We now investigate structural properties of the value
function and the optimal policy of the dynamic program (6).
Throughout this section, we use b+ to denote the next time
slot’s battery level as a result of the control action, b− the
current battery level, and s−D the previous commitment that
needs to be fulfilled in the current time slot.

We begin with the following fact [16].
Theorem 1: V (x) is a convex function in the state vari-

ables wt, bt, st−1t−D.
Next, we derive structural properties of the optimal policy

u∗(x) = [b∗+(x), s∗(x)]T . By definition,
u∗(x) = argminu g(x, u) + E [βV (f(x, u, z))] . (7)

Furthermore, the optimal contract given an action b+, denoted
by s̃∗, is
s̃∗(x, b+) = argmins g(x, b+, s) + E [βV (f(x, b+, s, z))] .

It is clear that s̃∗(x, b+) depends only on b+ and a
reduced set of state variables x̃ , [pf , s−1−D+1, t mod
D]T , and can be equivalently written as s̃∗(x̃, b+) =
argmins E

[
gf (pf , s) + βV (f(x̃, b+, s, z))

]
. In addition, the

optimal actions b∗+ and s∗ satisfy the following equations:
b∗+(x) = argminb+ E

[
g (x, b+, s̃

∗(x, b+))

+ βV (f (x, b+, s̃
∗(x, b+), z))

]
, (8)

s∗(x) = s̃∗(x, b∗+(x)). (9)
Furthermore, we will make use of the following notation:

Ṽ (x̃, b+) , min
s
gf (pf , s) + E [βV (f(x̃, b+, s, z))] .

We have the following lemma.
Lemma 1: Ṽ (x̃, b+) is a non-increasing convex function

of b+.
Proof: The non-increasing property follows from the ob-

servation that storing more energy cannot decrease expected
profit (and the value function captures the negative of profit).
Next, we observe that gf (pf , s) + E [βV (f(x̃, b+, s, z))] is a
jointly convex function in b+, s0−D because a) V (·) is convex
in bt, st−1t−D (cf. Theorem 1), and b) f(·) is an affine mapping
and the entries corresponding to bt+1, s

t
t−D+1 only depend on

b+, s, s
t−1
t−D. Finally, expectation over z and minimization over

s both preserve convexity [17].
Employing (4) and (5), b∗+(x) can be rewritten as follows,

b∗+(x) = argminb+ p
b(b+ − e)+ − ps(e− b+)+ + Ṽ (x̃, b+),

(10)
where e = b− + w − s−D is the remaining energy (can be
negative) after using the available energy to fulfill the contract
s−D. Based on Lemma 1, we now establish the following
threshold structure of b∗+(x):
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Fig. 1. Illustration of the thresholds b(x̃) and b(x̃), determined by pb, ps

and Ṽ (x̃, b+). Note that Ṽ (x̃, b+) is typically negative as expected profit is
typically positive.

Theorem 2: Let gf and gr be given by (4) and (5). There
exists two thresholds b(x̃) and b(x̃), such that

b∗+(x) = b(x̃), if e ≤ b(x̃),

b∗+(x) = e, if b(x̃) ≤ e ≤ b(x̃),

b∗+(x) = b(x̃), if e ≥ b(x̃),

(11)

where b(x̃) and b(x̃) satisfy
0 ≤ b(x̃) ≤ b(x̃) ≤ B, (12)

∀b+ ∈ [0, B], Ṽ (x̃, b+) ≥ Ṽ (b(x̃)) + pb(b+ − b(x̃)), (13)

∀b+ ∈ [0, B], Ṽ (x̃, b+) ≥ Ṽ (b(x̃)) + ps(b+ − b(x̃)). (14)
Proof: We prove the case when Ṽ (x̃, b+) is differentiable

with respect to b+. The proof can be straightforwardly ex-
tended to the non-differentiable case.

From Lemma 1, ∂Ṽ (x̃,b+)
∂b+

is a non-positive and non-
decreasing function of b+. Let

b(x̃) =


0, if ∀b+ ∈ [0, B], ∂Ṽ (x̃,b+)

∂b+
+ pb > 0,

B, if ∀b+ ∈ [0, B], ∂Ṽ (x̃,b+)
∂b+

+ pb < 0,

b+ such that ∂Ṽ (x̃,b+)
∂b+

+ pb = 0, otherwise,
(15)

and

b(x̃) =


0, if ∀b+ ∈ [0, B], ∂Ṽ (x̃,b+)

∂b+
+ ps > 0,

B, if ∀b+ ∈ [0, B], ∂Ṽ (x̃,b+)
∂b+

+ ps < 0,

b+ such that ∂Ṽ (x̃,b+)
∂b+

+ ps = 0, otherwise.
(16)

With the above b(x̃) and b(x̃), the optimality of (11) can
be verified by computing the first order condition of (10).
Furthermore, because of the convexity of Ṽ (x̃, b+) in b+, (12),
(13) and (14) are supporting hyperplane conditions that are
equivalent to the first order conditions (15) and (16).

An illustrative example is depicted in Figure 1. In other
words, a WPP always projects its remaining energy e (after
fulfilling current delivery commitment s−D) into the interval
[b, b] as the next battery level. The two thresholds have a clear
intuition as follows. If we have less than b energy, the marginal
benefit of getting more energy to store in the battery is higher
than the cost of buying it from the real time market, thus
justifying buying energy to fill the battery up to b. If we have
greater than b energy, the marginal benefit of selling energy to
the real time market is higher than storing it in the battery, thus
justifying selling any excess energy above the battery level b.

IV. COMPUTING APPROXIMATE OPTIMAL POLICIES

The optimality equation (6) is in general hard to solve. In
this section we look at methods of solving the optimal policies
approximately.

A. Discrete optimal policies

This approximation involves discretizing both the state
and action space and the support of the random price and
wind processes into a finite number of levels, and solving
the optimality equation in (6) for the resulting finite discrete
system. The complexity of this approach for a fixed β < 1
is Θ(|X ||A|). Note that once we solve for the optimal value
function V ∗, we can find out the optimal policy u∗(x).

B. Affine and Look Ahead Policies

Solving the discrete DP exactly has a high complexity if
the number of the discretization levels and the forward contract
horizon D are large, as the state space grows exponentially
with D. For these reasons, we look at affine and look ahead
policies which are much simpler to compute. Specifically, if
the state is represented by a vector as Xt = [wt, bt, s

t−1
t−D] and

control inputs Ut = [bt+1, st], the Affine Policy (AP) heuristic
is of the form

Ut = KtXt + kt, (17)
where Kt ∈ R2×(2+D) and kt ∈ R2×1.

We consider the following approach to obtain such an
affine policy via finding the optimal policy of a Linear
Quadratic (LQ) stochastic control problem. Specifically, in the
dynamic program defined in (2), consider the following cost
functions associated with the stage cost in (3):

gf (pft , st) = hf,1(E[pft ], B, pt(wt))

· (st + hf,2(E[pft ], B, pt(wt)))
2 (18)

gr(p
b
t , p

s
t , x) = hr,1(E[pbt ],E[pst ], B, pt(wt))

· (x+ hr,2(E[pbt ],EE[pst ], B, pt(wt)))
2 (19)

I[0,B](bt+1) = γ

(
bt+1 −

B

2

)2

. (20)

Here convex quadratic cost functions are employed whose
coefficients are chosen as functions of the expectations of
the price processes, the battery capacity and the statistics
of the wind process. Furthermore, the indicator function is
approximated by a quadratic function. The only randomness
now considered by the system is wind zt which is assumed
to arise from the same independent periodic distribution. Only
the mean of the zt in future time steps has an impact.

The dynamics of the system is linear as mentioned in
Section II-B. The convex quadratic stage cost and linear
dynamics of the modified program can then be written as:

gquad
t (Xt, Ut) =

Xt

Ut
1

ᵀ [
Qt qt
qᵀt rt

]Xt

Ut
1


Xt+1 =A1Xt +A2Ut +A3zt, (21)

with appropriate Qt, qt, and Ai
This modified DP is an LQ problem with a convex

quadratic value function, denoted by V̄ (x), and the optimal



policy is affine. The Bellman optimality equation results in
a set of algebraic Ricatti equations which can be solved in
closed form to derive the parameters Kt and kt in the affine
policy (17). The policies derived above are optimal when the
following model assumptions hold:
• The price processes are deterministic,
• The forward and real time market costs are quadratic.
• The constraint that the battery should strictly be within

capacity is replaced by a quadratic penalty for battery
energy levels.

In practice, the above assumptions may not hold. In these
cases, the developed affine policy serves as a heuristic to solve
the original problem. Furthermore, we can also use the LQ
quadratic value function V̄ (x) to obtain a look ahead (LA)
policy as follows [18]:

ut = min
u
g(xt, u) + βθV̄ (f(xt, u,Ezt)), (22)

where θ is a parameter that we can tune.

V. SIMULATION RESULTS

In this section, we numerically evaluate the benefits of
having a battery in a wind farm using the schemes outlined in
the previous sections.

A. Simulation Setup

We consider a WPP participating in hourly day-ahead
markets and hourly real time markets. The natural choice of D
would thus be 24 since a day-ahead forward contract commits
power to be delivered 24 hours later. In our simulation, to
simplify the computation while still preserving the character-
istics of the real world wind and price processes, we consider
the case of D = 4 in the following way. One day is divided
into four 6-hour blocks starting from 12am: early morning,
morning, afternoon, and evening. At any given decision block
(of 6 hours), the WPP decides on a fixed contract level D = 4
blocks later (the contract commitments within a decision block
are fixed) . This reduction to D = 4 is done due to daily
patterns of typical wind and price processes.

We investigate the total discounted profit that the WPP gets
with a battery and a discount factor of β = 0.99. We simulate
the developed policies with two types of wind and price data:
a) simulated data generated with our model assumptions (cf.
Section II-A) of the discrete model whose parameters are
learned from real world data, and b) real world data. The idea
is that, with simulated data, the assumed model is accurate
for the discrete model, and we can derive an optimal policy
corresponding to this, whereas with real world data there is
always some mismatch between our assumed model and the
actual data. Specifically, for the discrete optimal policy, we
divide the wind, price processes each into three levels. The
choices and statistics of these discrete levels are learned from
real world wind and price data in the PJM interconnection
[19]. In particular, the wind power wt is quantized to be one
of 17, 50, 83 MW, and the forward power price pft is quantized
to one of 40, 80, 120 $/MWh. For simplicity, pbt is taken to be

2 · pft−D, and pst to be
pft−D

2 .

Fig. 2(a) plots the total discount profit as a function of
battery capacity for the different approximate policies de-
scribed in Section IV, assuming both wind and price processes
randomly vary. Fig. 2(b) shows the same total discount profit
as a function of battery capacity but now assuming constant
price processes, where the price levels are taken to be equal
to the empirical means of the price data. These simulations
are averaged over 100 realizations. Finally, Fig. 2(c) plots the
total discount profit as a function of battery capacity with real
world wind and price data from January to February 2004 [19].
The discrete optimal policy employs the same wind and price
forecast parameters as it did for the simulated data scenario.
The LQ models employ only the expected wind and price
values.

In each figure, we evaluate the discrete, affine and look
ahead policies developed in the previous section. In order
to get a sense of the optimality of the policies, a genie
upper bound on the maximum achievable discounted profit
is developed by optimizing the actions with the following
assumptions: a) all realizations of the random quantities are
known ahead of time, and b) continuous battery and contract
levels can be set. It is immediate to check that computing such
a genie upper bound is a convex optimization problem, and
can be solved efficiently.

B. Managing uncertainty and exploiting price variations

From all three figures, it is clear that having more battery
capacity leads to a higher profit. We further see that the curves
in Fig. 2(b) are evidently lower than the corresponding curves
in Fig. 2(a). This demonstrates that battery capacity not only
helps a WPP manage wind uncertainty, but can also help it
take advantage of price differences over time. Note that the
latter opportunity is eliminated if prices are constant, which is
the assumption made in Fig. 2(b).

Furthermore, Fig. 2(a) demonstrates that the discrete opti-
mal policy has a performance that is fairly close to the genie
bound. It is also observed that the look ahead policy performs
much closer to the genie bound than the affine policy. The
look ahead policy also outperforms the discrete-approximation
when the battery capacity becomes large. This is because our
discretization error increases as the battery size grows large.

C. Performance with real data

Finally, we compare the performance of our policies with
the genie bound on real world data in Fig. 2(c). In this figure,
the performance gap between any given heuristic policy and
the genie upper bound becomes significant. In particular, the
discrete approximation sees the worst performance penalty.
The gaps highlight the importance of model accuracy. Model
mismatch is both due to the fact that our discrete policy has
to quantize the continuous system state into rather coarse
levels and also because the distributions on the real world
data differ from our modeling assumptions (i.e., independent
periodic processes). While the achieved discounted profit of
the policies based on the LQ approximation is seen to be
worse than that of the discrete optimal policy for Fig. 2(a) and
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Fig. 2. Average discounted profit as a function of battery capacity. (a) Simulated periodic random wind and price processes. (b) Simulated periodic random
wind process and constant price processes. (c) Real world wind and price data.

2(b), it is seen to be better than the discrete optimal policy on
this trace of real world data, suggesting that it is more robust
to modeling imperfections. Investigating ways to incorporate
these insights into robust policies remains an interesting topic
for future work.

VI. CONCLUSION

We have considered a WPP with co-located energy storage
that participates in a conventional two-settlement market. To
maximize its profit, the WPP optimizes its forward contract
D time slots ahead of delivery as well as its storage operation
simultaneously over time. An infinite horizon discounted cost
minimization problem is formulated as a dynamic program that
includes the past D time slots’ forward contracts in the state
space. We proved that the optimal battery operation policy
admits a threshold structure: there exists two thresholds, b and
b, with which a WPP always projects its remaining energy
(after fulfilling current delivery commitment) into the interval
[b, b] as the next battery level. The thresholds b and b are,
however, difficult to compute numerically, motivating us to
look at approximate solutions.

We developed two heuristics for policy computations based
on model approximations. The first heuristic discretizes the
state and action space of the original policy. The second
heuristic is based on affine and look ahead policies that solve a
Linear Quadratic (LQ) stochastic controller based on quadratic
approximations of the objective and constraints of the DP. We
evaluated the approximate policies with both simulated and
real world wind and price data. A genie bound on the optimal
policy is also computed for bounding the performance gaps
of the approximate policies to optimality. With the simulated
data, the discrete and look ahead policies have close-to-optimal
performance. With real world data, as there is a discrepancy
between the wind and price models we assumed and the actual
data, the performance of the developed policies has a larger
gap to the genie bound, with the look ahead policy performing
reasonably well.
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