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Outage Detection Using Load and Line Flow
Measurements in Power Distribution Systems

Raffi Avo Sevlian, Yue Zhao, Ram Rajagopal, Andrea Goldsmith, and H. Vincent Poor

Abstract—An outage detection framework for power distribution
networks is proposed. Given the tree structure of a distribution sys-
tem, a detection method is developed combining the use of real-time
power flow measurements on the edges of the tree with load forecasts
at the nodes of the tree. The maximum likelihood (ML) detection
decision for an arbitrary number of outages is shown to be efficiently
computable due to decoupling across local areas determined by
the sensor locations. To minimize the maximum missed detection
probability, the optimal sensor placement is efficiently solved for tree
networks. Finally, a set of case studies is conducted using feeder data
from the Pacific Northwest National Laboratories. It is shown that
10% mean detection error probability can be achieved by a sensor
density of 30% for a typical feeder with the proposed optimal sensor
placement and outage detection methods.

I. INTRODUCTION

Outage detection and management is a long-standing problem
in power distribution networks. Outages are caused by protective
devices closing off a part of the network to automatically isolate
faults. Usually, a short circuit fault will trigger this protective
operation. The term outage detection is the task of finding the
status of the protective devices, while fault detection is finding the
faults that caused the resulting outage situation. Outage detection
is often performed prior to fault detection and can greatly improve
the accuracy of fault diagnosis.

Many methods for outage and fault detection are based on
artificial intelligence methods. Fuzzy set approaches have been
proposed based on customer calls and human inspection [2],
and based on real-time measurement with a single sensor at
the substation [3]. In networks where supervisory control and
data acquisition (SCADA) systems are available, a subset of the
protective devices’ status can be obtained via direct monitoring.
When two-way communications from the operator and the smart
meters are available, AMI polling has been proposed to enhance
outage detection [4]. There have also been knowledge-based
systems that combine different kinds of information (customer
calls, SCADA, AMI polling) [5]. Outage detection has also been
extensively studied for transmission systems [6], [7], [8], [9], [10].

For fault detection, using only a single digital transient record-
ing device at the substation, fault location and diagnosis systems

This research was supported in part by the DTRA under Grant HDTRA1-08-1-
0010, in part by the Tomkat Center and in part by a Powell Foundation Fellowship,
and in part by the National Science Foundation award Grants CIF1116377, CMMI-
1435778 and ECCS-1549881. The results from this work were presented in part at
the IEEE Power and Energy Society General Meeting, Vancouver, Canada, 2013
[1].

R. Sevlian is with the Dept. of Electrical Engineering, Stanford University,
Stanford, CA, 94305 USA, (e-mail: rsevlian@stanford.edu).

Y. Zhao is with the Dept. of Electrical and Computer Engineering, Stony Brook
University, Stony Brook, NY, 11794 USA, (e-mail: yue.zhao.2@stonybrook.edu).

R. Rajagopal is with the Dept. of Civil and Environmental Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: ramr@stanford.edu).

A. Goldsmith is with the Dept. of Electrical Engineering, Stanford University,
Stanford, CA 94305 USA (e-mail: andrea@stanford.edu).

H. V. Poor is with the Dept. of Electrical Engineering, Princeton University,
Princeton, NJ 08544 USA (e-mail: poor@princeton.edu).

The first two authors contributed equally to this work.

have been developed based on fault distance computation using
impedance information in the distribution system [11]. Using
only the outage detection results, i.e., the status of the protective
relays, expert systems have been applied to locate the underlying
faults [12]. Incorporating voltage measurements in the distribution
system with the outage detection results, fault detection methods
based on knowledge based systems have been proposed [13].
Fault detection that uses fault voltage-sag measurements and
matching has been proposed in [14], [15]. Fault diagnosis based
on fuzzy systems and neural networks have also been proposed
that can resolve multiple fault detection decisions [16].

A major alternative to these mechanisms is the so called last
gasp, where area’s in outage will notify via a distress signal that
they are out of power. Last gasp provides a duplicate method
of outage detection which can be combined with the proposed
methods here. Combining both of these methods can further
reduce the time to outage localization and recovery in practical
scenarios.

This work proposes an outage detection scheme combining
real-time line sensing from a limited number of sensors and
infrequent load updates from AMI. Comparisons of real time line
flows to expected load forecasts reveal changes in the network.
The proposed framework can be implemented in practice since
there is a growing number of deployments of distribution system
line measurements [17], which can measure line current with high
precision, and a growth of smart meter deployments in distribution
systems.

II. PROBLEM FORMULATION AND MAIN CONTRIBUTIONS

We consider a power distribution network that has a tree struc-
ture. Power is supplied from the feeder at the root, and is drawn
by all the downstream loads. An outage is a protective device
isolating a faulted area. When this occurs, the loads downstream
of the faulted area will be in outage. The optimal design and
performance of automatic outage detection is investigated with
the use of the following two types of measurements:

Noisy Nodal Loads typically in the form of forecasts which
have forecast errors that must be taken into account.
Error Free Edge Flows which typically come from real-
time SCADA measurements or line sensors of the power
flows on a fraction of the lines.

Edge flow measurements are modeled as error free for the
following reason: measurements from SCADA systems are com-
municated in real time, whose errors are negligible compared with
the errors of load forecast based on non-real-time information.

In this work, an edge flow refers to the real power flow flowing
on a line, and we make an assumption of an lossless power
distribution system. We note that the developed methodology
is also applicable to the case where an edge flow refers to the
current flow on a line, and no lossless assumption is needed since
Kirchhoff’s law always holds. The main contributions of this work
are the following:
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Outage Detection: For the ML hypothesis test for detecting
any number of possible outages, an optimal and computa-
tionally efficient decentralized detector is developed.
Sensor Placement: The decentralized nature of the optimal
detector is used to provide an efficient optimal sensor
placement algorithm that minimizes the maximum missed
detection error over all outage hypotheses.

III. SYSTEM MODEL AND NOTATION
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Fig. 1. Example tree T1 is used to illustrate various properties. Each node in the
network is numbered. Node vn is connected to it’s parent via edge en consuming
x(v) power at each node. Two flow measurement sensors s0, s1 are deployed.

Topology of the Distribution System: The vertices in the distribu-
tion network are indexed by V = {v0, v1, . . . , vN}, with bus v0
denoting the root of the tree. Edge en connects bus vn and its
parent node.
Outage Hypothesis Model: Outages are modeled as disconnected
edges corresponding to protective devices disconnecting loads on
a network. Consider single line outages in a tree with N edges:
there will exist N single edge outage hypotheses and a non-outage
situation. Let H1 = {e1, . . . , eN , ∅} be the set of all the single-
line outage hypotheses for a tree T .

In general, we consider an unknown number of possible
outages. We define the set of up to k edge outages by Hk.
Load Model: Each node v in the graph has a consumption load
x(v). The forecast of each load is x̂(v) with error ε(v) = x(v)−
x̂(v). We assume that errors are mutually independent random
variables that follow ε(v) ∼ N(0, σ(v)2). Given load forecasts,
the true load is an unknown, and modeled as a random variable
distributed as x(v) ∼ N(x̂(v), σ2(v)). In the vector case,

x̂ ∼ N(x,Σ), (1)

where Σ is a diagonal covariance matrix.
Measurement Model: For any edge e, s is the power flow on it
towards all active downstream loads. The measured flow depends
on the network topology, outage situation and the true loads. The
sensor placement is denoted as M with M ⊂ E. The vector of
all measurements is s ∈ R|M|.

The measured power consumption of the ith sensor measure-
ment under hypothesis H ∈ Hk is

si(H) =
∑

v∈Vi(H)

x(v), (2)

where the set Vi(H) indicates the set of vertices to be summed
over for this particular hypothesis, i.e., the loads that remain to

be served via that line. In general, given a particular hypothesis
H , the observed flows s can be expressed as

s = ΓHx, (3)

where ΓH ∈ {0, 1}|M|×|V | depends on the outage hypothesis.
The load forecast error covariance Σ (i.e., the covariance of x)
can be estimated from the load forecasting process.

IV. OPTIMAL OUTAGE DETECTION

Given the vector of load forecasts, x̂, forecast error covariance
Σ and real time load flow measurements s along a set of edges,
the general outage detector must determine the correct number
and location of each edge in outage. Note that these are single
snapshot values of load forecast and line flow. The framework
presented here can be extended to the multi-period case, but that
is outside of the scope of this work.

A simple outage detector relying on ML detection is consid-
ered. Given the forecast model in eq. (1) and the measurement
model in eq. (3), the ML detector is the following:

Ĥ ∈ arg max
H∈Hk

Pr (s | x̂, H) (4)

The flow likelihood can be computed as:

s|{x̂, H} = ΓHx

= ΓH(x̂ + ε)

∼ N
(
ΓH x̂,ΓHΣΓTH

)
∀H ∈ Hk. (5)

Eq. (5) evaluates a likelihood under each possible hypothesis.
Therefore, a naive detector will enumerate every possible outage,
evaluate it’s likelihood, and choose the maximum. This is difficult
for the following reasons:

1) Enumerating the entire ML detector requires
∑K
k=1

(|E|
k

)
evaluations, given some maximum possible outage size K.

2) Many of the potential hypotheses map to the same observed
flows, therefore the detector output is not unique. This
occurs when one outaged edge is a descendant of another.

3) Missed detection errors in a multivariate hypothesis testing
framework can only be evaluated via Monte Carlo testing.
This unfortunately offers no insight in optimizing sensor
placement.

V. DECOUPLED MAXIMUM LIKELIHOOD DETECTION

In this section, we show that the issues regarding the general
maximum likelihood detector can be overcome by decoupling
the hypotheses and the observations, given the tree structure of
the topology in the outage detection problem. This leads to a
simple decentralized detector that is equivalent to eq. (4), where
detection decisions are made by local decoupled scalar hypothesis
tests, which when combined represent the optimal ML detection
decision.

For the remainder of this section, we will demonstrate:
1) The original search space Hk can be replaced by a set Hu

of uniquely detectable outages, due to the tree structure of
the network.

2) Processing zero/positive flow information reduces the
search space from Hu to H+

u . which decouples into a
product set of local hypotheses:H+

u =
∧

A∈A+

H+
u (A), where

A indicates a local area with its own outage hypotheses.
3) The joint likelihood function Pr(s | x̂, H) decouples

across each area leading to a decentralized scalar value ML
detector that can be solved efficiently.
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A. Unique Outages
Finding outage hypotheses that give the ML of observations can

lead to non-unique solutions. Without loss of generality (WLOG),
uniquely detectable outages are considered, where no possible
edge-outage event is downstream of any other. Define the set of
all “unique” outage hypotheses as:

Hu ={H ∈ Hk for some k, s.t no two edges
are descendant of each other.} (6)

Consider tree T2 shown in Figure 2(c). Here Hu can be enumer-
ated by simple observation

Hu = {∅, e1, e2, e3, e4, e5, (e3 × e5), (e4 × e5)}. (7)

There is a single non-outage hypothesis ∅, 5 single outage
hypotheses, and 2 double outage hypotheses.

Next, we show that outage hypotheses in (7) for T2 and more
generally for any arbitrary tree can be computed recursively. The
set Hu can be enumerated using a “branch-network” based on
the original tree. For example, Tree T1 in Figure 1 is depicted in
Figure 2(a) with nodes and edges removed, which highlights the
various branches of the graph. Each set of branches are aggregated
as a node to be traversed in the hypothesis enumeration procedure,
as in Figure 2(b).

Consider a set-valued function E(b) = {e ∈ E :
e is along branch b} to enumerate the set of edges on a branch.
Given the two examples, we have the following branch-edges:
• T1: E(b1) = {e1, e2, e3}, E(b2) = {e4, e5, e6, e7}, E(b3) =
{e8, e9, e10, e11, e12}, E(b4) = {e13, e14, e15} and E(b5) =
{e16, e17, e18}.

• T2: E(b1) = {e1, e2}, E(b2) = {e3, e4}, E(b3) = {e5}.
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Fig. 2. 2(a) Branches of tree T1. 2(b) Branch network for tree T1. 2(c) Simple
tree network T2. 2(d) Branch network for T2.

Using this definition, we provide the following recursive def-
inition of the set Hu(b), which indicates the set of uniquely
detectable hypotheses formed from branch b and all descendants.
From this definition, it is clear that Hu ≡ Hu(b1), since b1 is the
root branch of the tree

Hu(b) = E(b) ∪

 ⋃
b∈P(child(b))

(∧
b∈b

Hu(b)

) . (8)

Here b is the current node, and child(b) is the set of children of b
in the branch tree. The set P(child(b)) is the power set of all the
child branches, where any element of the power set is b. Note
that if a branch has no descendants, we merely evaluate E(b),
since the remaining terms are null. Eq. (8) is quite unwieldy, but
can be interpreted easily.

For tree T2 in Figure 2(c) the child branches are child(b1) =
{b2, b3} while the power set is:

P({b2, b3}) = {{∅}︸︷︷︸
b0

, {b2}︸︷︷︸
b1

, {b3}︸︷︷︸
b2

, {b2, b3}︸ ︷︷ ︸
b3

}. (9)

Evaluating (8), we arrive at the following:

Hu(b1) = E(b1) ∪

 ∧
b∈{∅}

Hu(b)

 ∪
 ∧
b∈{b2}

Hu(b)


∪

 ∧
b∈{b3}

Hu(b)

 ∪
 ∧
b∈{b2,b3}

Hu(b)

 (10)

With the following definitions:
D1 Non-outage case:

∧
b∈{∅}

Hu(b) = ∅.

D2 Hypotheses double counting: ei ∪ ei = ei, including the
empty set ∅ ∪ ∅ = ∅.

D3 Cross product reduction: ∅× ei = ei, which implies E(b)×
∅ = E(b).

In the case of T2, eq. (8) leads to

Hu(b1) = {∅ ∪ E(b1) ∪Hu(b2) ∪Hu(b3) ∪ (Hu(b2)×Hu(b3))}.
(11)

For the branches b2 and b3 we use eq. (8) and D1 resulting in
Hu(b2) = {E(b2) ∪ ∅} and Hu(b3) = {E(b3) ∪ ∅}. Using D2
and D3, we have the following:

Hu(b1) = {E(b1) ∪ {∅} ∪ {E(b2) ∪ ∅} ∪ {E(b3) ∪ ∅}
∪ {E(b2) ∪ ∅} × {E(b3) ∪ ∅}}

= {∅ ∪ E(b1) ∪ E(b2) ∪ E(b3) ∪ (E(b2)× E(b3))}
= {∅, e1, e2, e3, e4, e5, (e3 × e5), (e4 × e5)}.

This is identical to the simple enumeration in (7). With the use
of a unique hypothesis set, the maximum likelihood detector is
reduced to

Ĥ = arg max
H∈Hu

Pr (s | x̂, H) . (12)

Note the equality in the maximization since the restriction of
the search space allows us to find a unique solution. Notice
that this procedure will automatically enumerate all possible
number of outages as well as their locations in the graph. Under
the general model of any number of edge outages, this is the
complete enumeration of the hypothesis set which still has a high
computational burden.

The remaining sections show that a) this search space decouples
to a product space of local hypotheses given binary flow indicators
and b) the likelihood function decouples along these local “areas”,
thereby reducing to a decoupled scalar hypothesis test for each
local “area”.

B. Decoupling the Hypotheses Set with Binary Flow Information
The detection problem will encounter a set of positive (s+)

and zero (sz) flow observations depending on whether a sensor
is downstream of an edge outage. The ML detector reduces as:

Ĥ = arg max
∀H∈Hu

Pr ({sz s+} | x̂, H) (13)

= arg max
∀H∈H+

u

Pr ({s+} | x̂, H) , (14)

where, by processing the flow information, the set of hypotheses
in the detector search space reduces from Hu to H+

u . The reduced
hypothesis set is defined as:

H+
u ={H ∈ Hu where the outages do not violate the observed

positive and zero flow observations}. (15)
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Fig. 3. 3(a) The branch network for network T1 with associated sensors s1, s2
and area hypotheses H+

u (A1) and H+
u (A2). 3(b) Each area will keep the local

branches. Branch b3 is split between two areas and processed as different vertices
in branch-network (bu3 and bl3. 3(c) The network can be modeled by a directed
graphical model indicating observations (shaded) and variables.

More importantly, H+
u does not require the full recursive enumer-

ation, instead it decouples as a product space of local recursively
enumerated sets. The set H+

u (b) follows the similar definition
of Hu(b), indicating all unique outages that do not violate the
power and zero flow observations formed from branch b and its
descendants.

This is first shown in an example, then the general form is
stated. Consider T1, with the branch network with flow measure-
ments as shown in Figure 3(b). In this example, all branches are
unchanged except b3. Branch b3 is split into bu3 and bl3 separated
by flow measurement s1. In the case of splitting branch nodes,
the upper branch will take the edge with the measurements, and
hence E(bu3 ) = {e8, e9, e10} and E(bl3) = {e11, e12}.

The following illustrative example highlights a general decou-
pling principle of the hypothesis set H+

u . Consider the two cases
separately (s1, s2 > 0 and s1 > 0, s2 = 0) which provides the
intuition for the general case.

1) Case 1: (s1 > 0, s2 > 0) This implies that there cannot
be any outage with edges in b1 or bu3 , else s2 = 0. A brute force
enumeration of H+

u (b1) is done by enumerating H(b1) according
to Figure 2(b), then removing any terms with E(b1) and E(bu3 )
outages. The set of unique outages is:

Hu(b1) = {∅ ∪ E(b1) ∪ E(b2) ∪ (E(bu3 ) ∪Hu(bl3))

∪
(
E(b2)× (E(bu3 ) ∪Hu(bl3))

)
}.

Removing the possible outages due to the binary flow indicators,
(i.e. any tuple with edges in E(bu3 ), or E(b1)) results in

H+
u (b1) = {∅ ∪ E(b2) ∪H+

u (bl3) ∪
(
E(b2)×H+

u (bl3)
)
}

= {∅1 ∪ E(b2)} × {∅2 ∪H+
u (bl3)}

= H+
u (A1, f1)×H+

u (A2, f2),

where the notations with Ai, fi are explained below. Local areas
A1 and A2 are used to partition the original tree. Each area
will contain a root sensor (ex. A1 has root sensor s1) and a set
of child sensors which are sensors immediately downstream of
the root sensor. For example, child(s1) = {s2}. Within a local
area, a set of unique outage hypotheses are evaluated H+

u (A1, f1)
satisfying the child binary flow indicators fi = I{child(si)>0}.
This will decouple the set of all hypotheses into a product
space of “area hypotheses” H+

u (A1, f1) and H+
u (A2, f2), where

H+
u (b1) = H+

u (A1, f1)×H+
u (A2, f2). Note that, given the binary

flow indicators, the search space of hypotheses no longer needs
a full recursive enumeration, but can be computed as a product
of smaller hypothesis sets. Finally, note that ∅1 and ∅2 are non-

outage conditions within the local areas. This is discussed in more
detail in Appendix C.

2) Case 2: (s1 > 0, s2 = 0) This implies that all possible
outage scenarios must contain b1 or bu3 , else s2 > 0. First we
enumerate Hu(b1) then keep only those elements which lead to
s2 = 0 (i.e. every tuple with edges in E(bu3 ), or E(b1)) , we have:

H+
u (b1) = {E(b1) ∪ E(bu3 ) ∪ E(b2)× E(bu3 )}

= {H+
u (A1, f1)}

Note that in this case,H+
u (A2, f2) is never evaluated since s2 = 0.

3) General Hypothesis Decoupling: For any arbitrary tree and
set of binary flow indicators the unique hypothesis set conditional
on the binary line flow indicators, H+

u , will decouple according
to:

H+
u =

∧
A∈A+

H+
u (A, f). (16)

The set A+ indicates the areas which have root measurements
si > 0 and H+

u (A, f) is the local conditional hypothesis.
Any given Hi ∈ H+

u is represented by a product of area
hypotheses Hi = H1,i(1)× . . .×HM,i(M), where for the kth area
Hk,i(k) ∈ H+

u (Ak, fk). Index i(k) is the particular index into the
kth hypothesis set restricted to area Ak. Appendix D presents
a general algorithm to enumerate H+

u (A, f), for arbitrary binary
flow information.

C. Decoupling the Joint Likelihood:
We show that the joint likelihood of all observations decouple

across the areas. In general:

Pr (s+ | x̂, H) =
∏

i:Ai∈A+

Pr (si | child(si), x̂, Hi) (17)

The tree T1 is presented here as an example, while the general
case can be easily shown as an extension of the example.

Consider again the sub-graph in Figure 3(a), where hypotheses
are reduced using binary flow information (both s0, s1 > 0).

As discussed in Section V-B3, a unique hypothesis Hi ∈ H+
u

can be represented as Hi = H1,i(1) × H2,i(2). Where H1,i(1) ∈
H(A1) and H2,i(2) ∈ H(A2).

From eq. (2), the observed flow s1 can be computed as follows:

s1|{x̂, Hi} =
∑

v∈V (H1,i(1)×H2,i(2))

x(v) (18)

=
∑

v∈V (H1,i(1)×H2,∅)\V (H2,∅)

x(v) +
∑

v∈V (H2,i(2))

x(v)

(19)

=
∑

v∈V (H1,i(1))

x(v) + s2 (20)

where:
• Eq. (18) is the summation of true loads. By decoupling of

the hypotheses across areas, we represent Hi as the product
of the two local hypotheses H1,i(1) and H2,i(2).

• In (19), this can be separated as the sum of parts. (1)
Term V (H1,i(1) × H2,∅) \ V (H2,∅) are the vertices in the
summation in A1 independent of what is happening of
downstream areas. H2,∅ indicates the non-outage hypothesis
in area 2. (2) Term V (H2,i(2)) is the set of vertices in the
summation for area 2. Even though H2,i(2) is unknown,
s2 =

∑
v∈V (H2,i(2))

x(v).
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• Eq. (20), replaces the second summation of eq. (19), with
the observed flow, since they are the same. Therefore, if we
condition on the remaining flow observation, child(s1), the
likelihood function for observation s1 only depends on the
local hypotheses and on no other area hypotheses.

Finally, since x(v) is not known, a likelihood function for the
net flow in the area can be constructed given the load forecasts.
The first term in eq. (20) is modeled with the following:

s1 − s2|{s2, x̂, H} ∼ N(µ1(x̂, H), σ1(x̂, H)). (21)

Evaluating µ1(x̂, H), and σ1(Σ, H) can be computed easily,
since the load forecasts, uncertainties and local hypotheses can
all be enumerated. Section VI-B, described this methodology in
more detail. Similarly, s2 is decoupled from any hypothesis in
H+
u (A1), since the measurement depends only on downstream

hypotheses (assuming s2 has some positive flow to begin with).
In this example the decoupled likelihood function is

Pr (s1 s2| x̂, H1, H2) = Pr (s2| x̂, H2) Pr (s1|s2, x̂, H1)

where H1 ∈ H+
u (A1) and H2 ∈ H+

u (A2).
This decoupling can be represented as a simple graphical

model as shown in Figure 3(c), where each local hypothesis
is an unknown variable that must be determined via likelihood
maximization. Conditioning on observations s1, s2, the likelihood
function will be a product of two terms that depend on H1 and
H2 separately. This decoupling allows for maximization of the
product to be done independently for each variable. This graphical
model formulation also extends to the general case where there
may be noise in the flow measurements. In such a case, the
decoupling would not work, but a message passing algorithm can
be used. The graphical model formulation can also be applied in
different sensor types.

In the general case, eq. (18)-(20) can be extended to a general
area network with multiple downstream sensors.

D. Decoupled Maximum Likelihood Function:

Combining the results so far leads to the decoupled likelihood
function and decoupled ML detector as follows:

Ĥ ∈ arg max
∀H∈Hk

Pr (s|x̂, H) (22)

= arg max
∀H∈Hu

Pr ({s+ sz}|x̂, H) (23)

= arg max
∀H∈H+

u

Pr (s+|x̂, H) (24)

= arg max
∀Ai∈A+ ∀Hi∈H+(Ai)

Pr (s+|x̂, H1 . . . HM ) (25)

= arg max
∀Ai∈A+ ∀Hi∈H+(Ai)

∏
i:Ai∈A+

Pr (si|child(si), x̂, Hi) (26)

=
∧

i:Ai∈A+

arg max
∀Hi∈H+(Ai)

Pr (si|child(si), x̂, Hi) (27)

Here eq. (22) is the original hypothesis test over all possible
outage hypotheses. This is reduced to a search space over Hu
in eq. (23). This further reduces to an even smaller search space
H+
u due to processing of binary flow information in eq. (24). Eq.

(25) decouples H+
u to a product space of local search hypotheses.

Eq. (26) decouples the likelihood functions by conditioning on
the set of observations. This likelihood function is a product
of terms which only depend on the local hypotheses. Therefore

Algorithm 1: Maximum Likelihood Hypothesis Detector.
Result: Maximum Likelihood Hypothesis Detector
Input: [1] Load Forecast/Nominal Statistics: x̂, Σ

[2] Real Time Load: s = {s+, sz}
1 A+ ← prune-areas(A, s)
2 for Ai ∈ A+ do
3 // Generate Local Hypothesis set.
4 H+

u (Ai)← local-hypotheses(T , si,desc(si))
5 // Local ML Detector
6 Ĥi ← arg max

∀Hi∈H+(Ai)

Pr (si|child(si), x̂, Hi)

7 end
8 // Combine Local Hypotheses
9 Ĥ ←

∧
Ai∈A+

Ĥi

maximizing this product is equivalent to maximizing each term
separately, as in eq. (27).

The decoupling of the likelihood function in (27), leads to a
simple decentralized detector in Algorithm 1. The input is (1)
the set of load forecasts x̂ with their nominal statistics Σ, and (2)
the real time measurements s. The function prune-areas discards
areas with zero flow measurements at their roots. The function
local-hypotheses performs the generation of local hypothesis set
H+
u (Ai) as described in Appendix D.
Finally, the local ML detector is simple to evaluate as a multi-

hypothesis test involving scalar Gaussian random variables of
known means and variances as follows: For a local area, since
H+(A) is enumerated, we determine:

Ĥ = arg max
H∈H+(A)

(
si −

∑
s∈child(si) s− µi(x̂, H)

σi(Σ, H)

)2

Therefore each decision only depends on an effective measure-
ment

∆si , si −
∑

s∈child(si)

s (28)

for each local area. Computation of the means and variance are
discussed in Section VI-B.

VI. SENSOR PLACEMENT PROBLEM

This section investigates where to the place the line flow
sensors for best outage detection performance. The metric used
in evaluating the performance of the sensor placement is the
maximum missed detection probability over all hypotheses. The
missed detection probability for any hypothesis H , given any sen-
sor placement M, is PE(H,M) = Pr(Ĥ 6= H; placement M),
where Ĥ is the optimal solution of the outage detection problem
as solved in Section V.

The optimal sensor placement, given a total number of sensors
M , that minimizes the maximum missed detection probability is
given by

M? = arg min
|M|=M

max
H∈Hu

PE(H,M). (OPT-1)

Note the objective is the missed detection probability maximized
over all unique outage hypotheses Hu. This is difficult to solve
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outside of a combinatorial enumeration of sensor locations and
hypotheses. A suitable proxy to optimize instead is:

M? = arg min
|M|=M

max
A∈A

Pmax
E (A), (OPT-2)

where PmaxE (A) = maxf,H∈H+
u (A,f) PE(H,M), which searches

over the hypothesis in a local area A. This second optimization
very closely approximates an upper bound to (OPT-1) (see Ap-
pendix F for details). We solve optimization OPT-2 via a bisection
on P target as follows:

M? = find
|M|≤M

M (OPT-3)

s.t. Pmax
E (A) ≤ P target, ∀A

So the minimum P target is determined yielding a solution of size
|M| = M . We next show that this can be solved very efficiently,
with a greedy placement algorithm.

A. Sensor Placement Algorithm

The problem (OPT-3) can be solved by a greedy algorithm the
intuition of which is the following. Starting from the bottom of a
tree, a temporary local area with root sensor in et is maintained.
The root sensor is iteratively moved closer to the root edge e1 of
the entire tree, while maintaining that the maximum error of all
areas below the root sensor is less than P target. This is done by
maintaining that the local area has error less than P target. If this
is true we move closer to the root, if not, we place a sensor and
start a new sensor to move further up. Since the objective function,
i.e., the maximum missed detection probability decouples across
areas, we can maintain that the feasibility problem is always
satisfied. Finally, if at the end the total number of sensors are
less than M , M? is returned.

Algorithm 2: Solution to optimization (OPT-3) for tree
network.
Result: Placement for a Tree Network
Input: [1] Tree network T

[2] Nominal loads statistics x̂, Σ
[3] Target error P target

1 // Generate node process order
2 Eprocess ← generate-edge-order(T )
3 // initialize sensor placement as empty
4 Mg ← ∅
5 for et ∈ Eprocess do
6 A ← construct-area(et,Mg)
7 // Evaluate the current local error metric
8 if Pmax

E (A) ≤ P target then
9 // continue to next node

10 else
11 if |child(vt)| == 1 then
12 Mg ← line-action(A,Mg)
13 else if |child(vt)| > 1 then
14 Mg ← tree-action(A,Mg)
15 end
16 end
17 return Mg

This Algorithm is specified by Algorithm 2. The inputs to
the method are the tree network T and the set of nominal
load forecasts x̂ and forecast error covariance matrix Σ. To
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Fig. 4. (greedy-tree-action) Correct node traversal in the tree network assumes
that Pmax

E (A0) < P target and Pmax
E (A′

0) < P target. If Pmax
E (A1) < P target

we do nothing else, generate and evaluate the error one of the 2|child(vt)| area
networks that can be constructed. In the case of greedy action, the area with the
smallest number of sensors along with smallest Pmax

E (A), where Pmax
E (A) <

P target is chosen.

have the effect of starting at the leaf of the network and
move our way up to the root, the algorithm will process a
sequence of edges Eprocess. For example in Figure 1, Eprocess =
{E(b4) E(b5) E(b3) E(b2) E(b1)}. The list Eprocess is generated
in line 2 with function generate-edge-order. Specifically, this
function takes the tree T and traverses via breadth first search
keeping track of the depth of each vertex/edge. Reversing this
list of depths yields a list of nodes to process, the parent edge
being e ∈ Eprocess.

The greedy solution Mg must first be initialized as empty.
In line 5 we iterate over the current root node et and current
sensor placement M. In line 6 we construct the current area
network A. We then evaluate Pmax

E (A) in line 8; If Pmax
E (A) >

P target a placement action line-action or tree-action is performed
depending on the number of child nodes of vt (downstream of
et). Each sub function is described in more detail below.

1) construct-area: For each iteration, the temporary node et
is visited and the area network A is constructed with et and the
previous solution Mg . The current edge et is the temporary root
sensors of the area st. The terminal sensors of the area are any
sensors in Mg that are children of st. Note that this may be
empty at the start of the algorithm.

2) line-action: Given that the current subproblem satisfies
Pmax
E (A) < P target, if the next subproblem does not satisfy the

condition, the only option is to place a sensor at child (vt). So
Mg ←Mg ∪ et.

3) tree-action: Given that the algorithm up to now has placed
sensors on the two disjoint trees with roots with v1 and v2. The
current root node must move as far up to v0 before placing a
sensor to satisfy the error constraint. This leads to two types
of actions: a greedy strategy that is easy to implement and the
optimal strategy. We propose to implement the greedy strategy
in practice which is almost always equal to the optimal strategy.
The details are discussed in Appendix H.

Specifically, we illustrate the greedy strategy as follows. In
Figure 4, first assume Pmax

E (A0) and Pmax
E (A′0) < P target and

Pmax
E (A1) > P target. In moving et closer to the root, the algorithm

must choose either A2, A3, or A4: a) if either A2 or A3 ensures
that P target is satisfied, we choose the one with the lower error,
and b) if A2 and A3 both cannot satisfy P target, we choose
A4 which surely satisfies P target. In the general case, given a
node with K children, all 2K sensor options are evaluated, and
the configuration of the fewest sensors that satisfies the error
constraint and has the lowest error probability is selected.
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B. Evaluating Pmax
E (Ai)

The objective Pmax
E (Ai) can be evaluated straightforwardly.

For each local hypothesis H ∈ H+(Ai, fi), the conditional
distribution ∆si|{ x̂, H} ∼ N(µ(x̂, H), Σ(x̂, H)) is computed.
In particular, µ(x̂, H) and Σ(x̂, H)) are the sum of the forecasts
and error variances of all the remaining loads inside area Ai
given outage H , respectively. Finally, given the scalar Gaussian
distributions of ∆si|{x̂ H} for different H , the probability of
missed detection for a scalar ML detector can be computed easily
for this area Ai.

C. Optimality and Complexity of Algorithm 2

This discussion concerns only optimal-tree-action since it
guarantees optimality, although the greedy strategy’s output place-
ment is almost always identical. We have the following theorem.

Theorem 1. The bottom up placement solution Mg relying on
optimal-tree-action traversal solves OPT-3.

Appendix E discusses the proof of optimality, as well as
the complexity of the optimal detector, evaluating the objective
function PmaxE (A), and the sensor placement algorithm. The
results are summarized as follows for a worst case tree of depth
D and K children at each vertex shown in Figure 12(b).

ML Detection: Evaluating the detector for an area and
computing the missed detection PmaxE depends on the size
of Hu. For an area of size |E| the hypothesis set is of
size O(2|E|). Evaluating only outages of size k has O(|E|k)
complexity, and evaluating a restricted MAP detector with
only single outages has O(|E|) complexity.
Sensor Placement: If the cost of evaluating PmaxE (A) = T ,
the greedy placement is of O(|E| T ) complexity, while the
optimal placement is O(|E|K T ) for the general tree.

The optimal detector and placement complexity in the worst case
is quite high. In practice, however, this cost is averted using a
detector with a fixed hypothesis size and having areas of small
sizes. Additionally, having multiple downstream measurements
will cut the area hypotheses by a factor of 2|child(si)| (See
Appendix E for details).

VII. NUMERICAL STUDY

A. PNNL Cases and Modeling

Outage detection is performed using a subset of the Pacific
Northwest National Laboratory test feeders [18]. Table I gives
an overview of the feeders chosen for the simulation study. The
primary applications of the feeders are heavy to light urban
networks, as well as suburban and rural networks. The climate
zones refer to (1) temperate (2) hot/arid (3) cold (4) hot/cold (5)
hot/humid according to [18].

TABLE I
PNNL TEST FEEDERS USED IN CASE STUDY

Network Voltage Climate Type Nominal Reduced
Zone Size Size

R1-12.47-1 12.5 kV 1 suburban 613 61
R2-12.47-3 12.47 kV 2 urban 52 42
R5-12.47-1 13.8 kV 5 urban 265 149
R5-12.47-4 12.47 kV 5 commercial 643 111
R5-25.00-1 22.9 kV 5 suburban 946 76

1) Outage Model and Equivalent Reduced Networks: Outages
are modeled by fuses and switches disconnecting the downstream
loads from the substation. These devices represent the edges of
the tree, on which the subsequent analysis is performed. The set
of loads which are disconnected by a fuse or switch disconnecting
are lumped to aggregate loads.

Table I indicates the nominal size of the networks, in terms of
customer size per tree, along with the reduced size. The reduced
sizes indicate the number of vertices of the tree with which the
analysis is based on.
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Fig. 5. An individual load is the grouping of all loads that can be disconnected
from the feeder root using either switches or fuses. The empirical distribution is
long tailed well fit with a generalized Pareto model. (a) Empirical histogram of
all loads collected from 23 feeders. (b) Log survival function for data as well as
randomly generated data using fit shows close agreement.

We analyze all 23 feeders and perform aggregate analysis based
on the combined load information. An empirical histogram of the
load values is given in Figure 5(a). In general, visual procedures
such as this are the more useful way of diagnosing the particular
nature of the data, before any fitting is done [19]. To validate the
heavy tail distribution we consider a log survival function of both
the load data and randomly sampled distribution following the fit
parameters. The comparison of the two are plotted in Figure 5(b).

In particular, we model the loads at each node in the net-
work with a generalized Pareto distribution: f(x;κ, σ, θ) =(
1
σ

) (
1 + κx−θσ

)−(κ−1)/κ
. Using the aggregated loads from all

the considered feeders, the following maximum likelihood esti-
mates and 95% confidence intervals are generated for the model:
θ = 0.25, κ = 0.58(0.51 0.65) and σ = 74.28(68.53 80.50). This
model is used in generating random test cases in Section VII-C,
and used to understand the sensor placement performance.

2) Forecast Error Model: In the case of a residential feeder,
the number of customers per vertex can vary, leading to different
forecasting errors. In [20] the authors present a rule of thumb
model for day ahead load forecasting at various aggregation levels
based on smart meter data. The day ahead forecast coefficient of
variation, κ = σ/µ is shown to be dependent on the mean load of
the aggregate. Many studies make simplified assumptions on the
relative forecast error. However, at the level of small aggregates,
the forecast κ can vary greatly on the size of the aggregate and
must be taken into account.

In [20] the following is proposed: CV(W ) =
E[CV(xA, x̂A) |WA = W ] =

√
α0

Wp + α1(%), where WA

is the mean load of aggregate A. A reasonable fit is
κ(W ) =

√
3562
W + 41.9.This formula is used to show that

each set of islanded loads will have a different value of κ(W ).
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Fig. 6. (a) Outage detection performance for selected PNNL feeders. Square
marker denotes specified error targets for optimization. Circular marker denotes
empirical mean missed detection errors. (b) Feeder R1-12.47-1 with placement
corresponding to a mean error of 24%.

B. Sensor Placement
Algorithm 2 is evaluated for the reduced networks based on the

PNNL systems. The sensor placement was computed by using a
set of a max-error-targets and computing the optimal placement
associated with them. For each placement, the numerical max
and mean missed detection error are computed as well. Figure
6(a) shows the performance with the developed sensor placement
algorithm. Even though each network represents a different ap-
plication, they show somewhat similar performance in terms of
placement density. Averaged over all the cases, attaining 10%
mean missed detection error is achieved by having 30% sensor
density. Seen another way, we can reduce the real-time monitoring
of each fuse by 70% by tolerating a small amount of errors in
the outage detection decision.

Figure 6(b) shows the reduced network R1−12.47−1. We ob-
serve a commonly appeared feature of the sensor placement: many
parallel branches have sensors placed, since otherwise issues of
indistinguishability would arise. For example, sensors are placed
in almost all of the edges which are descendants of vertex v3. The
reason is that the mean loads looking downstream of these de-
scendants are almost identical. Thus not placing sensors on these
downstream parallel branches would lead to observations of simi-
lar load changes when outages occur on different branches among
them. Specifically, the downstream observed loads at these edges
below v3 are: {9.9, 101.6, 43.9, 59.6, 104.8, 120.3, 43.9}.

In contrast, in junctures further downstream, child subtrees can
have much more distinguishable mean loads, and determining
their outage condition becomes easier at those junctures even
without placing sensors on their immediate descendant edges.

C. Sensitivity Analysis on General Line and Tree Networks
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Fig. 7. The effect of optimization parameter, error target P target, and relative
forecast error κ on both line (7(a)) and tree (7(b)) networks.

Figure 7 shows the sensitivity of the line and tree networks
under different simulation parameters. Both networks are of

size of 100 nodes, the tree was generated using the method
in [21]. In an ideal line network with extremely high forecast
accuracy (κ = 1%), 1 or 2 sensors are required for extremely
low missed detection errors. This extreme situation does not
occur in practice, but serves as a baseline for realistic networks.
Figure 7(a) shows that the required sensor density decreases quite
quickly vs. P target. The relation between sensor density and P target

is smoothly decaying. In comparison, randomly generated tree
networks require on average 2 − 3 times as many sensors to
achieve the same error target.

D. Missed Detection Error

Optimization (OPT-2) is designed to minimize the maximum
missed detection error among all possible hypotheses. The objec-
tive can however be too conservative of a requirement. Therefore
it is useful to understand the nature of the actual hypothesis
missed detection errors that arise from a given sensor placement.
Figure 8(a) shows the distribution of missed detection probabil-
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Fig. 8. Hypothesis missed detection analysis: 8(a) error histogram for P target =
0.2; 8(b) Max-error reduction to mean-error.

ities for a tree network. Setting P target = 0.2, and κ = 0.3 we
record the value of each hypothesis error. The empirical maximum
error is close to the target 0.2. This makes sense because in
successively solving the feasibility problem, the area networks
expand until the maximum error reaches P target. However, the
vast majority of the missed detection probabilities are much less
than the target. For this example in particular the errors for 34%
of the hypothesis are less than 1e−3 therefore essentially zero.

In comparing the mean and maximum errors for the range of
achievable values of κ and P target, the mean error is on average
25% of P target (cf. Figure 8(b)). The maximum error in the
network and P target are always very close to each other.

E. Comparison with Random and Exhaustive Placement

We now investigate how performance of a randomized place-
ment compares to that of placement by Algorithm 2. In Figure
9(a), the tree network used in Section VII-C is used, and an opti-
mal placement M? is generated. The empirical missed detection
error (max and mean) is evaluated for placementM?. In addition,
1000 random placement positions are evaluated from the entire
search space, with both the mean and maximum errors evaluated.
It is clear that the random placement performs extremely poorly
compared to the optimized placement M?.

To understand why this is the case, recall that the feasibility
problem will find some |M| ≤M with error below the target. The
entire search space is of size α = |{M}| =

(
N
M

)
. There can exist
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Fig. 9. (a) Evaluation of randomized placement in terms of max and mean error
vs. the optimal placementM?. (b) Exhaustive enumeration of all placements vs.
optimal placement M?.

placement achieving an equal or smaller error value, and the num-
ber of such placements, kα can be either singular or very small
in large trees. Therefore, randomly sampling t placements and
choosing the minimum will yield such a desired solution with the
following probability: Pr (M? chosen) ≈ 1−

(
α−kα
α

)t
. Assum-

ing kα � α, if we want Pr (M? chosen) = Pc, this leads to the
following approximate number of samples: t ≈ − α

kα
log(1−Pc).

If there is a single unique solution, or if kα = Ω(1), then the
number of samples we must take is O(|{M}|). In the simulated
example in Figure 9(a), |{M}| = 5× 1012. From the arguments
in Section H, the multiplicity of solutions is likely on the order
of nodes with multiple children, which is Ω(N). This results in
t = O( 1

N

(
N
M

)
), thus explaining why random placement results

in a poor missed detection even with a large number of sample
placements.

Figure 9(b) illustrates an exhaustive sensor placement evalu-
ation for a smaller tree. The optimization is run with an error
target of 0.3, and the optimal placement produces a maximum
error value of 0.282. With a total search space of 1001 possible
placements, 9 of them were below the error target. However, it
is clear the kα is very small compared with the search space.
This explains the performance in Figure 9(a). Note also that all
placements of size M − 1 have an error greater than the target,
consistent with the statements in the proof of Theorem 1.

F. Comparison of Flow Based and Voltage Based Methods
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Fig. 10. (a) Toy line example voltage vs. power flow missed detection error
under varying additive observation noise. (b) Conceptual model of voltage vs.
power flow measurements dynamic range under various hypotheses. Power flow
measurements will map into a range from 1P units of flow up to 4P units of
flow in a linearly increasing manner. Voltage measurements will map into a range
±5%V units of voltage in a non-linear manner.

Many works in outage detection in distribution systems have

proposed using voltage measurements to detect changes in distri-
bution systems [14], [15]. In particular, small voltage deviations,
which can be observed globally, are proposed to detect changes
in the network.

In this section, we offer evidence that in the case of distribution
systems, as opposed to transmission systems, measurements of
flows are superior measurements for detecting changes in a
network. The intuition for this can be seen in a simple line
network in Figure 10(b), where 3 switches lead to 4 unique outage
hypotheses. One hypothesis for each switch opened, and one for
all switches closed. If each load is P units of per unit load, then
the dynamic range of the entire set of hypotheses will range
from 1P up to 4P in the case of power flow observation. If
voltage measurements are used, then the 4 hypotheses will map
into the 0.95 V to 1.05 V voltage range, which is the typical
allowable voltage band that distribution systems are allowed to
operate in. For this reason, it makes sense to use power flow
measurements when detecting changes in system topology for
distribution networks.

A simple simulation is performed to illustrate this via Mat-
Power [22], which extends the diagram in Figure 10(b), to a larger
detection space.

1) A line network is generated with 50 vertices.
2) Line ri, xi are drawn randomly from ri ∼ U [0.001, 0.01]

and xi ∼ U [0.001, 0.01].
3) Loads are drawn uniformly from pi ∼ U [0.25, 2.5] p.u.
4) A single sensor is placed at edge e = (24, 25).
First, the voltage profile of each bus is verified to range from

1.064 → 0.96 V p.u. A single sensor is placed and outages are
enumerated for all edge downstream of sensor. This guarantees
that sensor will see some dynamic range of voltages. In fact,
1.035 → 0.97 V p.u. are seen by the voltage measurement. As
a comparison, measuring flow in the same location will see a
dynamic range of 1.3 → 41.8 P p.u.. For each hypothesis, a
simple detector is constructed where additive noise of varying
σ/µ is used to generate samples. The simulation consists of the
following steps.

1) Observation Generation: zobs,n = ztrue(h) +N(0, σ(h))
2) ML Detection: ĥn = arg min

h∈H
‖zobs,n − z(h)‖2

3) Mean Error Computation
Figure 10(a) shows the missed detection error from this ex-

periment under varying additive noise. The range of additive
errors were from σ/µ = {1 × 10−8 . . . 1}, with colored bars
indicating 1% and 5% relative error values in the measurements.
The plot indicates that even for 1% relative error of voltage
sensing, hypothesis detection with a single observation can lead to
high errors. In fact, most work relying on voltage measurements
must use long time captures to improve their detector performance
for this reason. Power flows, on the other hand, directly reflect
changes in the number of downstream loads.

VIII. CONCLUSION

This work has proposed an outage detection framework com-
bining power flow measurements on the lines of the distribution
system along with consumption forecasts at the nodes of the
network. In this framework, the ML detector for all (potentially
multi-line) outage hypotheses is reduced to a set of scalar ML
detectors for local outage hypotheses which are efficient to solve
for. This decoupling leads to an efficient and optimal sensor
placement algorithm which minimizes the maximum missed
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detection probability over the entire network. The system has
been tested on typical distribution feeders provided by PNNL,
as well as general line and tree networks. It has been shown that
10% mean missed detection error can be achieved by having only
30% sensor density.
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APPENDIX

A. Nomenclature Table

T Tree network representation of a distribution
feeder

(V,E) Vertex and edge set of tree T
V (H) Set of vertices that are connected to root under

outage hypothesis H .
desc(v) Descendants of vertex v.
child(v) Children of vertex v.
xn, x Scalar load and forecast value at vertex v
εn, ε Forecast residual for load l(v)
σ2
n, Σ Forecast residual variance and covariance ma-

trix.
H1 Single outage hypothesis and element and set.
Hk k-outage hypothesis.
Hu Unique hypothesis where no edges are down-

stream of any others.
A, A, A+ Local area network A ∈ A; Pruned areas under

binary flow processing.
f Binary flow indicator f = I{child(si)>0}
H+
u (Ak, f) Set of local area hypotheses post binary flow

processing.
Hk,i(k) i(k)th hypothesis in area Ak. Used to recon-

struct global hypothesis Hi.
M Sensor placement (M⊂ E)
s Set of observations on edges of network
rij Acceptance region for pairwise test of hy-

potheses: Hi and Hj

RH(H) Acceptance region of hypothesis H over all
alternatives in H.

PE,C(H,M), Probability of error (E) and correct detection
(C) for hypothesis H , under placement M.

PmaxE (A) Maximum probability of incorrect detection
over all hypothesis error in area A.

PminC (A) Minimum probability of correct detection over
all hypothesis error in area A.

B. MAP Detection for Outage Hyptheses

Here we show how the general MAP detector rule can be
evaluated for where we combine edge flows s, load forecasts x̂
and candidate outages H .

Ĥ = arg max
H∈Hk

Pr (H | s, x̂) (29)

= arg max
H∈Hk

Pr (s, x̂ | H) Pr (H)

Pr (s, x̂)
(30)

= arg max
H∈Hk

Pr (s, x̂ | H) Pr (H) (31)

= arg max
H∈Hk

Pr (s | x̂, H) Pr (x̂ | H) Pr (H) (32)

= arg max
H∈Hk

Pr (s | x̂, H) Pr (x̂) Pr (H) (33)

= arg max
H∈Hk

Pr (s | x̂, H) Pr (H) (34)

= arg max
H∈Hk

Pr (s | x̂, H) (35)

Lines (29) - (31) convert the MAP detector to a likelihood
detector with prior weights. Line (32) conditions on the load
forecast x̂. Since x̂ does not depend on the outage hypothesis,
(only s does), the term can be removed leading to (34). In (35),
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we assume a uniform prior over all hypotheses, however this does
not have to be the case.

Given the assumption of each edge going into outage with some
fixed prior probability, a single edge outage hypothesis should
have Pr (H) = ρ, while a k outage condition should have a
prior of Pr (H) = ρk. This motivates enumerating fewer outage
hypotheses when evaluating Hu in practice.

C. Extended Discussion of Recursive Evaluation of Hu

b1 

s1 

(a)

b1 

s1 

b3 b2 

(b)

b1 

s1 

b3 b2 

s2 

(c)

Fig. 11. 11(a) Worked example 1. 11(b) Worked example 2. 11(c) Worked
example 3.

We present here additional worked out examples, that show
how the recursive definition can enumerate all hypotheses and
focus on some corner cases that must be defined. Recall the
recursive definition:

Hu(b) = E(b) ∪

 ⋃
b∈P(child(b))

(∧
b∈b

Hu(b)

)
1) Example 1 (Figure 11(a)): This is the simplest case to

evaluate and is:

Hu = E(b1) ∪ ∅
The null hypothesis set arises from evaluating P(d(b1)) = ∅, since
b1 has no children.

2) Example 2 (Figure 11(b)): This is the simplest case to
evaluate and is:

Hu = {E(b1) ∪ ∅ ∪ Hu(b2) ∪Hu(b3) ∪Hu(b2)×Hu(b3)}
= {E(b1) ∪ ∅ ∪ {∅ ∪ E(b2)} ∪ {∅ ∪ E(b3)}∪

{∅ ∪ E(b2)} × {∅ ∪ E(b3)}}
= {∅ ∪ E(b1) ∪ E(b2) ∪ E(b3) ∪ (E(b2)× E(b3))}

This example is reduced to it’s final form in eq. (12), in Sec-
tion V-A. However, the following equalities are omitted in the
enumeration:

∅ ∪ ∅ = ∅ (36)
∅ × ∅ = ∅ (37)
∅ × ei = ei (38)

The final relation leads to ∅ × E(b) = E(b).
3) Example 3 (Figure 11(c)): Consider the two binary flow

indicators I{s2>0} = {1} and {0}. In the first case, we have the
following product set:

H+(A1, {1}) = {E(b2) ∪ ∅1} × {E(b3) ∪ ∅2}
= {E(b2)× E(b3) ∪ ∅1 × E(b3) ∪ E(b2)× ∅2 ∪ ∅2 × ∅2}
= {E(b2)× E(b3) ∪ E(b2) ∪ E(b3) ∪ ∅}

We use the fact that ∅ × E(b) = E(b) and that the product
∅1 × ∅2 = ∅, which is the global null hypothesis from the naive
enumeration in Example 2. Similarly, enumerating the f1 = {0}
case, we have that:H+

u (A1, {0}) = {E(b1)}. We see that splitting
the hypotheses based on flow information, conserves the search
space, since H+

u (A1, {1}) ∪H+
u (A1, {0}) = Hu(A1).

4) Tree T1: For tree T1, we have:

Hu(b1) = {∅ ∪ E(b1) ∪ E(b2) ∪Hu(b3) ∪ E(b2)×Hu(b3)}
Hu(b3) = {∅ ∪ E(b3) ∪ E(b4) ∪ E(b5) ∪ {E(b4)× E(b5)}}

D. General Hypothesis Decoupling

These two cases provide the intuition for a general procedure
which is as follows: Given binary information from flows, all
areas Ak with rooted sensor with sk = 0, are discarded in
generating a local hypothesis. Each node in the branch graph is
assigned a label, l ∈ L L = {P,Z, U} for (P ) positive, (Z) zero,
and (U ) undetermined branches. These are defined as follows:

Positive Branch: Branch is upstream from a sensor mea-
suring positive flow, therefore can never be evaluated in
any outage hypothesis. Also, it’s immediate parent branch
cannot be enumerated either.
Zero Branch: This branch is directly upstream from a
zero measurement therefore it’s edges must always be
enumerated in any outage hypothesis.
Undetermined Branch: This branch has no information,
so is enumerated without any restriction.

This definition leads to the following procedure to enumerate
H+(Ai, I{child(si)>0}). First each branch-node is labeled with the
following procedure:

Initialization Branch with descendent sensor (1) s > 0
assigned label P and (2) s = 0 assigned label Z, and (3)
no descendants assigned label U .
Update Given a current branch node b and the set of
children, the node is assigned as follows: (1) If any de-
scendent node is labelled P then it must be labelled P . (2)
If descendants are U and Z, then it must be labeled U .

Once the the branch-nodes are labeled, enumerating
H+(Ai, I{child(si)>0}) can be done recursively using the
following rules:

Positive Rule Never enumerate a branch (E(b)) with
positive flow label (P ).
Zero Rule When evaluating the recursive definition H(b)
on an element of the power set. If any descendent is labelled
Z, only evaluate product set elements that contain this
branch.

b2 b3 

b5 

b1 

b4 

s0 

s1 

(a)

… 

… 

… … … 

d 

d-1 

d+1 

1 2 K 

(b)

Fig. 12. 12(a) General network reduced to individual branches. 12(a) Worst case
tree network of depth D and K children for each vertex.

An example local area is provided in Figure 12(a). The general
method is applied under each of the binary flow cases, where the
results are shown in Table II. The method is applied to each binary
flow, and the branches to be enumerated are given.
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TABLE II

Binary Flow Indicator I{child(si)>0} Branch Labels Hypotheses Branches

0, 0 U , Z, U , U , Z b1, b2, b2 × b3,
b2 × b5, b2 × b4 × b5

0, 1 P , Z, P , U , P b2, b2 × b4
1, 0 P , P , U , U , Z b3, b5, b4 × b5
1, 1 P , P , P , U , P b4

E. Complexity Analysis

In analyzing the complexity of various algorithms we assume
the tree in Figure 12(b). Each vertex has K children and is of
depth D. It is clear that the number of edges is related to these
quantities by E = KD−1

K−1 .
1) Evaluating PmaxE (A): For simplicity, we focus on a binary

tree, so K = 2 and |E| = 2D− 1. The possible hypotheses using
(8) where every edge is a single branch is given by

Hu(ei) = {ei ∪Hu(child(ei, 1)) ∪Hu(child(ei, 2)) (39)
∪Hu(child(ei, 1))×Hu(child(ei, 2))} (40)

The size of hypotheses at each depth C(d) is therefore,

C(d+ 1) = 1 + 2C(d) + C(d)2 (41)

= (C(d) + 1)
2 (42)

It can be shown from (42) that C(d) = O(22
d

). Therefore the
number of hypotheses are double exponential in the depth of the
tree. For the entire tree, this leads to C(D) = O(2|E|). Therefore
|Hu| = O

(
2|E|

)
, exponential in the size of the graph, which is

no better than the naive calculation without removing non-unique
outages.

This cost may be averted due to the following:
Fixed Hypothesis Size. The MAP detector requires a prior
probability of hypotheses. Since multiple edge outages are
less likely, they don’t always have to be enumerated. For
example, considering only single edge outages leads to
|Hu| = O (|E|) complexity for an area.
Small Area Sizes, and Binary Flow Segmentation. The
number of hypotheses are exponential in |E| for an area.
Given many sensors, this can divide the number of edges
for an area considerably. Additionally, the binary flow in-
formation from downstream sensors will on average divide
each H+

u (A, f) by a factor of 2|child(s)|.
2) Evaluation of Algorithm 2 using greedy strategy: The

following analysis is in terms of the evaluation of T = PmaxE (A).
The greedy strategy will have to evaluate all 2K subproblems at
each vertex, and choose the minimum PmaxE (A). The worst case
complexity is therefore O(T |E| 2K), which reduces to O(|E|T ),
since K is a constant.

3) Evaluation of Algorithm 2 using optimal strategy: The
optimal strategy will expand the problem size by a factor 2K

when the area network root moves upstream. This will occur D
times, so sub-problems to consider after a depth of D will be
(2K)D which for a binary tree becomes (2D)K leading to the
final complexity O(T |E|K).

F. Proxy Function Optimization

The placement problem OPT-1 will output the optimal sen-
sor locations and minimizing maximum missed detection error

α?(M?), as:

α?(M?) = min
|M|=M

max
H∈Hu

PE(H,M)

This can be approximated by using the decoupling of hypotheses
in different areas. Recall the solution to OPT-1 repeated above, is
the distributed detector in Algorithm 1 where each area performs
a local hypothesis Ĥ, . . . , ĤM . The complete hypothesis is only
correct if every local detection output is correct. So for any
hypothesis, we have following lower bound:

min
H∈Hu

Pr(Ĥ = H;M)

= min
H∈Hu

 ∏
∀Ai, Hi

Pr(Ĥi = Hi;M)

 (43)

≥
∏
∀A∈A

min
H∈H(A)

Pr(Ĥ = H;A) (44)

=
∏
∀A∈A

PminC (A). (45)

Line (43) follows from the decoupling of the decentralized
detector. The overall MAP decision can be correct only if each
local MAP decision is correct. For any H ∈ Hu the probability
of each area making a correct decision is always greater than
the worst case probability of correct decision for each area. We
interchange the sensor placement and area notation since local
areas are constructed from sensor placements. Here PminC (A) is
the minimum probability of correct detection within a local area
A. This lower bound can be used to first upper bound the optimal
α?. Finally, only an approximate solution to the upper bound is
formulated.

α(M?) = min
|M|=M

max
H∈Hu

PE(H,M) (46)

= min
|M|=M

max
H∈Hu

(1− PC(H,M)) (47)

= 1− max
|M|=M

min
H∈Hu

PC(H,M) (48)

≤ 1− max
|M|=M

∏
∀A∈A

PminC (A) (49)

≈ 1− max
|M|=M

min
∀A∈A

PminC (A) (50)

= 1− max
|M|=M

max
∀A∈A

(1− PmaxE (A)) (51)

= min
|M|=M

max
∀A∈A

PmaxE (A) (52)

Optimization OPT-1 is identical to (47), since the probability of
a single hypothesis error can be exchanged for it’s compliment.
The min-max to max-min change is due to the negative sign
in 48. In line 48, instead of maximizing the minimum correct
probability over all hypotheses we maximize a computationally
tractable lower bound which is the product

∏
∀A∈A P

min
C (A).

In 50 we introduce a close approximate solution which is the
following: Instead of maximizing the product of PminC (A) for
each A, it is sufficient to maximizing the minimum of each
PminC (A) Experimentally the two solutions have been shown
identical for a large number instances, and only sub-optimal in a
small number of cases where the gap is small.

Experimentally the two solutions have been shown identical
for a large number instances, and only sub-optimal in a small
number of cases where the gap is small. Figure 13(a), 13(b),
shows a pair of randomly generated trees with N = 15 nodes
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Fig. 13. 13(a) Brute force placement evaluation where the two objectives are
identical. 13(b) Brute force placement evaluation where the two objectives differ.

with random loads and a forecast coefficient of variation of 0.02.
In both cases, the bottom up placement was used to determine
Mg , where |Mg| = 5.

A brute force enumeration of all
(
15
5

)
placements is evaluated

for max∀A∈A P
min
C (A,M) and

∏
∀A∈A P

min
C (A,M).

In both cases, there is a strong correlation between the two
solutions. The two solutions are not however equal Figure 13(a),
the solutions are identical, while in 13(b), the two solutions differ
by 7.2%. Intuitively they should intuitively be very close to each
other. Decreasing one area error will increase the other area’s
error due to the monotonic growth of PmaxE (A) and the finite
tree size. Therefore, maximizing the product of all the terms tends
to a solution where each area error is as close to each other as
possible. Minimizing the maximum error often leads to such a
solution, since we must trade off one area error for another.

G. Proof of Theorem 1

We prove Theorem 1 by showing the following:
1) The objective function PmaxE (A) monotonically increases

for nested areas.
2) Algorithm 2, will recover the solution to OPT-3

First we prove propositions 1 and state a conjecture shown to
hold in large scale simulation experiments. These are needed to
prove Lemma 2 which is needed to prove Theorem 1.

First consider the following:

Definition 1. For a single pairwise test, Hi vs Hj we have the
following decision region:

ri,j = {s ∈ RM : Pr(s|Hi) ≥ Pr(s|Hj)}. (53)

The observation space is therefore partitioned into two regions.
So the detector is the following:

Ĥ =

{
Hi, s ∈ rij
Hj , s /∈ rij .

(54)

For the one-to-many ML test: Hi vs ∀Hj ∈ H , we have an
acceptance region defined as:

RH(Hi) = {s ∈ RM : Pr(s|Hi) ≥ Pr(s|Hj) ∀Hj ∈ H}. (55)

Lemma 1. An equivalent definition is

R(Hi) =
⋂

j:Hj∈H
ri,j . (56)

Proof: Using the definition of the right hand side, we have⋂
j∈H

ri,j = {s : s ∈ ri,1 ∩ . . . ∩ s ∈ ri,N}

= {s : Pr(s|Hi) ≥ Pr(s|H1) ∩ . . .
∩ Pr(s|Hi) ≥ Pr(s|HN )}

= {s : Pr(s|Hi) ≥ Pr(s|Hj) ∀Hj ∈ H}
= RH(Hi).

Note, that this statement is for the ML classifier. Under
an arbitrary classifier, a procedure of constructing one-to-many
classifier will lead to ambiguity. See [23] (pg. 183) for discussion.

Conjecture 1. Given a ML detection problem with a set of
hypothesis of the form: sk ∼ N(µk, σ

2
k + ∆) for k = 1, . . . ,K.

The missed detection error for each hypothesis will monotonically
increase w.r.t ∆.

This is seen to hold with 200,000 random problem instantia-
tions. We now state Lemma 2.

Definition 2. Two area networks are nested A ⊂ A′ if the vertices
of each area V , V ′ are such that V ⊂ V ′.

Lemma 2. Given two area networks A and A′ where A ⊂ A′,
PmaxE (A) ≤ PmaxE (A′).

(a) (b)

Fig. 14. 14(a) Case 1 showing growth by adding new nodes by moving terminal
sensor down. The conditional pdf ∆s|H ∀h ∈ H does not change. However the
acceptance region shrinks from RH to RH∪x. 14(b) Case 2 showing growth by
adding new nodes by moving root sensor up. The conditional pdf ∆s′|H ∀h ∈ H
will change. Again, the acceptance region shrinks from RH to R′

H∪x.

Proof: Given some α∗ = Pmax
err (A), which is the maximum

missed detection probability of the local hypothesis in area A
which is evaluated at some hypothesis H∗. We aim to show that
for an enlarged area A′, the error probability for H? will always
be larger, which is quite intuitive. Therefore the maximum error
Pmax
E (A′) regardless if H∗ maximizes the missed detection in

the enlarged area.
Expansion of A is analyzed in two cases:

Case 1 Terminal sensors expand downstream (away from
v0) shown in Figure 14(a).
Case 2 Root sensor of A moves upstream (closer to v0)
shown in Figure 14(b).

We use the following shorthand: Hypotheses for area A and
A′: H , H(A), H ∪ xi , H(A′). The set xi differ in how the
area is enlarged, where i = 1, 2 for case 1 and case 2. Therefore
under case 1, and 2 we have RH∪x1(Hi) and RH∪x2(Hi). Now
we show how the effective measurement distribution (as defined
in (28)) and acceptance regions changes under each case.
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Case 1 For all hypothesis Hi ∈ H we have that µ′i = µi
and σ′2i = σ2

i . The distribution ∆s|Hi is unchanged. Given
that RH(Hi) =

⋂
j:Hj∈H rij , the new acceptance region is

RH∪x1
(Hi) =

⋂
j:Hj∈H∪x1

rij , with rij from the original
alternatives unchanged.
Case 2 For all hypothesis Hi ∈ H we have that µ′i = µe+µi
and σ′2i = σ2

e + σ2
i . The distribution and acceptance region

change ∆s|Hi → ∆s′|Hi. The new acceptance region is the
following: RH∪x2

(Hi) = {
⋂
j:Hj∈H r

′
ij}
⋂
{
⋂
j:Hj∈H rij},

where the acceptance regions under the previous area alter-
natives are now different.

To see why the distribution ∆s|Hi changes, first recall that:

∆si|Hk ∼ N

 ∑
v∈Vi\Vk

µ(v)− µT ,
∑

v∈Vi\Vk

σ2(v)− σ2
T

 (57)

∼ N
(
µk, σ

2
k

)
∀H ∈ H (58)

The terms µT and σ2
T are the sum of loads forecasts and

variances of all terminal sensors. Now moving the root node
upstream leads to:

s′i|Hk ∼ N

 ∑
v∈V ′

i \Vk

µ(v)− µT ,
∑

v∈V ′
i \Vk

σ2(v)− σ2
T

 (59)

∼ N
(
µe + µi, σ

2
e + σ2

i

)
∀H ∈ H. (60)

Therefore changing the position of si so as to add additional
vertices will increase every original hypothesis mean and variance
by the same amount.

Now consider Case 1 first, where we merely add new alter-
natives, keeping the distributions of ∆s|H unchanged. Here we
have:

Pr(∆s ∈ RH∪x(H∗)|H∗ true) (61)

= Pr(∆s ∈
⋂

j:Hj∈H∪x
ri,j | H∗ true) (62)

= Pr({∆s ∈
⋂

j:Hj∈H
ri,j} ∩ {

⋂
j:Hj∈x

∆s ∈ ri,j}| H∗ true)

(63)

≤ Pr(∆s ∈
⋂

Hj∈H
∈ ri,j |H∗ true) (64)

= Pr(∆s ∈ RH(H∗)|H∗ true). (65)

Line 62 defines the area RH(H∗) using proposition 1. This is
split into the the intersection of two separate events using our
definitions of H and H∪x. Next we use the fact that Pr(A∩B) ≤
Pr(A). Therefore if Pr(∆s ∈ RH(H∗)|H∗ true) ≤ Pr(∆s ∈
RH∪x2

(H∗)|H∗ true) then PmaxE (A) ≤ PmaxE (A′).
We next prove Case 2 where not only are more alternatives

considered for H∗, but ∆s|H∗ is translated by fixed amount µe,
σ2
e in mean and variance. This implies that:

Pr(∆s′ ∈RH∪x|H∗ true)

≤ Pr(∆s′ ∈ RH(H∗)|H∗ true) (66)
= Pr(∆s′ − µe ∈ RH(H∗)− µe|H∗ true) (67)
≤ Pr(∆s ∈ RH|H∗ true). (68)

The inequality in line 66 uses the identical procedure in 62 -
64. In line 67 we are merely shifting the gaussian ∆s and the
acceptance region by µe using a shorthand notation. This can be

done since the MAP test is scalar. Finally the inequality in line
68, follows from conjecture 1.

We can now prove Theorem 1.
Proof: The bottom up solution Mg moved to the root node

enlarging each area network so that each PmaxE (A) < P target but
any further up will violate the target area. Consider some other
method produces a solution M′ which minimizes the number of
sensors the error constraint, where |M′| < |Mg|. This implies
that some area must increase in size, as compared to the Mg

solution, and from Lemma 2, some area will violate the error
constraint.

H. Greedy and Optimal Tree Action
optimal-tree-action: The correct action at a node-junction is

to enumerate each 2|child(vr)|−1 possible trees and process them
until only one remains closest to the root. In the example in
Figure 4, we must process to the root node processing both A2

and A3 in parallel as separate problem instances, with its own vt
and Mg . This is in contrast to the greedy strategy that chooses
one placement and moves on. Each problem instance is then
processed, until the area objective function violates P target. All
but one problem instance is kept; the one where vt was closest
to the root vertex.

It turns out that the greedy-tree-action and the optimal-tree-
action procedures are in practice extremely close as discussed
in Appendix H. Algorithm 2 can only implement this technique,
since we do not grow the search space with multiple bottom up
scenarios.

PEmax(A2)	

PEmax(AR
1)	 PEmax(AR

3)	PEmax(AL
3)	

PEmax(AR
4)	PEmax(AL

4)	

PEmax(AL
1)	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

5	

6	4	

3	

2	

1	

6	4	

3	 5	

2	

1	

6	

5	

4	

3	

2	

1	1	

2	

3	

4	

5	

6	

(a)

PEmax(A2)	

PEmax(AR
1)	 PEmax(AR

3)	PEmax(AL
3)	

PEmax(AR
4)	PEmax(AL

4)	

PEmax(AL
1)	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

5	

6	4	

3	

2	

1	

6	4	

3	 5	

2	

1	

6	

5	

4	

3	

2	

1	1	

2	

3	

4	

5	

6	

(b)

PEmax(A2)	

PEmax(AR
1)	 PEmax(AR

3)	PEmax(AL
3)	

PEmax(AR
4)	PEmax(AL

4)	

PEmax(AL
1)	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

5	

6	4	

3	

2	

1	

6	4	

3	 5	

2	

1	

6	

5	

4	

3	

2	

1	1	

2	

3	

4	

5	

6	

(c)

PEmax(A2)	

PEmax(AR
1)	 PEmax(AR

3)	PEmax(AL
3)	

PEmax(AR
4)	PEmax(AL

4)	

PEmax(AL
1)	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

1	

2	

3	

4	

5	

6	

5	

6	4	

3	

2	

1	

6	4	

3	 5	

2	

1	

6	

5	

4	

3	

2	

1	1	

2	

3	

4	

5	

6	

(d)

Fig. 15. 15(a) Both areas have maximum error smaller than target error:
Pmax
E (AL

1 ) < P target, Pmax
E (AR

1 ) < P target. 15(b) The area’s are
combined, and tested where Pmax

E (A2) > P target. 15(c) The greedy choice
will choose AL

3 as the candidate: Pmax
E (AL

3 ) < Pmax
E (AR

3 ) < P target. 15(d)
The correct choice is AR

4 since Pmax
E (AR

3 ) < P target < Pmax
E (AL

3 ).

The bottom up placement using greedy-tree-action relies on
moving the current node as close to root as possible while keeping
the error < P target. At a juncture, recall that the current network
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is chosen as the one which minimizes the maximum error, and
continues with that choice. To see why this is sub optimal,
consider Figure 15 shows a typical subtree where we have the
following events:

1) (Figure 15(a)) The bottom up algorithm will evaluate
PmaxE (AL1 ) < P target and PmaxE (AR1 ) < P target.

2) (Figure 15(b)) Move onto evaluating the combined area net-
work with the parent node. Evaluating PmaxE (A2) > P target,
we must choose in a greedy manner via greedy-tree-action.

3) (Figure 15(c)) Evaluating both PmaxE (AL3 ) and PmaxE (AR3 ),
where PmaxE (AL3 ) < PmaxE (AR3 ) < P target. The greedy
choice will keep AL3 and discard the AR3 .

4) (Figure 15(d)) The optimal choice is in fact AR4 since
PmaxE (AR4 ) < P target < PmaxE (AR4 ).

The greedy choice will choose AL3 and be forced to place a
sensor in AL4 , while the optimal can continue upstream. The
following numerical example will lead to this: µi = 1,∀i and
σ2 = {0.0599, 0.0125, 0.0835, 0.0945, 0.0906, 0.0607} with
P target = 0.1923.

The triplet of scalar hypotheses which cause this are shown in
Table III.

TABLE III
PNNL TEST FEEDERS USED IN CASE STUDY

Area Flow H+(A, b) µk σ2
k Pmax

E (A)

AL
3 s2 > 0, e3, e4, ∅ 1, 2, 3 0.0125, 0.1031, 0.1637 0.1083

s5 > 0
AR

3 s2 > 0, e5, e6, , ∅ 1, 2, 3 0.0125, 0.0960, 0.1905 0.0961
s3 > 0

AL
4 s1 > 0, e3, e4, ∅ 2, 3, 4 0.0724, 0.1558, 0.2504 0.1885

s3 > 0
AR

4 s1 > 0, e5, e6, , ∅ 2, 3, 4 0.0724, 0.1630, 0.2236 0.1960
s3 > 0
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Fig. 16. The maximum probability of error over three hypotheses as a function of
a translation of each hypothesis variance. At the point ∆ = 0, P (AL

3 ) < P (AR
3 ),

and in point ∆ = 0.0599, P (AL
4 ) > P (AR

4 )

Notice that in the hypothesis means and variances, we have the
following:

µk(AL4 ) = µ(v1) + µk(AL3 ) σ2(AR4 ) = ∆ + σk(AR3 )

µk(AR4 ) = µ(v1) + µk(AR3 ) σ2(AL4 ) = ∆ + σk(AL3 )

Where µ(v1) = 1, and ∆ = σ2(v1) = 0.0599. The translation
of mean and variance causes the maximum error over an area to
switch from AL to AR. Recall that conjecture 1 stated that the
maximum error in such a case will monotonically increase with
respect to some translation in variances. Regardless, there is no
domination between any pair of triplets, whereby one will always
be greater than another under the same translation.

This can be seen in Figure 16(a) where the maximum hypothe-
sis error between the tuples is shown with respect to translation ∆.
As indicated, any ∆ > 0.02 will cause their ordering to change,
with the counterexample shown to be beyond this point.

However, we should not that although the transition does occur,
the gap is quiet small so any realistic gap will be very small. Since
P target is between P (AL4 ) and P (AR4 ) it is very unlikely to occur.
In finding a counterexample 10000 monte carlo runs produced
5 examples. For this reason, the greedy and optimal placement
strategies will have identical outcomes of random instances.


