
Offline Reinforcement Learning for Price-Based
Demand Response Program Design

Ce Xu∗, Bo Liu†, and Yue Zhao∗
∗Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

†Amazon, Seattle, WA 98109, USA
Emails: {ce.xu, yue.zhao.2}@stonybrook.edu, liubo19831214@gmail.com

Abstract—In this paper, price-based demand response (DR)
program design by offline Reinforcement Learning (RL) with
data collected from smart meters is studied. Unlike online RL
approaches, offline RL does not need to interact with consumers
in the real world and thus has great cost-effectiveness and
safety advantages. A sequential decision-making process with
a Markov Decision Process (MDP) framework is formulated.
A novel data augmentation method based on bootstrapping is
developed. Deep Q-network (DQN)-based offline RL and policy
evaluation algorithms are developed to design high-performance
DR pricing policies. The developed offline learning methods
are evaluated on both a real-world data set and simulation
environments. It is demonstrated that the performance of the
developed offline RL methods achieve excellent performance that
is very close to the ideal performance bound provided by the
state-of-the-art online RL algorithms.

I. INTRODUCTION

The growth of smart buildings, smart homes, and electric
vehicles (EVs) has led to great promises in demand response
(DR) for achieving a more efficient and sustainable energy
system. However, major challenges arise in efficiently extract-
ing DR from a massive number of heterogeneous and often
small-scale distributed energy resources (DERs). In particular,
there is often a lack of accurate models of such DR resources’
dynamic capacity, which often depend on highly variable
factors such as human behaviors.

As such, consumer behavior learning and making operation
(e.g., control or pricing) decisions accordingly has been an
important topic for DR program designers [1]. Naturally,
utilities frequently interact with consumers in daily operations
by which better understanding of consumers’ DR responses
may be obtained. Indeed, many DR control policy/program
design problems can be modeled as sequential decision-
making problems, and Reinforcement Learning (RL) has been
studied for solving such problems. Examples include using
RL to learn the optimal control of household appliances [2],
selecting optimal subset of consumers to call for DR events
[3], setting incentive payments to encourage demand reduction
[4], and learning the best bidding strategies for DR market
participation [5]. In this paper, we focus on the design of price-
based DR programs (PBDRP) such as real-time pricing (RTP)
[6]. Specifically, we are interested in using dynamic prices
as indirect control signals to elicit desired demand responses
from consumers.

This work is supported by the National Science Foundation under Grant
ECCS-2025152.

Existing works that use RL to design dynamic pricing DR
programs have primarily employed online approaches. [7] uses
online multi-agent RL to learn optimal dynamic pricing strat-
egy and energy consumption schedule that minimize the total
cost of service provider and disutility of energy consumers. [8]
designs a daily iterative dynamic pricing DR algorithm based
on online RL, aiming at cost minimization for both service
providers and consumers. In [9], a utility uses online RL to
learn consumers’ response functions and adjusts its pricing
strategies accordingly to achieve certain load reduction target.

One fundamental limitation of such online RL approaches
is that the learning process relies on extensive interactions
with the consumers. Given that RL is notorious for its slow
convergence, it can potentially take months if not years for
such online RL approaches to learn a high-performance policy.
Moreover, the exploration component of such RL approaches
implies that the decision-maker would often need to venture
into unseen scenarios which could lead to safety and system
reliability risks. In sum, online RL approaches run the risk
of being time-consuming, costly and unsafe when applied
to learning effective DR control policies/programs with real-
world consumers.

To overcome these obstacles, in this paper, we investigate
completely offline RL approaches that exploit existing data
sets to discover cost-effective and safe DR policies. Notably,
many utilities already have RTP programs for both commercial
and residential consumers [10]. As a result, large amounts of
consumer load data under RTP programs are already available
for many utilities to exploit. Recent studies have investigated
the possibility to use offline RL on its own or combined with
online learning for demand bidding [11] and device/building
control [12]. However, very few works exist that use offline
RL for dynamic pricing DR program design. To the best of
our knowledge, the only such related work is [13] which
aims to reduce energy consumption in office buildings using
dynamic pricing. There, online RL is combined with offline
pre-training to accelerate convergence. We however note that
a) the problem setting therein is very different from ours, and
b) as opposed to still partly relying on online RL, we aim to
not rely on online RL at all but fully perform offline RL.

In particular, we propose a fully offline RL framework
for price-based DR program design. To the best of our
knowledge, this is the first work that uses fully offline RL to
design dynamic pricing policies for demand response. We first
formulate the dynamic pricing design problem as a sequential

decision-making problem. Exploiting the availability of smart
meter data of consumers, a novel data augmentation method
based on bootstrapping is developed to greatly increase the
size of the data set for offline RL. We then develop Deep
Q-network (DQN)-based offline RL and policy evaluation
methods for designing and evaluating DR pricing policies
completely based on existing data sets. We conduct extensive
numerical experiments to evaluate our proposed offline RL
methods. These include evaluations with both a real-world data
set and simulation environments. The evaluation demonstrated
high performance of the developed methods. Notably, as
verified in the simulation environments, the offline learned
policies perform very closely to the ideal performance bound
achieved by the state-of-the-art online RL algorithms.

II. PROBLEM FORMULATION AND SYSTEM MODEL

Consider a utility company serving a group of N electricity
consumers via PBDRP. Given reliability and/or economic con-
cerns, the utility has a sequence of DR targets over time that it
aims to achieve. For this, an effective dynamic pricing policy is
desired to encourage the consumers to follow the DR targets as
closely as possible. In real-world RTP programs, the electricity
prices are typically announced with an advanced notice [10].
In this work, we model such advanced notice as general m-
hour ahead notices where m is a program parameter. As such,
our problem is to design an m-hour ahead pricing policy that
can effectively elicit consumer DR responses to follow the
desired DR targets.

We model this problem as a sequential decision-making
process: a) the state variables are consumer states and certain
environmental variables such as weather and time, b) due to
the m-hour ahead notice, the control variable/action at time t
is the price signal at time t+m, and c) the reward at time t is
determined by how close the consumers’ DR is to the desired
DR target at t. Our design objective is a pricing policy that
maps states to actions. More details follow.

A. Sequential Decision-Making, MDP, and Delayed Rewards

Given a pricing policy π and some initial state s0, for each
hour i within a day,

• At the beginning of hour i, the utility observes current
state si, and announce a price signal ai ∼ π for hour
i+m.

• Upon observing the current price ai−m and the an-
nounced future price signals ai−m+1, . . . ai, the con-
sumers respond to the price by either decreasing or
increasing their loads according to their preferences.

• At the end of hour i, the utility company observes the
next state si+1 and observes the reward ri depending on
the customers’ responses affected by the price signals.

• Iterate the above process until the end of the day.
We model this decision-making process as a Markov decision
process (MDP) represented by a tuple (S,A, r, γ), where:
S is the state space where the state at each hour t is s(t) =

{t, T (t+m), d(t+m), Sn(t+m), B(t+m), h(t), D(t+m)}:
• t is the hour of the day.
• T (t+m) ∈ R is the temperature forecast for hour t+m.

• d(t + m) ∈ {0, 1} is a binary variable representing the
type of day (workday or holiday).

• Sn(t+m) ∈ {0, 1} is a binary variable representing the
type of season (hot or cold season).

• B(t+m) ∈ R+ is the predicted baseline loads for hour
t+m.

• h(t) ∈ R stands for “history”, and is a variable depicting
the consumers’ level of demand suppression resulting
from previous responses. Consumers with high demand
suppression are likely to have stronger “rebounds”. Con-
cretely it is defined as the discounted sum over the
demand responses from previous hours:

h(t) =
1

N

N∑
i=1

t−1∑
τ=0

(Bi(τ)− Li(τ)) · σt−1−τ , (1)

where Bi(τ) and Li(τ) are the baseline and actual loads
for consumer i, and σ < 1 is a discount factor.

• D(t+m) ∈ R is the target DR, i.e., how much the utility
wants the average demand to change m hours later.

a ∈ A is the action, which is the price signal for time t+m.
We choose a discrete action space A which can represent the
dynamic pricing programs with discrete pricing levels, as well
as those with continuous prices after discretization.
r ∈ R− is the reward which is defined as the negative

squared error between the target and realized DR, i.e.,

r(t) = −(D(t)− (L(t)−B(t)))2, (2)

where B(t) and L(t) are the average baseline and realized
loads of the entire group of consumers.
γ is a discount factor. We set it to be 1 as the horizon of

the MDP, denoted by H , is of a relatively short length.
Importantly, we note that the above state definition is

our design choice that captures important information about
the “real” state in a compact way. As such, the formulated
MDP is an approximation of the real-world process. We will
demonstrate in our experiments that our model, albeit compact,
is sufficient to achieve excellent performance.

III. METHODOLOGY: OFFLINE REINFORCEMENT LEARNING

With the aforementioned MDP, our goal is to learn a pricing
policy that maximizes the expected total rewards:

π⋆ = argmax
π

(E[
H∑
i=0

r(si, π(si))]). (3)

To solve the problem in a safe and cost-efficient manner,
we propose an offline RL framework: based on some prior
experiences on PBDRP (which can be far from optimal),
the utility aims to design a high-performance pricing policy
completely based on the existing data that is already collected
by these prior experiences, while never having to interact with
the real world for this design task.

A. Utility Experience and Data Sets
As mentioned in Sec. I, many data sets available to util-

ities, such as the consumers’ smart meter data under RTP
programs, contain information about the consumers’ responses
to dynamic prices. These data sets can intuitively be used to

design effective pricing policies. Generally, a data set with the
following properties would enable effective offline learning:
a) prices are dynamic (i.e., not flat), b) consumers’ loads (and
hence responses to prices) are measured, and c) the size of the
data is sufficiently large to have reasonable coverage of diverse
consumer behaviors. As we will show in our experiments,
with data sets that satisfy these properties to just a reasonable
extent, our offline learning methods will be highly effective in
discovering high-performance new pricing policies.

B. Data Augmentation
A unique characteristic of DR programs is that the utility’s

goal is typically eliciting a total amount of DR from all
the consumers. This implies that it is sufficient to focus on
an aggregate consumer. However, focusing on an aggregate
consumer also reduces the amount of data from which to learn,
because the training data is all about aggregate consumption,
and information for each consumer is not fully utilized.

To address this issue of reduced data set, we employ a
simple but powerful data augmentation method: bootstrapping
(i.e., re-sampling) from the full data set to create new data
sets. In particular, instead of training on the full aggregation
of size N , we can choose a smaller size N ′ < N , bootstrap
a data set of size N ′ from the full data set of size N ,
and then aggregate the bootstrapped data. For example, with
N = 2, 000 consumers, the number of data sets of size
N ′ = 1, 000 would be

(
2000
1000

)
— Collecting just a tiny fraction

of these can already increase the total data size significantly.
The reasoning behind this approach is that the aggregate
behavior of 1, 000 random consumers would very closely
indicate that of 2, 000 (modulo a scaling factor). In this way,
we are able to greatly enrich the training data set so that the
testing performance is further improved.

C. Offline Reinforcement Learning and Policy Evaluation
Offline RL and evaluation are inherently different from

online ones in that it is doing counterfactual learning. One
has to rely entirely on the past experience to answer “what
if” questions. The distribution mismatch between the samples
observed in the offline dataset collected by some behavior
policy and that coming from the policy to be evaluated makes
the offline learning very challenging.

One class of offline RL algorithms is to use dynamic
program (DP) methods exploiting the mathematical structures
of the Bellman equations to learn the counterfactuals. This is
often referred to as “off-policy” learning. To be specific, one
can learn the state or state-action value function via function
approximation, and then derive the optimal policy from the
value functions. The expected return can also be estimated:
given a Q function [14] Qπd

(s, a) of some target policy πd,
and an initial state distribution S0, the expected return can be
calculated as follows:

J(πd) =Es0∼S0,a0∼πd(a0|s0)[Qπd
(s0, a0)]. (4)

IV. ALGORITHM DESIGN

A. Offline RL: Offline DQN with Extensions
We use Q-learning based algorithms as our offline RL algo-

rithms [14]. Deep Q-network (DQN) [15] is a contemporary

Q-learning algorithm which has been intensively studied and
improved over the years. The algorithms we used in this paper
are the offline variant of the DQN algorithms with extensions
such as double Q-learning [16] and dueling network [17].

Algorithm 1: Offline DQN
Load the entire set of transitions D = {(s, a, r, s′)} to

replay memory;
Initialize Q network with random weights θ0;
for iteration 1 to maxiter do

Randomly sample mini-batch D′ ⊂ D ;
Compute TD target for each tuple
(si, ai, ri, s

′
i) ∈ D′:

yi = ri +max
a

Q(s′i, a; θ
−); (5)

Perform stochastic gradient descent on
|y −Q(s, a; θ)|2 w.r.t. θ;

For every C steps update θ− = θ.

Output policy according to Qπ⋆ = Q(s, a; θ)

Algorithm 1 shows the vanilla offline DQN. The vanilla
form is however observed to lead to overestimation of the TD
target in certain applications. To alleviate this potential issue,
the offline double DQN (DDQN) is introduced where separate
parameters θ for action selection and θ− for estimation are
used for Bellman updates. To be specific, we substitute (5) in
Algorithm 1 with the following equation:

yi = ri +Q(s′i, argmax
a

Q(s′i, a; θ); θ
−); (6)

Another extension involves the modification of the fully
connected neural network (FCNN) architecture. Two parallel
FCNNs sharing the same set of input features are a) trained to
estimate the state value and advantage function separately, and
b) combined by an aggregation layer to output the state-action
value function estimates. Such a network is called the dueling
network. We refer the reader to [17] for details.

B. Off-policy Policy Evaluation: Fitted Q-Evaluation (FQE)
Given an offline learned policy (or any policy of interest),

one needs to demonstrate its performance before it can be
implemented. Real-world pricing experiments are often costly
to conduct and can have safety risks. A fully offline policy
evaluation method is thus needed.

Interestingly, with a simple modification to algorithm 1, an
off-policy policy evaluation (OPE) algorithm [18], [19] can be
derived. To be specific, Q-learning-based RL algorithms learn
the state-action values of the optimal policy and subsequently
the optimal policy itself by choosing the actions that maximize
the future state-action values. However, if the max operation
in (5) is substituted with some external target policy πd, the
algorithm will learn the state-action values of the target policy
Qπd

(s, a) instead of the optimal Q⋆(s, a). This is the intuition
behind fitted Q-Evaluation FQE [20]. To be specific, given
a target policy πd and an initial state distribution S0, (5) is
substituted with

yi = ri +Q(s′i, a
′
i = πd(s

′
i); θ

−), (7)

and the algorithm will output the target policy’s expected
return J(πd) according to (4) with Qπd

= Q(s, a; θ).
As such, FQE serves as a tool to evaluate not only the

pricing policies learned through offline DQNs, but also any
other policies including heuristics.

V. EXPERIMENTS

We conduct two sets of experiments to study the perfor-
mance of the developed methods. First, we evaluate the offline
RL algorithms based on an existing real-world data set where
consumer responses to certain dynamic prices were recorded.
Next, we further build a simulation environment that simulates
consumer responses to prices. We then evaluate the algorithm
performance using simulated data. Importantly, the simulation
environment also enables us to perform online RL, something
that cannot be performed with existing real-world data sets. As
such, the online RL performance is evaluated, and it serves as
a performance bound with which our offline RL algorithm
performance can be compared.

A. Real World Test Case: Low Carbon London project

In this section, we demonstrate and evaluate the proposed
algorithms based on a real-world data set. While there are
existing RTP programs implemented by utilities, it is however
difficult to access their data due to privacy and confidentiality
constraints. In this work, we utilize an openly available data
set from a research project led by UK Power Networks called
Low Carbon London (LCL) [21], which successfully serves
our purposes for evaluation.

1) Data collection and processing:
In the LCL project, smart meter data are collected from

energy consumers who are subject to dynamic Time-of-Use
(dToU) tariffs. The dToU tariff trial consists of three discrete
pricing levels: high (£0.672/kWh), standard (£0.1176/kWh),
and low (£0.0399/kWh). The prices were randomly scheduled
and given to the participants one day ahead. A total of one
year of consumer-level smart meter load data was collected
in 2013, with 114 days being event days (i.e., during each
of which at least one high or low price is scheduled). 1,122
consumers participated in the dTOU trial. In addition to the
trial group, there was a reference group of 4,545 consumers
receiving a flat rate tariff (£0.14228/kWh). All the consumers
were located in the Greater London area. In addition to the
tariff and smart meter data, we also collected the temperature
of London in 2013 [22]. The LCL study also provides a linear
regression model for computing the baseline loads.

Based on the LCL data set, we implemented the bootstrap-
ping technique introduced in Sec. III-B. 1

5 of the consumers
are randomly sampled (with replacement) each time. A total
of 400 re-sampling are performed to generate approximately
100K hours of offline experience. We then follow the steps
in Sec. II-A to construct the MDP experience.

Advanced notice and delayed rewards: While the dToU
program from the LCL project announces the event/dynamic
prices one day ahead, we made the following observations
from analyzing the data: Despite the DA notification, con-
sumers tend to still follow their normal consumption pattern
up until 3 to 4 hours ahead of the scheduled event (with either

Fig. 1. Demand response before and after the low (green) and high
(red) price events, averaged over all consumers and all such events, in
the Low Carbon London dToU trial.

Fig. 2. Offline RL learning curves: Q value function return (left) and
Bellman residual (right).

a high or low price), as shown in Fig. 1. In other words, we
can accurately approximate the day-ahead program by a 3-
hour ahead pricing program (cf. Sec. II with m = 3).

2) Offline learning and evaluation results:
The offline DQN learning algorithms (vanilla DQN, DDQN,

and DDQN with dueling networks) are evaluated on the above
constructed data set based on LCL’s real-world data. The
architectures of DQN and DDQN models are identical: a
FCNN with an input layer that takes in 8 state features,
a hidden layer with 18 neurons, and an output layer that
produces 3 outputs, each corresponding to a value of the
Q function with one (out of 3) possible actions (i.e., high,
standard, and low prices). For the dueling network, each one
of the two FCNNs has a single hidden layer with 18 neurons.

Fig. 2 shows the policy returns and the Bellman residual
learning curves. The mean (solid lines) and standard deviation
(shadowed intervals) are plotted based on 10 repeated runs.
The returns of 3 offline RL algorithms all converged at around
−245, indicating that their performance are very close to each
other albeit with different convergence speeds.

Next, the offline-learned policies are evaluated using offline
FQE along with some heuristics including

• flat rate with standard price only, and
• a simple and intuitive threshold-based policy: high price

when target D > 0.1, low price when D < −0.1, and
standard price otherwise.

Offline FQE provides a way to compare and rank all these
policies. We plot the FQE results in Fig. 3(a). It is clear that the
flat rate policy is the worst with no demand response control
ability at all, followed by simple threshold-based policy which
is far from optimal. The best policies are the ones learned
using offline RL, with the converged returns all at around -245.
Notably, this evaluation (-245) is consistent with the above
converged offline RL returns (-245).

(a) LCL test case (b) 3HA3p simulation environment

Fig. 3. Offline FQE returns.

B. Simulation Environments: Comparing the Proposed Offline
Algorithms to Online Benchmarks

1) Motivations:
In this section, we build several simulation environments

to model the price responses of consumers in a variety of
dynamic pricing programs. With the simulation environments,
the actual pricing actions and responses can be simulated
indefinitely, and this enables very accurate performance evalu-
ation of any policy, including the ones learned using offline RL
methods. Importantly, the simulation environments also serve
as testbeds to perform online RL which would not be possible
with existing real-world data sets. As such, by implementing
the state of the art online RL algorithms, their performance
provide a performance bound with which offline RL policies
can be compared. The simulation environments also allow us
to verify the efficacy of offline policy evaluation methods.

2) Establishing the simulation environments:
We utilize the idea of price elasticity matrix [23] to model

consumer response to dynamic pricing. At any given time, the
load response of the consumer is affected by the entire history
of price signals they observed. We use cit to quantitatively
represent the effect of price at time i on the load at time t.
Concretely, we define the load-price coefficient:

ci,t =
Li,t −Bi,t

p(i)− pn
,

where p(i) is the price at time i, pn is the normal (i.e.,
standard) price, and Lit and Bit are the components of load
consumption and baseline estimation at time t affected by
price at time i.

∑
i Lit = L(t) and

∑
i Bit = B(t). The

load response of consumer at time t can then be written as
the summation of load response components over time:

L(t)−B(t) =

t+m∑
i=1

ci,t (p(i)− pn) (8)

Note that the load response at time t is affected by prices
from hour 1 to hour t + m, i.e., all the price signals that
the consumers can observe at time t. The values of the
coefficients are set so that the simulation environment mimics
the consumer behaviors observed in the LCL dataset.

The environment is designed in the following way:
• An episode has a length of 24-m hours.
• At hour 1, the state is randomly initialized. The target

curves are randomly generated.

TABLE. I. OFFLINE AND ONLINE EVALUATION (3HA3P).

offline FQE sim eval

DQN -355 -393
DDQN -351 -394
DDQN+dueling -353 -395
threshold 0.07 -392 -452
threshold 0.1 -453 -509
threshold 0.13 -491 -594
flat -505 -620
threshold 0.04 -526 -674

• At each time step t, given an action at that corresponds
to the price to be realized at time t+m, the load response
is calculated following (8), and the history feature is
calculated following (1). The state is then updated as in
Sec. II-A, and the reward is calculated as in (2).

• At hour 24 − m, the final price signal a24−m (i.e., the
price for hour 24) is announced, and the terminal reward
is calculated based on the remaining DR actions in the
final hours.

We choose m = 1 and 3 to represent the hour-ahead
(HA) and day-ahead (DA) programs (cf. Section V-A1),
respectively. We also use two action spaces |A| = 3 and
|A| = 7 to model both dToU-style RTP programs with discrete
price settings, and the continuous price RTP programs by
discretizing the prices into 7 levels. In total 4 environments
are designed, namely the 1-hour-ahead program with 3 dis-
crete prices (1HA3p), 1-hour-ahead program with 7 discrete
prices (1HA7p), 3-hour-ahead program with 3 discrete prices
(3HA3p), and 3-hour-ahead pricing with 7 discrete prices
(3HA7p).

3) Offline data collection and learning:
We collect one year of load data through consumer in-

teractions with the environments using uniformly distributed
random prices as the behavior policy. The external variables
independent of the price actions such as time, weather and
baseline consumption are generated based on the LCL datasets.
The datasets are then augmented using random targets. Ap-
proximately 300K data (i.e., state transitions) are collected.
The same set of offline RL algorithms as above are imple-
mented to train the policies.

4) Offline and online policy evaluation:
Enabled by the simulation environment, we first demon-

strate the efficacy of our offline evaluation method, i.e., FQE.
In particular, as actual rewards can be observed with the
simulation environment, we can simulate any policy and easily
compute the “ground truth” average rewards with which the
FQE results can be compared. Here, we focus on the 3HA3p
case which corresponds to the LCL case studied in Section
V-A. The heuristics that we evaluate again include flat price
and simple threshold-based policies. In particular, we evaluate
the threshold-based policies with 4 different thresholds, ±0.04,
±0.07, ±0.1, and ±0.13.

Fig. 3(b) and Table I show the evaluation results using
offline FQE and online simulation evaluation. We observe that
offline FQE is a sufficiently accurate indicator of the accurate
online-evaluated policy performance: a) FQE provides rela-

TABLE. II. PERFORMANCE COMPARISON FOR OFFLINE LEARNED POLICIES, ONLINE BENCHMARKS, AND HEURISTICS.

simulation
setting

offline
DQN

offline
DDQN

offline
DDQN+
dueling

online
DQN

online
DDQN

online
DDQN+
dueling

online
PPO threshold flat

1HA3p -422 -424 -422 -418 -417 -416 -417 -486 -672
1HA7p -220 -220 -224 -214 -214 -215 -229 -302 -669
3HA3p -393 -394 -395 -392 -392 -391 -386 -452 -620
3HA7p -194 -194 -196 -183 -183 -182 -188 -355 -646

tively similar average reward estimates, and more importantly,
b) highly accurate ranking of the policies.

5) Online learning benchmarks:
Last but not least, we employ several state-of-the-art online

RL algorithms as performance benchmarks with which our
offline methods are compared. These include value-based ones
such as online vanilla DQN, online DDQN, online DDQN
with dueling networks, and actor-critic methods such as the
Proximal Policy Optimization (PPO) with clipping [24].

Table II summarizes the performance of offline learned
policies, online benchmarks, and simple heuristics in numeric
values. We observe that the offline learned policies not only
a) outperform heuristic policies by large margins, but are also
b) very close to the online benchmarks. These demonstrate
great efficacy of the developed offline RL methods and provide
assurance of the high performance of the offline learned
pricing policies for DR.

VI. CONCLUSION

We have developed fully offline RL methods to design
dynamic pricing DR programs based on existing data sets
without any further interactions with consumers. We have
formulated the dynamic pricing design problem in a sequential
decision-making framework with an MDP. We have developed
a novel data augmentation method that greatly increases the
size of the data set. We have developed DQN-based offline
RL and policy evaluation methods to learn high-performance
pricing policies. We have extensively evaluated the developed
offline learning methods with both a real-world data set
and simulation environments. Excellent performance of the
proposed offline RL method is demonstrated which approaches
the ideal performance bound provided by state-of-the-art on-
line RL algorithms.

REFERENCES

[1] R. Mieth and Y. Dvorkin, “Online learning for network constrained
demand response pricing in distribution systems,” IEEE Transactions
on Smart Grid, vol. 11, no. 3, pp. 2563–2575, 2019.

[2] Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using
device-based reinforcement learning,” IEEE Trans. on Smart Grid,
vol. 6, no. 5, pp. 2312–2324, 2015.

[3] Y. Li, Q. Hu, and N. Li, “A reliability-aware multi-armed bandit
approach to learn and select users in demand response,” Automatica,
vol. 119, p. 109015, 2020.

[4] X. Kong, D. Kong, J. Yao, L. Bai, and J. Xiao, “Online pricing of
demand response based on long short-term memory and reinforcement
learning,” Applied energy, vol. 271, p. 114945, 2020.

[5] A. Shojaeighadikolaei, A. Ghasemi, K. R. Jones, A. G. Bardas,
M. Hashemi, and R. Ahmadi, “Demand responsive dynamic pricing
framework for prosumer dominated microgrids using multiagent rein-
forcement learning,” in 2020 52nd North American Power Symposium.
IEEE, 2021, pp. 1–6.

[6] G. Barbose, C. Goldman, and B. Neenan, “A survey of utility experience
with real time pricing,” Lawrence Berkeley National Lab, Berkeley, CA,
Tech. Rep., 2004.

[7] B.-G. Kim, Y. Zhang, M. Van Der Schaar, and J.-W. Lee, “Dynamic
pricing and energy consumption scheduling with reinforcement learn-
ing,” IEEE Trans. on smart grid, vol. 7, no. 5, pp. 2187–2198, 2015.

[8] R. Lu, S. H. Hong, and X. Zhang, “A dynamic pricing demand response
algorithm for smart grid: reinforcement learning approach,” Applied
Energy, vol. 220, pp. 220–230, 2018.

[9] A. Ghasemkhani and L. Yang, “Reinforcement learning based pricing for
demand response,” in IEEE Int’l Conf. on Communications Workshops.
IEEE, 2018, pp. 1–6.

[10] N. Nezamoddini and Y. Wang, “Real-time electricity pricing for indus-
trial customers: Survey and case studies in the united states,” Applied
energy, vol. 195, pp. 1023–1037, 2017.

[11] K.-C. Lee, H.-T. Yang, and W. Tang, “Data-driven online interactive
bidding strategy for demand response,” Applied Energy, vol. 319, p.
119082, 2022.

[12] F. Ruelens, B. J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška,
and R. Belmans, “Reinforcement learning applied to an electric water
heater: from theory to practice,” IEEE Trans. on Smart Grid, vol. 9,
no. 4, pp. 3792–3800, 2016.

[13] D. Jang, L. Spangher, T. Srivistava, M. Khattar, U. Agwan, S. Nadarajah,
and C. Spanos, “Offline-online reinforcement learning for energy pricing
in office demand response: lowering energy and data costs,” in Proc.
of the 8th ACM Int’l Conf. on Systems for Energy-Efficient Buildings,
Cities, and Transportation, 2021, pp. 131–139.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[16] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proc. of the AAAI conf. on artificial intelli-
gence, vol. 30, no. 1, 2016.

[17] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in Int’l
Conf. on machine learning, 2016, pp. 1995–2003.

[18] D. Lyu, B. Liu, M. Geist, W. Dong, S. Biaz, and Q. Wang, “Stable and
efficient policy evaluation,” IEEE transactions on neural networks and
learning systems, 2018.

[19] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik, “Prox-
imal gradient temporal difference learning algorithms,” in International
Joint Conference of Artificial Intelligence (IJCAI), 2016, pp. 4195–4199.

[20] H. Le, C. Voloshin, and Y. Yue, “Batch policy learning under con-
straints,” in Int’l Conf. on Machine Learning, 2019, pp. 3703–3712.

[21] J. R. Schofield, R. Carmichael, S. Tindemans, M. Bilton, M. Woolf,
G. Strbac et al., “Low carbon london project: Data from the dynamic
time-of-use electricity pricing trial, 2013,” UK Data Service, SN, vol.
7857, no. 2015, pp. 7857–7851, 2015.

[22] “Met office MIDAS open: UK land surface stations data (1853-current),”
Centre for Environmental Data Analysis, 2019.

[23] X. Qu, H. Hui, S. Yang, Y. Li, and Y. Ding, “Price elasticity matrix
of demand in power system considering demand response programs,”
in IOP Conf. Series: Earth and Environmental Science, vol. 121, no. 5.
IOP Publishing, 2018.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

