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Abstract—In distribution systems with growing distributed
energy resources, accurate estimation of network parameters
is crucial to feeder modeling, monitoring and management. Al-
though existing state-of-the-art parameter estimation algorithms
such as physics-informed graphical learning (GL) have accurate
estimation, they can potentially suffer from scalability issues due
to slow training in larger networks. In this paper, we propose
an upgraded graphical learning method called fast graphical
learning (FGL) to improve the computational efficiency and
scalability while preserving the merits of GL. In FGL, we develop
faster alternative algorithms to replace the fixed-point-iteration-
based FORWARD and BACKWARD algorithms in GL. These
alternative algorithms are based on fast power flow calculation of
the current injection method and more efficient state initialization
by the linearized power flow model. A comprehensive numerical
study on IEEE test feeders and large-scale real-world distribution
feeders shows that FGL improves the computational efficiency
by as much as 60 times in larger distribution networks while
attaining the accuracy of the state-of-art algorithms.

Index Terms—Power distribution network, graph neural net-
work, parameter estimation, smart meter.

I. INTRODUCTION

Rapid growth of distributed energy resources (DERs) re-
quires distribution systems to have accurate three-phase mod-
eling. Monitoring and coordination of DERs rely on advanced
applications, such as state estimation, network reconfiguration,
three-phase power flow, and optimal power flow. These appli-
cations cannot work without accurate topology and parameters
of three-phase distribution networks [1]. Although the geo-
graphic information system (GIS) has topology and parameter
records of distribution networks, the records are usually highly
inaccurate due to undocumented system modifications and
upgrades [2].

Different from the extensive research in topology estimation
[3], [4], more research is needed in parameter estimation of
conductor impedance. Compared with transmission networks,
parameter estimation in distribution networks is more difficult.
The transposed line sections in transmission systems are
usually balanced, and thus single-phase models are sufficient.
[5]–[9]. In distribution networks, due to their unbalanced
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conductors and loads, line sections need to be modeled and
estimated as 3× 3 phase impedance matrices.

Most of existing parameter estimation literature relies on
either a simplified single-phase line model or expensive phasor
measurement units (PMUs). Typical parameter estimation ap-
proaches estimate states and parameter jointly; the techniques
include augmenting state vectors with parameters and analyz-
ing residual sensitivity [5] as well as adaptive data selection
[6]. Instead of directly estimating parameters, parameter errors
are detected by methods such as identification indices [7],
enhanced normalized Lagrange multipliers [8], and projection
statistics [9]. The supervisory control and data acquisition
(SCADA) system data required in these methods are readily
available. However, they only work with single-phase models
and cannot estimate three-phase line parameters. For accu-
rate parameter estimation in the three-phase lines, usage of
PMU or micro-PMU data was proposed. Reference [10] uses
state augmentation to estimate three-phase line parameters in
transmission lines. In [11], three-phase admittance matrices
of distribution lines are estimated by LASSO. Although the
PMU-based methods work with three-phase line models, they
are cost-prohibitive because a large number of PMUs or micro-
PMUs need to be installed.

A few methods have been developed based on readily
available smart meter data and they are applicable to three-
phase parameter estimation. These methods include multiple
linear regression [12], maximum likelihood estimation (MLE)
[13], and physics-informed graphical learning model (GL)
[14]. Although three-phase line models are considered in [12],
it does not work with loads connected between phases. With
a linearized power flow model, [13] shows high estimation
accuracy on all kinds of phase connections. The accuracy
is improved further by [14], which builds GL model based
on nonlinear three-phase power flow. Although the GL shows
one of the most accurate parameter estimates in three-phase
distribution networks with readily available smart meter data,
it faces obstacles in achieving scalability due to the rapid
increase of training time in large networks.

In this paper, we propose an upgraded graphical learning
method called fast graphical learning (FGL), which improves
computational efficiency and scalability while preserving the
merits of GL. Instead of using the fixed-point-iteration-based
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FORWARD and BACKWARD algorithms in GL, which cause
the issue of slow training, we develop alternative algorithms
that are equivalent to the original algorithms in terms of
functionality but run much faster. These alternative algorithms
are based on fast power flow calculation of the current
injection method [15] and more efficient state initialization
by the linearized power flow model [4]. Compared with the
existing parameter estimation methods, the proposed algorithm
not only attains the high parameter estimation accuracy of the
state-of-the-art methods but also has much better scalability on
larger distribution networks by consuming much less training
time. A comprehensive numerical study on IEEE test feeders
and large-scale real-world distribution feeders shows that FGL
improves the computational efficiency by as much as 60 times
in larger distribution networks while attaining the accuracy of
state-of-the-art algorithms.

The rest of the paper is organized as follows. Section
II describes the setup and assumptions of the problem and
gives a brief review of the GL method. Section III explains
the technical details of the FGL method. In section IV, by
a comprehensive numerical study, the performance of the
proposed algorithm is evaluated. Section V is the conclusion.

II. PROBLEM SETUP AND BRIEF DESCRIPTION OF
GRAPHICAL LEARNING FRAMEWORK

A. Problem Setup
Our goal is to estimate the 3×3 phase impedance matrix

of primary lines of a distribution network. The network is
assumed to contain L lines and N + 1 nodes; node 0 is the
source node (e.g., a feeder head). The network contains M
loads, which are connected to the non-source nodes. The loads
can be single, two, or three-phase. We use Zl =Rl+jXl to
denote the impedance matrix of line l, where

Rl ≜

raal rabl racl
rabl rbbl rbcl
racl rbcl rccl

 , Xl ≜

xaa
l xab

l xac
l

xab
l xbb

l xbc
l

xac
l xbc

l xcc
l

 . (1)

Each line segment has six resistance and reactance parameters
because Zl is symmetric. Thus, the total number of parameters
is 12L.

B. Assumptions
The available measurement and the feeder information are

based on the following assumptions. First, each load has a
smart meter measuring its voltage magnitude and real and
reactive power; if the load is on phase i, then the voltage and
power on phase i are measured; if the load connects phase i
and j, then the voltage and power across the two phase are
measured; if load connects three phases, the voltage of one
phase and the total three-phase power are measured. Second,
the voltage at the source node is recorded by the SCADA
system. Third, the utility knows all loads’ phase connections.
Fourth, the utility knows the primary feeder’s topology. Fifth,
the GIS is assumed to an inaccurate record of the network
parameters. Assumptions one and two are normal for smart
meters and SCADA systems. Assumptions three, four, and five
are appropriate for most GIS records.

C. Brief Review of the GL Method

Fig. 1 shows the framework of the GL method [14]
for distribution line parameter estimation. The core of the
framework is a graphical learning model, in which nonlinear
power flow is embedded. There are three inputs: smart meter-
measured power consumption, distribution feeder topology,
and distribution line impedances. The structure of the graph-
ical learning model is a network of connected nodes, each
representing a bus in the distribution circuit. Each node n has
a corresponding state xn, which is the complex bus voltage
in three phases. The states are derived by transition functions’
iterations until convergence, which is called the FORWARD
algorithm. The smart meter voltage magnitudes are calculated
from the converged states. The estimated voltage magnitudes
are compared with the actual smart meter data to calculate
a loss function value. The gradient of the line parameters are
computed through a BACKWARD algorithm, and then the line
parameters are updated by stochastic gradient descent (SGD).
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Fig. 1. Framework of proposed graphical learning method.

The technical details of this method are explained in [14].
Here, we only review the three most important computation
components: the transition function, the output function, and
the gradient computation.

1) Transition Function: The transition function is derived
from the nonlinear three-phase power flow model [14]:

un = Y −1
nn

(
(s∗n ⊘ u∗

n) +
∑

k∈ne(n)

Ynkuk

)
(2)

Here, sn ≜ [san, s
b
n, s

c
n]

T is the complex power injection
of node n in three phases. un ≜ [ua

n, u
b
n, u

c
n]

T is the
complex voltage of node n in three phases. Define Ynn ≜∑

k∈ne(n) Ynk. The 3×3 matrix Ynk is the line admittance
matrix between node n and k, which is derived from line
parameters. Operator ⊘ is element-wise multiplication, ne(n)
is the set of n’s neighboring nodes, and (·)∗ represents
complex conjugate.

For node n, define state vector xn and feature vector as

xn ≜

[
Re(un)
Im(un)

]
, ln ≜

[
Re(sn)
Im(sn)

]
(3)

Here, Re(·) and Im(·) denote the real and imaginary respec-
tively. Then, from (2), the local transition function and the



corresponding global compact form can be derived [14]:

xn = fw,n(xn, ln,xne(n)) (local form of node n)
[x] = Fw([x], [l]) (global compact form),

(4)

where w is the set of line impedance, which is to be estimated.
The function fw,n is determined by w and the topology of the
distribution network. [x], [l], and Fw are stacks of xn, ln, and
fw,n of different nodes. Given w, the state [x] in a distribution
system can be solved by an algorithm called FORWARD, in
which (4) is iteratively applied until [x] converges.

2) Output Function: The solved [x] is then used to calcu-
late the estimated voltage magnitude of smart meters by the
output function [14]:

om = gm(xno(m)) (local form of meter m)
[o] = G([x]) (global compact form)

(5)

Here, om is smart meter m’s voltage magnitude, no(m) is the
node that connects smart meter m, [o] is the stack of different
smart meter’s voltage magnitude om. From the Pythagorean
theorem, gm is defined as follows:

gm(xk)=



√
(αi

k)
2+(βi

k)
2 if meter m is single/three-phase

measuring phase i√
(αi

k−αj
k)

2+(βi
k−βj

k)
2 if meter m is

two-phase, measuring phase ij
(6)

Here, αi
k and βi

k are the real and imaginary part of uk in
phase i. To remove trends in om, the first difference õm(t) ≜
om(t) − om(t − 1) is used instead of om. Let ṽm(t) be the
actual first difference of meter m at time t and let there be M
smart meters, then at time t, the loss function is [14]:

ew(t) =
1

M

M∑
m=1

(
ṽm(t)− õm(t)

)2
(7)

When training the graphical learning model, the loss function
is calculated over both the whole dataset and mini-batches,
which are smaller subsets of the whole dataset. Thus, for a
batch T of time indices, the loss function is defined as [14]:

ew(T) ≜
1

|T|
∑
t∈T

ew(t) (8)

3) Gradient Calculation: Directly calculating the loss func-
tion’s gradient respecting the line parameters is very difficult
due to the iterations of FORWARD functions. Thus, an al-
gorithm called BACKWARD was designed by treating the
FORWARD iterations as a recurrent neural network (RNN).
More details of the BACKWARD function can be found in
[14]. The core of the BACKWARD function is to initialize
an all-zero vector z(t) and then iteratively update z(t) until
convergence by (9) [14]:

z(t) = z(t) · Â(t) + b̂(t) (9)

Then, the gradient of ew(t) with respect to w is calcualted
as:

∂ew(t)

∂w
= z(t)τ · ∂F̂w([x̂(t)], [̂l(t)])

∂w
(10)

Here Â(t), b̂(t), and F̂w([x̂(t)], [̂l(t)]) are derived by function
Fw and G(·). z(t) is an intermediate variable used in the
Almeida-Pineda algorithm for the RNN backward propagation
[16].

III. TECHNICAL METHODOLOGY

Although GL [14] shows high accuracy in parameter esti-
mation, training the graphical learning model faces obstacles
in large-scale problems. The training time of the model grows
very quickly as the size of the distribution network increases.
This is shown in Table II, in which we record the average
runtime of the most time-consuming functions of GL over
data timestamp batches of size 10 in test feeders of different
sizes.

The computational time of GL’s FORWARD algorithm,
which is based on fixed-point iteration, grows in two aspects.
First, as the network size increases, the number of local tran-
sition function fw,n in (4) increases proportionally. Second,
the number of transition function iterations until convergence
grows with the size of the network. The computational time
of GL’s BACKWARD algorithm grows in a similar way as the
FORWARD function.

Here, we propose upgraded FORWARD and BACKWARD
algorithms that improve the computation efficiency signifi-
cantly over the GL’s algorithms.

A. Fast-FORWARD Algorithm

In the theoretical derivation of the physics-informed graph-
ical learning method [14], the role of the transition function
model of (4) cannot be replaced because it is vital to the
construction of the graphical learning model and the derivation
of the BACKWARD algorithm. However, when we apply
the GL parameter estimation algorithm after constructing the
physics-informed graphical learning model, the FORWARD
function is only used to compute the state [x], given the
parameter set w. Thus, we can re-design the FORWARD
algorithm without the transition function, as long as it can
solve the state [x] given w.

In the upgraded FORWARD algorithm, we adopt two meth-
ods: by adopting a linearized power flow model [4], we first
derive a nearly-accurate initial estimate of states; then, by
adopting the current injection method [15], we obtain accurate
states [x] from the given w in a timely manner.

The linearized power flow model [4] is shown in (11). The
left hand side is the deviation of non-substation nodes from
the substation, in which v̌ denotes voltage magnitudes and θ̌
denotes voltage angles. p̌ and q̌ denote the real and reactive
part of non-substation nodes’ power. Ǎ is a 6N × 6N matrix
derived from the network topology and line parameters w.[

v̌
θ̌

]
= Ǎ−1

[
p̌
q̌

]
=

[
Ǎ11 Ǎ12

Ǎ12 −Ǎ11

]−1 [
p̌
q̌

]
(11)



Here, Ǎ can be calculated with Ǎ11 and Ǎ12, which are
derived as follows. Let Y be the 3(N + 1) × 3(N +
1) admittance matrix of the distribution network organized
in three phases. Construct a block diagonal matrix Φ ≜
diag(I(N+1), αI(N+1), α2I(N+1)), in which α ≜ e−j 2π

3 and
I(N+1) is an identity matrix of size N+1. A11 = Re(Φ−1Y Φ)
and A12 = −Im(Φ−1Y Φ). Then Ǎ11 can be derived by
removing three rows and columns from A11 that correspond
to the substation. Ǎ12 can be derived from A12 in a similar
way. More details can be found in [4].

The current injection method [15] is then used to obtain
accurate states. The basic idea is to iteratively apply (12) until
convergence. Here, [∆I] is a 6N × 1 vector of three-phase
real and imaginary parts of nodal current mismatch. [∆V ] is
a 6N × 1 vector of three-phase real and imaginary parts of
nodal voltage update. J is a Jacobian matrix. In each iteration,
[∆I] and J are updated based on current state, and then [∆V ]
is solved from (12). The current injection method has been
proven to be a fast and accurate way to calculate power flow.

[∆I] = J [∆V ] (12)

The upgraded Fast-FORWARD Algorithm is shown in Al-
gorithm 1 to perform three-phase power flow calculations and
derive the corresponding state [x] given w, which produces
the same outputs as GL’s FORWARD function and is much
faster.

Algorithm 1 Fast-FORWARD(w, t)
Input: Parameter w and time index t.
Output: Distribution system state [x(t)] when line parameter

is w.
1: Use (11) to calculate v̌ and θ̌. Combine v̌, θ̌, and the

source nodes’ state x0(t) to initialize the state [x(t)].
2: repeat
3: Update [∆I] and J based on current state [x(t)]. Solve

[∆I] from (12) and update [x(t)].
4: until The maximum absolute value in [∆I] is less than

ϵCIM

5: return [x(t)].

B. Fast-BACKWARD Algorithm

In the upgraded Fast-BACKWARD algorithm, we shorten
the runtime by reducing the number of iterations of z(t). This
is done by an improved approach to properly initialize z(t)0.
As shown in Algorithm 2, in Step 3, instead of using 01×12N ,
we first try to initialize z(t)0 by solving the function in (9).
If the solution is not feasible (e.g., ill-conditioned matrices),
then we still use z(t)0 = 01×12N . The converged z(t) is then
processed in Steps 8 to 10 and return the gradient.

C. The Upgraded Fast Graphical Learning Algorithm

Our proposed upgraded fast graphical learning algorithm
(FGL) is based on the SGD approach. The algorithm’s scheme
is very similar to the GL algorithm in [14], which starts

Algorithm 2 Fast-BACKWARD(w, T)
Input: Parameter w and batch of time indices T.
Output: Gradient ∂ew(T)

∂w .
1: Calculate Â(t) and b̂(t) for t ∈ T as in the BACKWARD

function in [14].
2: for t ∈ T do
3: Initialize z(t)0 = b̂(t)(I−Â(t))−1. If it is not feasible,

let z(t)0 = 01×12N . τ = 0.
4: repeat
5: z(t)τ+1 = z(t)τ · Â(t) + b̂(t)
6: τ = τ + 1
7: until ∥z(t)τ − z(t)τ−1∥2 < ϵbackward · ∥z(t)τ−1∥2

8: Calculate ∂F̂w([x̂(t)],[̂l(t)])
∂w as in [14], and ∂ew(t)

∂w =

z(t)τ · ∂F̂w([x̂(t)],[̂l(t)])
∂w , for t ∈ T.

9: end for
10:

∂ew(T)
∂w = 1

|T|
∑

t∈T
∂ew(t)
∂w

11: return ∂ew(T)
∂w

with inaccurate GIS records of parameters and updates them
iteratively. The complete algorithm of FGL is omitted here due
to space limitations. The only difference between FGL and
GL is that the FORWARD and BACKWARD functions in GL
are replaced by the Fast-FORWARD and Fast-BACKWARD
function in FGL.

IV. NUMERICAL STUDY

A. Numerical Study Setup

Our proposed FGL algorithm and some state-of-the-art
algorithms are tested on a 178-bus feeder. This feeder is
modified from a real-world 1922-bus distribution circuit in
the service area of National Grid in the State of New York.
The modifications are as follows. Based on our problem setup,
we only keep the three-phase primary lines. The loads and
solar photovoltaic (PV) systems on single-phase or two-phase
lines are reconnected to their nearest three-phase buses. In
the original feeder, if a series of line sections have no smart
meters or branch points between them, we treat them as one
equivalent line section in the modified feeder. This is because
the smaller line sections in such line series have an infinite
number of impedance solutions to any power flow condition.
Thus, it is appropriate to treat them as one equivalent line
section for feeder modeling. The test feeder is illustrated in
Fig. 2.

The feeder is operated at 13.2 kV with a peak load at
4.16 MW, and it contains 177 line sections, 491 loads, 23
solar photovoltaic (PV) systems, and a three-phase capacitor
of 900 kVAR. The loads and solar PVs have different phase
connections of AN . BN , CN , and ABC. To further acceler-
ate the speed of the algorithms, we partition the distribution
feeder into 10 sub-networks following the partition procedure
in [14]. The sizes of the sub-networks are selected to be
approximately the same. For each sub-network, a node is
chosen as the sub-network’s source, whose power injection



Fig. 2. Schematic of the 178-bus test feeder. The red-circled nodes partition
the feeder into sub-networks. The location of the capacitor is marked by a
blue diamond.

and voltage magnitude in three phases, as well as phase-
to-phase voltage angle differences are measured. Thus, each
sub-network can be seen as an independent network and its
“source node” works as a substation; the power flow models
of all the sub-network can be constructed independently and
they work equivalently as the model for a full network.
The parameter estimation algorithms are applied to all sub-
networks in parallel, and the estimated parameters of each sub-
networks are combined together to obtain the final parameter
estimation. The partition is also illustrated in Fig. 2, and each
sub-network has 14 to 22 line sections.

We use the 15-minute power measurement data from the
actual smart meters in the feeder to simulate the real power of
loads. Each time series in the dataset has 1440 readings, which
correspond to a 15-day time window. The reactive power is
simulated by random lagging power factors with a uniform
distribution U(0.9, 1). The temperature and irradiance data
in New York are used to simulate the solar PV generation.
The capacitor, which is installed in a midstream location of
the feeder, is on when the voltage of its connection point is
below 1.0 p.u. and off when the voltage is above 1.05 p.u..
Each solar PV and each phase of the capacitor are treated the
same as a load with smart meter measurement, which follows
the assumptions in Section II-B. To simulate the inaccurate
GIS record of line parameters winitial, we randomly select
parameter values within ±50% of the correct values under
uniform distributions.

Starting from the initial parameter values winitial, the FGL
algorithm iteratively updates line parameters. We use the same
set of hyperparameters as in GL [14]. The hyperparameter
values’ setup for the FGL algorithm is as follows. Batch size
nbatch = 10, early stopping patience npatience = 10, initial step
size sinitial = 1000, α = 0.3, β = 0.5, and ϵstop = 0.01. The
ϵforward in the Fast-FORWARD function and ϵbackward in the
Fast-BACKWARD function are set as 1e − 20. These values
are determined empirically to make sure the algorithm reduces
the loss function value adequately and stops when it saturates.
We implement the numerical study by MATLAB, which runs
on a workstation with 16 CPU cores (3.0 GHz) and 192 GB
RAM.

B. Performance Evaluation

We use mean absolute deviation ratio (MADR) [14] to
evaluate the error of line parameters. If w† and w are the
correct and estimated parameters, then the MADR is defined
as:

MADR ≜

∑12L
i=1 |wi − w†

i |∑12L
i=1 |w

†
i |

× 100% (13)

We use the percentage of MADR improvement to evaluate the
performance of parameter estimation algorithms:

MADR improvement ≜
MADRinitial−MADRfinal

MADRinitial
× 100%

(14)
Here, MADRinitial and MADRfinal are the MADR of the
initial and the final parameter estimates. Higher MADR im-
provement means higher accuracy of parameter estimation.

C. Performance Comparison of the Proposed FGL and State-
of-the-Art Algorithms

Our proposed FGL algorithm by design produces the same
results as the state-of-the-art algorithm GL [14] but with much
faster computation. Thus, we will not compare the parameter
estimation accuracy between FGL and GL. Here, we compare
the parameter estimation accuracy with another state-of-the-art
algorithm: maximum likelihood estimation based on linearized
power flow model (LMLE) [13]. Additionally, similar to GL
[14], we further evaluate the relative importance of prior
knowledge to FGL; we test the effect of parameter constraints
(CON). The parameter constraints are defined as follows:
the ith parameter wi is bounded by winitial,i

1+50% = 2
3winitial,i and

winitial,i
1−50% =2winitial,i. Because of the randomness introduced by
SGD, each algorithm is tested with 20 different random seeds.
Due to the limited computational power, the computation time
of each run of algorithms is limited to 10 hours.

The MADR improvement of the tested algorithms is shown
in Table I. Two categories (average/choose optimal value) of
MADR improvement are reported here. The first category is
the average MADR improvement of the 20 random tests of
each algorithm. The second category is the MADR improve-
ment if each sub-network’s estimated parameters are from the
random test with the lowest loss function value. The MADR
improvement of the whole network and each sub-network
is shown respectively. In the whole network, for FGL and
FGL+CON, we can see that choosing the lowest loss func-
tion value of random tests leads to more accurate parameter
estimations than the average performance. We can also see
that FGL has significantly higher MADR improvement than
LMLE with an additional 9.9 to 12 percent. In addition to
the advantage of FGL, Table I also shows the benefit of
CON, which improves the performance of FGL further with
an additional 5.4 to 8.7 percent. These results show that by
employing the prior distribution of line parameters, CON can
increase the parameter estimation accuracy further.

In the results of sub-networks, we can draw similar con-
clusions as in the whole network. The MADR improvement
varies in sub-networks due to different network sizes, smart



TABLE I
MADR IMPROVEMENT OF PARAMETER ESTIMATION METHODS IN THE

TEST FEEDER (AVERAGE / CHOOSE OPTIMAL VALUE)

Network LMLE FGL FGL+CON
Whole Network 10.8% / 13.5% 20.7% / 25.5% 29.4% / 30.9%

Sub-Net 1 10.3% / 9.1% 20.1% / 21.6% 23.1% / 27.1%
Sub-Net 2 7.3% / 9.2% 13.6% / 20.9% 26.7% / 29.3%
Sub-Net 3 9.9% / 12.2% 34.5% / 40.8% 41.6% / 43.7%
Sub-Net 4 4.5% / 4.7% 5.1% / 5.0% 12.4% / 13.2%
Sub-Net 5 11.6% / 14.8% 20.8% / 22.1% 21.0% / 22.3%
Sub-Net 6 12.0% / 24.3% 37.0% / 62.4% 61.8% / 63.5%
Sub-Net 7 9.3% / 9.3% 16.2% / 18.0% 31.6% / 32.9%
Sub-Net 8 13.9% / 16.5% 22.3% / 23.0% 24.9% / 25.5%
Sub-Net 9 17.3% / 21.3% 30.8% / 34.5% 37.9% / 38.2%

Sub-Net 10 7.6% / 9.6% 2.2% / 8.9% 19.0% / 20.4%

meter densities, and smart meter diversities. We can measure
the smart meter density by the ratio of smart meter number
to bus number, and measure smart meter diversities by the
average unique phases measured by smart meters for a bus.
Sub-net 6 is a smaller network (14 line sections) with higher
smart meter density (9.67) and smart meter diversity (1.8);
thus, it has higher MADR improvement. In comparison, sub-
net 10 is a larger network (20 line sections) with lower smart
meter density (0.86) and diversity (0.86), thus it has lower
MADR improvement. Sub-networks such as sub-net 10 have
higher level of complexity and less measurement, which makes
parameter estimation more difficult. The average accuracy of
FGL in sub-net 10 is low because many random tests converge
to higher loss values. By choosing the result with the lowest
loss value, we can find the test that is better optimized and thus
acquire more accurate estimation. We can also see that CON
is effective in guiding the parameter estimation algorithm to
significantly better results.

D. Computation Time of FGL and State-of-the-Art Algorithms

To evaluate the time efficiency of the parameter estimation
methods, we record the average runtime of the most time-
consuming functions in each method as shown in Table II. In
FGL, the time-consuming functions are the Fast-FORWARD
and Fast-BACKWARD; in GL, the time-consuming functions
are the FORWARD and BACKWARD; in LMLE, the time-
consuming function is a gradient calculation function. These
functions are tested on test feeders of 3 different sizes: 7-bus,
14-bus, and 22-bus, which are sub-networks of a modified
IEEE 37-bus test feeder in [14]. Each function is run multiple
times over random mini-batches of size 10. From Table II,
we can see that all the functions’ runtimes increase as the
feeders get larger. However, the runtimes of the functions in
FGL are much shorter than GL, and their growth is much
slower. The Fast-FORWARD is over 20 times faster than
FORWARD in the 7-bus feeder, and over 60 times faster in
the 22-bus feeder. The Fast-BACKWARD is over 1.5 times
faster than BACKWARD in the 7-bus-feeder, and about 6
times faster in the 22-bus feeder. Note that when solving
the same problem, the numbers of calls of Fast-FORWARD
and Fast-BACKWARD are equal to those of FORWARD and

BACKWARD respectively as FGL and GL are by design
equivalent. Thus, the total runtime of FGL will be much
shorter than GL. We also note that the LMLE becomes
increasingly slower in larger feeders. In fact, when generating
the results in Table I, the average running time of LMLE in a
sub-network is 245.4 minute, much longer than FGL (33.1
minute) and FGL+CON (27.5 minute). From these results,
we can see that the proposed FGL and FGL+CON are the
most efficient by a large margin among the tested parameter
estimation methods.

TABLE II
AVERAGE RUNTIME (SECOND) OF MAIN FUNCTIONS OF PARAMETER

ESTIMATION METHODS IN FEEDERS OF DIFFERENT SIZES

Method Function 7-Bus 14-Bus 22-Bus

FGL Fast-FORWARD 0.0142 0.0313 0.0519
Fast-BACKWARD 0.068 0.1046 0.1761

GL FORWARD 0.3028 1.1603 3.2839
BACKWARD 0.1057 0.3325 1.0065

LMLE Gradient Calculation 0.0079 0.1866 0.8531

V. CONCLUSION

In this paper, we develop a fast graphical learning algorithm
to estimate line parameters of three-phase power distribu-
tion networks. The proposed algorithm has wide applicability
because it only requires smart meter data, which is readily
available, and it estimates three-phase series impedances. By
using fast power flow calculation of the current injection
method and more efficient state initialization from the lin-
earized power flow model, we develop much faster alternative
algorithms to replace GL’s FORWARD and BACKWARD
algorithms. A comprehensive numerical study on IEEE test
feeders and large-scale real-world distribution feeders shows
that the proposed method improves the computational effi-
ciency by as much as 60 times in larger distribution networks
while attaining the accuracy of state-of-the-art algorithms.
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