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Abstract—With increasing deployment of electric vehicles in
urban mobility-on-demand systems, electric taxis (e-taxi) drivers
need to compete with each other not only for passengers but
also for limited charging points due to frequent and time-
consuming charging activities. This paper focuses on two crucial
research questions in this context: (1) What is the strategy
of each e-taxi driver for charging and searching passengers
in a non-cooperative environment, and what is the collective
system outcome of competing e-taxis? (2) How can the mobility-
on-demand service platforms (e.g., Uber and Lyft) push self-
interested e-taxi drivers to improve the overall system efficiency.
Technically, we study the non-cooperative mobility-on-demand
system consisting of e-taxis from a game theoretic perspective. We
formulate a mobility-on-demand system with competition among
drivers as a stochastic game, analyze the Nash Equilibrium (NE)
of the game, and design an approximation algorithm to obtain the
NE. Moreover, we show that the NE is not necessarily efficient for
the platform and propose a pricing scheme from the platform’s
perspective which induces the new NE to be efficient. We use a
trace-driven simulation to evaluate the design based on datasets
consisting of more than 7,000 fuel vehicles and nearly 700 e-taxis,
37 working charging stations, and more than 60,000 passenger
trips per day. We show that, compared with the state-of-the-art
which optimizes the system efficiency by coordinating e-taxis but
is not an equilibrium, the NE achieves a system efficiency of
merely 73.5% of that of the cooperative state-of-the-art, and the
designed pricing scheme improves the price of anarchy to 95.5%.

I. INTRODUCTION

In recent years, mobility-on-demand services, e.g., Uber,
Didi, and Lyft have emerged to offer new transportation
services for passengers. In such systems, every self-interested
driver owns and operates a vehicle to maximize his/her daily
profit. In this work, we study the scenarios when electric
taxis (e-taxis) are operated with such a mobility-on-demand
platform: self-interested drivers determine the cruising routes
and charging locations of their e-taxis to maximize their
respective daily profits. Meanwhile, they upload their real-time
locations and occupancy status to the mobility-on-demand
service platform, and the platform matches the passengers
with the nearby unoccupied e-taxis. The platform takes a fixed
percentage cut from the fare cost of rides as its income. The
total income obtained from all fare costs is used to measure
the efficiency of the platform [1].
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New problems arise with the expansion of mobility-on-
demand systems consisting of electric taxis. Firstly, the oper-
ational sustainability of an e-taxi requires relatively frequent
and time-consuming charging in a day since the range of an
EV is less than that of a fuel vehicle and it can cost up to
an hour to fully charge an EV [2], [3]. Meanwhile, given the
distribution of finite charging points over a city, self-interested
e-taxi drivers need to compete with each other not only for
passengers but also for charging points. Two crucial research
questions arise in this context:
• Q1. What is the strategy of each driver for charging and

searching passengers in a non-cooperative environment, and
what is the collective system outcome of competing e-taxis?

• Q2. How can a mobility-on-demand service platform induce
self-interested e-taxi drivers to improve the system-wise
efficiency?

To answer Q1, we formulate the competition among e-taxi
drivers for passengers and charging points as a non-cooperative
stochastic game. The game models e-taxi system dynamics
as stochastic processes due to randomness, e.g., passenger
mobility pattern, traffic condition, and e-taxis’ waiting time
at charging stations. The Nash Equilibrium (NE) of the game
is analyzed and an efficient algorithm approximately comput-
ing the NE is proposed. For Q2, recognizing the potential
system inefficiency of the NE, a pricing scheme is designed
for the mobility-on-demand service platforms to induce e-
taxis to a socially optimal NE. The reason for utilizing the
pricing scheme to engage drivers is that the service platforms
cannot directly control the e-taxis to enhance the system-wise
efficiency, and that penalty or reward changes drivers’ utility
and hence indirectly influences their actions.

Methodologically, modeling the competitive taxi systems
as a game is not new [4]–[8]. [5] investigates the problem
of how an e-taxi driver relocates for charging and serving
passengers to maximize the long-term cumulative reward and
designs a reinforcement learning algorithm for each driver.
Different from these works, this paper studies a new set-
ting, i.e., competition among e-taxi drivers with mobility-on-
demand platforms. Dynamic fare schemes for taxi systems
have also been studied before. E.g., [9] models drivers’ strate-
gic decisions as a game and proposes a time-dependent fare
structure pushing taxi drivers to work during the peak time
by increasing fare price. In contrast, our work addresses the
platforms’ inefficiency due to drivers’ self-interested actions
by penalizing or rewarding drivers, whereas, the related works
either focus on improving drivers’ utility [4]–[8] or design
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dynamic trip fare to incentivize drivers to work in hours when
taxi supply is low [9], [10], which do not resolve the system
inefficiency due to drivers’ non-cooperative behaviors.

The contributions of this work are summarized as follows.
• To the best of our knowledge, we are the first to study the

e-taxi competition in a mobility-on-demand system with a
game-theoretic perspective. Specifically, we model the com-
petition among e-taxi drivers as a stochastic game, and prove
that it is a stochastic potential game. Given the intractable
computation complexity with large state and action spaces,
an effective algorithm is designed to approximately compute
the NE among drivers.

• We explore the potential system inefficiency of the NE from
the perspective of a mobility-on-demand service platform.
Specifically, we design a pricing scheme that penalizes
and rewards drivers to change their utility and influence
their decisions, resulting in new NE of the competitive
game among e-taxi drivers. It is proved that the new NE
maximizes the efficiency of the platform.

• Our simulation utilizes datasets of 7,000+ fuel vehicles
and nearly 700 e-taxis, 37 charging stations, and 60,000+
passenger trips per day. The results demonstrate that, com-
pared with the state-of-the-art which optimizes the system
efficiency by coordinating e-taxis but is not an equilibrium,
the NE achieves a system efficiency of merely 73.5% of that
of the cooperative state-of-the-art, and the proposed pricing
scheme improves the price of anarchy to 95.5%.

II. BACKGROUND AND SYSTEM OVERVIEW

An overview of the mobility-on-demand system is shown
in Figure 1. In a modern mobility-on-demand system, electric
taxis use the equipped wireless sensing devices to communi-
cate with the online platform and periodically upload their
information, e.g., the real-time occupancy status, and GPS
locations. They also visit charging stations distributed in the
city to charge their batteries to support their daily operations.
Passengers send the service requests (e.g., origin, destination,
and pick-up time) to the online platform when they need the
transportation service, and then they can see the estimated
ride fares. After receiving the requests, the platform matches
each service request with a nearby unoccupied taxi using

order dispatch strategies, e.g., combinatorial optimization al-
gorithms [11], and then sends the information of passengers
(vehicles) to the vehicles (passengers). The online platform
usually takes a fixed percentage cut from the fare cost of a
ride as its income.

An electric taxi driver makes following decisions, i.e., cruis-
ing routes and charging decisions. Since only nearby unoc-
cupied e-taxis are considered for serving the passengers, the
drivers should efficiently plan their cruising routes to increase
the probability of matching with passengers. On the other
hand, due to the limited driving range of an electric taxi, the
e-taxi drivers need to charge the battery several times a day
to support their operation [12], [13]. Meanwhile, the number
of charging points is limited for e-taxis in a city, especially in
the central business areas with high passenger demand [12].
A driver also needs to carefully make the charging decisions
to maximize the time duration of working on the road.

The primary goal of the on-demand ride-sharing platform
is to maximize its income, which is proportional to the total
fare cost of rides that are served. Hence the platforms should
understand whether the self-interested actions of drivers are
system-wise efficient, and if not, how to enhance the system ef-
ficiency. With the consideration of competition among drivers
for passengers and charging points, we model a mobility-on-
demand system as a competitive game among electric taxi
drivers. We analyze and show that the Nash Equilibrium (NE)
solutions of the e-taxi game do not achieve system optimum
for the platform. We then design a pricing scheme for the
platform, which penalizes or rewards the drivers based on their
actions by adding to or subtracting from the standard trip fare
to induce the new NE to achieve efficiency for the platform.

We note that such a pricing scheme is essential for an online
platform to achieve system efficiency. Because the platform
cannot force self-interested drivers to take system-wise optimal
actions that achieve the best platform-wise quality of service
in the real world. The fare cost of rides is transferred from the
passengers to the platform first, and then from the platform to
the drivers, providing the opportunity to apply pricing schemes
to indirectly influence the drivers’ actions. In the real world,
many platforms have designed dynamic fare cost of rides to
influence drivers [9], [10]: e.g., Uber increases the fare of rides
in the areas with high passenger demand to attract the e-taxis.
However, such schemes may increase the level of competition
in these areas, i.e., over-supply, resulting in lack of rides in
other regions and system inefficiency. Our work provides a
theoretical analysis and data-driven evaluation.

III. SYSTEM MODEL AND E-TAXI GAME

In this section, we model a mobility-on-demand system with
e-taxis as a stochastic game. The dynamics of the system
are partly under the control of e-taxis’ actions and partly
influenced by random factors such as passenger mobility
patterns, urban traffic conditions, and the waiting time of the
e-taxis at charging stations, etc. These features of the system
are modelled by the following stochastic game.



A city is partitioned into M regions based on, e.g., adminis-
trative sub-districts [14] and grid file [15], whereM represents
the set of regions. We discretize a day into a number of time
slots, indexed by t. More specifically, for any two regions i and
i′, there are passengers that request taxi service for traveling
from region i to i′ at time t, and the amount of passengers is
denoted by dti,i′ . Let dt = {dti,i′}i,i′∈M denote the passenger
demand of a city during slot t. Let N be the set of charging
stations deployed (|N | = N ) in the city, and there are pj
chargers installed in charging station j.

The status of an e-taxi is defined as: (i) vacant: an e-taxi
is idly driving on the road and searching next passengers;
(ii) waiting for charging: an e-taxi is waiting at a charging
station for a free charging point; (iii) charging: an e-taxi is
charging its battery at a charging station; (iv) occupied: an e-
taxi is delivering passengers to the destination. It is noted that
similarly to [13], we allow e-taxis to quit the waiting queue at a
charging station to become vacant again for serving passengers
if this action introduces more utility to itself.

The definitions of players, states, actions, state transition
functions, and utility functions are given as follows.

Players: An e-taxi is a player. As such, there are m players.
System State st ∈ S: The joint state of an e-taxi system at

the beginning of slot t is the concatenation of all e-taxis’ state
i.e., st = {st1, ..., stm}, where stk represents the state of e-taxi
k at the beginning of slot t. stk ∈ Sk includes the working
status, location, and remaining energy. Let statustk denote the
working status of e-taxi k at the beginning of slot t, which
is one of four possible working statuses. Let loctk ∈ M∪N
represent the location of e-taxi k at the beginning of slot t.
We discretize the remaining energy of an e-taxi into L levels
and use energytk ∈ [1, L] to describe the remaining energy
of an e-taxi. Accordingly, the state of e-taxi k is defined as
stk = (statustk, loc

t
k, energy

t
k).

Action at ∈ A: a joint action at = {at1, ..., atm} demon-
strates the actions of all m e-taxis at time slot t. The set
of actions for any e-taxi k is the same, denoted as Ak =
M∪N ∪ {continuing}, and atk ∈ Ak represents the action
of the e-taxi k during slot t. If the e-taxi k is unoccupied, the
action atk ∈M∪N is going to a region for serving passengers
or driving to a charging station for charging the battery. If an
e-taxi is occupied, the action atk ∈ {continuing} is to deliver
the passenger to the destination. We use Ii(a

t) (Ij(at)) to
denote the number of e-taxis going to region i (or charging
station j) based on at.

Notably, an e-taxi’s action, atk, is constrained by its state,
stk. Firstly, due to the limited driving speed and duration of
a time slot, the driving distance of an e-taxi during a time
slot is limited. An e-taxi cannot go to a region or charging
station that cannot be reached within a fixed time period (e.g.,
a time slot) from its current location. In reality, a driver can
go to a region that is reached by several time slots. In this
case, the decision of the driver at each time slot can be the
intermediate regions in the route. Secondly, an e-taxi cannot go
to a region for serving passengers or a charging station when it
is occupied. Finally, if the remaining energy of an unoccupied

e-taxi is low, it must go to a charging station to avoid using
up energy on the road. According to the three constraints, we
define w(stk, a

t
k) : Sk × Ak → {0, 1} to denote whether the

action atk can be taken if the state of the e-taxi k is stk, where
w(stk, a

t
k) = 1 if atk can be taken; otherwise, it is 0.

State transition probability φ(st+1|st,at) : S × A × S →
[0, 1]: It describes the probability of transiting to st+1 given
the joint action at in the system state st. The state transition
probability function of e-taxi k is denoted as φk(st+1

k |st,at).
Utility function Rk(st,at) : S × A → R: each e-taxi is

associated with a utility function Rk when m e-taxis take the
joint action at during slot t for given the system state st.

The intuition behind the expression of Rk(st,at) are three-
fold as described by the conditions C1, C2, and C3 as follows.

(i) The vacant e-taxi k goes to a region for serving passen-
gers. The platform matches the e-taxi with a passenger request
in the same region to reduce the passenger waiting time.
There are different types of matching algorithms, we employ
a random matching algorithm for simplicity. According to
[4] and [16], if the e-taxi k goes to region i, we define its
utility as C1 : Rk(st,at) = rti − τ ti · Ii(at)/dti, where rti
is the average monetary reward of a trip starting at region i
during slot t. The e-taxi supply over passenger demand in a
region, i.e., Ii(at)/dti, represents the level of competition for
passengers. τ ti is a parameter denoting the cost of waiting for a
passenger with per unit level of competition in region i during
slot t, and it can be learned from the historical e-taxi trajectory
data. The main idea is that the utility of an e-taxi is equal to
the reward from serving passengers minus the potential loss
of reward due to competition.

(ii) The e-taxi k selects to go to a charging station for
charging the battery. Similarly to (i), we define the utility of
the e-taxi k going to charging station j as C2 : Rk(st,at) =
−
(
ρtj · (1− τ̂ tj · Ij(at)/pj)

)
, where ρtj is the electricity price

at the charging station j during slot t, and e is the amount of
energy that is charged during a time slot. Ij(at)/pj is the level
of competition for charging points. τ̂ tj is a parameter denoting
the cost of waiting for a charging point with per unit level of
competition at charging station j during slot t, which can be
learned from historical e-taxi trajectory data.

(iii) An e-taxi k is occupied and can only take the action
“continuing”. The utility of an occupied e-taxi is 0, i.e., C3 :
Rk(st,at) = 0. In the platform, the estimated fare of each
ride is calculated and shown to the drivers when passenger
requests are matched. Therefore, the utility for a ride is added
to the taxi when its driver picks up the passenger.

We note that the actual utility a taxi gets can be different
from the above as post-action realizations of the uncertain-
ties take place. Nonetheless, at the time an e-taxi makes a
decision, the above formulation is a priori representation of
its knowledge of the posterior utility it will get. This can be
understood as the utility from the players’ perspective at the
time of decision making.

We assume that an e-taxi considers the future H time slots
as the time horizon for making decisions. Without loss of
generality, the first slot is defined as the current time slot.



Hence, each e-taxi k needs to determine the actions, a1:H
k for

the future H slots. To simplify the description, we use ak to
represent the actions of e-taxi k during the future H slots,
and a−k to denote the actions of the e-taxis except k. E-taxi
k aims to maximize the expected long-term cumulative utility
given the current system state s1, which is defined as follows.

Vk(s1,ak,a−k) = E
[∑H

t=1 β
tRk(st,at)

]
(1)

where β ∈ (0, 1] is the discount factor for the future utility.
Strategy: The strategy of an e-taxi during the future H time

slots is non-stationary, i.e., it changes over the time, i.e., πt1k 6=
πt2k . In the stochastic game of e-taxis, the strategy of e-taxi k
is denoted by πk = {π1

k, ..., π
H
k }. A strategy πtk(st, atk) : S ×

Ak → {0, 1} maps from the state of e-taxis at the beginning
of slot t and an action of the e-taxi k for this slot t to a binary
decision of whether this action should be taken. Based on the
constraints of an e-taxi’s actions for given its state stk, we
also have some constraints on the strategy. First, any e-taxi k
should not select the action that is not feasible for given its
state stk, i.e., πtk(st, atk) = πtk(stk, s

t
−k, a

t
k) ≤ w(stk, a

t
k).

Furthermore, for a time slot, an e-taxi can only select one
action, i.e.,

∑
atk∈Ak

πtk(st, atk) = 1.
Given the strategies of all m e-taxis, denoted as π =

{πtk}1≤k≤m,1≤t≤H and the initial state s1, the utility of e-taxi
k is rewritten as Jπk (s1) = E

[
βt
∑H
t=1Rk(st,at)|π

]
.

IV. ANALYSIS OF THE STOCHASTIC E-TAXI GAME

In the non-cooperative game, an important question is to
predict the outcome of the game for which the NE is a
first-order approximation. It is thus important to compute the
NE if it exists. Notably, compared with the related resource
competition game [4], [17], [18], in the stochastic e-taxi game,
each player makes sequential decisions over time, and the NE
is defined among the individual e-taxi drivers as opposed to
the aggregate e-taxi distribution.

The organization of this section is as follows. We firstly
propose the definition of Nash Equilibrium (NE) and stochastic
potential games. Then we describe three lemmas, showing
that the stochastic e-taxi game is a potential game when only
considering one future time slot. Furthermore, we prove that
the stochastic e-taxi game considering future H slots is a
stochastic potential game in Theorem 1. Finally, in Theorem
2, we show that the NE of the stochastic e-taxi game can be
obtained by solving the optimization problem, which aims to
maximize the potential function.

Definition 1 (Nash Equilibrium). In a stochastic game, a Nash
Equilibrium is an optimal strategy π = {πk}mk=1, such that for
all initial state s1, if any e-taxi k changes the strategy from
πk to π̂k, the following holds:

J
πk,π−k

k (s1) ≥ J π̂k,π−k

k (s1) (2)

Definition 2 (Stochastic potential game [19], [20]). A stochas-
tic game is called an exact Stochastic potential game if there
exists a potential function Φ for ∀k, ∀s1 ∈ S such that
J
πk,π−k

k (s1)−J π̂k,π−k

k (s1) = Φπk,π−k(s1)−Φπ̂k,π−k(s1) (3)

Since there are typically a large number of taxis in
metropolitan areas, e.g., there are more than 13,000 yellow

taxis in NYC, we consider the e-taxi game as a non-atomic
game [9], [21], meaning that the impact of a single e-taxi’s
action on the e-taxi system is negligible [9]. We then have the
following two lemmas.

Lemma 1. For any e-taxi k, the joint state transition prob-
ability of the other m − 1 e-taxis depends on their initial
joint states and actions, and the probability does not depend
on the action of the e-taxi k, i.e., φ(st+1

−k |stk, st−k, atk,at−k) =

φ(st+1
−k |s̄tk, st−k, ātk,at−k) holds for all s̄tk and ātk.

Lemma 2. For any e-taxi k, the joint strategy of the other
m− 1 e-taxis outputs the same joint actions if the joint states
of these m−1 e-taxis do not change, i.e., πt−k(st−k, s

t
k,a

t
−k) =

πt−k(st−k, s̄
t
k,a

t
−k) holds for all s̄tk.

Based on the two lemmas, we propose the potential function
for the stochastic e-taxi game when the future time horizon is
only one time slot in the following lemma. Due to page limit,
we have assembled the proof of all the lemmas and theorems
in the technical report [22].

Lemma 3. Consider the function F (st,at) defined as
F (st,at) = 1

2

(∑M
i=1 Ii(a

t)
(
fr(d

t
i, Ii(a

t)) + fr(d
t
i, 1)

)
+
∑N
j=1 Ij(a

t)
(
fc(pj , Ij(a

t)) + fc(pj , 1)
))

(4)

fr(d
t
i, c) = rti − τ ti c/dti, fc(pj , c) = −(ρtje− τ̂ ti c/pj).

where Ii(at) is the number of e-taxis that go to region i during
slot t given their joint action at, and Ij(at) is the number of
e-taxis that go to charging station j during slot t given their
joint action at. For any st, the following equation holds for
any e-taxi k if the e-taxi k changes its strategy from πk to π̂k:

Rk(st, âtk,a
t
−k)−Rk(st, atk,a

t
−k)

= F (st, âtk,a
t
−k)− F (st, atk,a

t
−k), (5)

where πtk(st, atk) = 1 and π̂tk(st, âtk) = 1.

Based on the above, we now have the following theorem.

Theorem 1. The non-atomic non-cooperative game among e-
taxis is a stochastic potential game with a potential function
defined as:

Φπk,π−k(s1) =
∑H
t=1 E[βtF (st,at)|πk, π−k] (6)

Given the potential function (6), we define the following
optimization problem:

maxπ Φπ(s1) =
∑H
t=1 E[βtF (st,at)|π, φ] (7)

s.t. πtk(st, atk) ≤ w(stk, a
t
k)
∑
atk∈Ak

πtk(st, atk) = 1

Notably, the optimization is over the policies πtk(st, atk),∀t ∈
[1, H], k ∈ [1,m], st ∈ S. As such, the number of decision
variables is mH|S|(M +N + 1). In addition, the constraints
of the decision variables are all linear. As a result, the above
problem is a stochastic linear optimization problem. We now
have the following theorem that links the optimal solution of
the above optimization problem to the NE of the game.

Theorem 2. The solution of the optimization problem (7) is
the NE among the m e-taxis over the future H time slots.

The above stochastic optimization problem is however not
computationally tractable due to the curse of dimensionality in



the joint state and action space. Next, we investigate efficient
computation methods to accurately approximate the NE.

V. APPROXIMATE COMPUTATION OF NASH EQUILIBRIUM

In this section, we propose an efficient method to approx-
imately compute the NE of the stochastic potential game of
e-taxis. First, we formulate a Markov Decision Process (MDP)
by aggregating e-taxis and prove that the optimal strategy of
the MDP can be mapped to an NE of the stochastic potential
game. Secondly, we approximate the optimal strategy of the
MDP by sampling a new MDP with a smaller size of actions
and next-states and solving this new MDP.

A. Markov Decision Process via Aggregating E-taxis

We formulate a new MDP by aggregating e-taxis as follows.
State: We use s̃t = {Vt,Ot} ∈ S̃ to denote the system

state at the beginning of slot t by aggregating e-taxis. In detail,
let Vt ∈ N(M+N)×L represent the distribution of unoccupied
e-taxis at the beginning of slot t, where V ti,l (V tj+M,l) is
the number of unoccupied e-taxis at region i (in charging
station j) with remaining energy l at the beginning of slot
t. Let Ot ∈ NM×L represent the distribution of occupied
e-taxis at the beginning of slot t, where Oti,l is the number
of occupied e-taxis at region i with remaining energy l at
the beginning of slot t. It is clear that given the system state
defined for every e-taxi, i.e., st, by aggregating the e-taxis with
the same occupancy status, remaining energy, and location, a
corresponding system state s̃t is well defined.

Action: The actions of m e-taxis during slot t is denoted as
Xt = {Xt

i,i′,l, X
t
i,j,l, X

t
j,i′,l, X

t
j,j′,l}i,i′∈M,j,j′∈N ,1≤l≤L ∈ X .

In detail, Xt
i,i′,l, X

t
i,j,l, X

t
j,i′,l, X

t
j,j′,l ∈ N describe the number

of e-taxis with remaining energy l that go to region i′ or
charging station j from region i, or go to region i or charging
station j′ from charging station j during time slot t.

As discussed previously, given the system state s̃t, some
actions cannot be taken since they require e-taxis to drive to
a region or charging station that cannot be reached within a
time slot, or may make low-energy e-taxis run out of energy.
We use w̃(s̃t,Xt) ∈ {0, 1} to describe whether the action Xt

can be taken for the system state s̃t, where w̃(s̃t,Xt) = 1 if
the action can be taken, 0 otherwise.

State Transition: The state transition function of the aggre-
gated system can be computed as:
φ̃(s̃t+1|s̃t,Xt) =

∑
st+1∈Ss̃t+1 ,st∈Ss̃t ,at∈At

Xt
φk(st+1|st,at),

where st ∈ Ss̃t represents the city states that are equal to s̃t

after aggregation, and at ∈ AtXt are the actions that are equal
to Xt after aggregation.

Strategy: The non-stationary and pure strategy is denoted
by π̃t(s̃t,Xt) ∈ {0, 1}, dictating whether the action Xt is
taken for given the system state s̃t. If the action is taken,
π̃t(s̃t,Xt) = 1; otherwise, it is 0.

Given this new MDP, we formulate another optimization
problem similar to (7):

maxπ̃
∑H
t=1 E

[
βtF̃ (s̃t,Xt)|π̃, φ̃

]
(8)

s.t. π̃(s̃t,Xt) ≤ w̃(s̃t,Xt),
∑

Xt π̃(s̃t,Xt) = 1

where F̃ (s̃t,Xt) is defined as
F̃ (s̃t,Xt) = 1

2

(∑M
i=1X

t
i

(
fr(d

t
i, X

t
i ) + fr(d

t
i, 1)

)
+
∑N
j=1X

t
j

(
fc(pj , X

t
j) + fc(pj , 1)

))
(9)

Xt
i =

∑
i′,j,lX

t
i′,i,l +Xt

j,i,l, Xt
j =

∑
i,j′,lX

t
i,j,l +Xt

j′,j,l

First, we observe that the optimal strategy of Problem (7)
can be obtained from the optimal strategy of Problem (8).
Given the optimal strategy of Problem (8), i.e., π̃t(s̃t,Xt), the
optimal strategy of any e-taxi k during slot t with the system
state st, i.e., πtk(st, atk) (∀atk ∈ Ak) can obtained as follows.
First, we find the corresponding aggregated system state of
st, denoted as ŝt ∈ S̃. Secondly, we obtain the action of m
e-taxis during slot t based on π̃t(ŝt,Xt), which is denoted
as X̂t, and π̃t(ŝt, X̂t) = 1. Finally, for the e-taxis with the
same occupancy status (e.g., unoccupied), remaining energy
(e.g., l), and location (e.g., region i), their deterministic actions
are determined based on {X̂t

i,i′,l, X̂
t
i,j,l}i′∈M,j∈N . Since e-

taxis are identical, these e-taxis with the same local state
can arbitrarily select an action as long as their actions satisfy
the optimal aggregated action {X̂t

i,i′,l, X̂
t
i,j,l}i′∈M,j∈N . It is

straightforward to show that the so obtained strategies of all
the e-taxis constitute an optimal solution of Problem (7).

B. Approximation of Markov Decision Process by Sampling

Although the aggregation reduces the action and the state
space, the resulting MDP remains computationally intractable
due to the still large number of actions and states. We now
propose an efficient algorithm to approximate the optimal
strategy of Problem (8). Similar to [23], the high-level idea
is to sample a part of the MDP to construct a smaller MDP.

Given the initial state s̃t of the e-taxi system at the beginning
of slot t, we can first obtain the optimal action Xt ∈ X that
can maximize F̃ (s̃t,Xt) for slot t (as opposed to the future
H time slots) by solving the following optimization problem:

max
Xt

F̃ (s̃t,Xt), s.t. w̃t(s̃t,Xt) = 1 (10)
Given the optimal value of the above optimization problem,
denoted as F̃max(s̃t), we sample a set of actions, denoted
as X (s̃t), where ∀ Xt ∈ X (s̃t), F̃ (s̃t,Xt) ≥ F̃max(s̃t) −
ε(s̃t). The intuition is that, while taking the optimal action of
the current slot may not maximize the objective function in
the long-term, taking an action that significantly decreases the
current utility (i.e., more than ε(s̃t)) is unlikely to be optimal.

Given a system state s̃t and an action Xt ∈ X (s̃t),
there is a distribution of the system state of the next slot,
i.e., φ̃(s̃t+1|s̃t,Xt). We sample the K most probable next-
states, denoted as S(s̃t,Xt), the probability of transiting to
each next-state s̃t+1 ∈ S(s̃t,Xt) being φ̃s(s̃

t+1|s̃t,Xt) =
φ̃(s̃t+1|s̃t,Xt)∑

s̃∈S(s̃t,Xt) φ̃(s̃t+1|s̃t,Xt)
. In summary, given the initial system

state at the beginning of slot t, we sample a subset of
actions X (s̃t) and a subset of next-states after taking an action
S(s̃t,Xt), and re-compute system state transition probability.

We define the state-action value function as: if t = H − 1,
Qt(s̃,Xt) = F̃ (s̃,Xt); otherwise, Qt(s̃,Xt) = F̃ (s̃,Xt) +∑
s̃∈S(s̃,Xt)

βφ̃s(s̃
′|s̃,Xt)V t+1(s̃), where t < H − 1.



The state value function V t+1(s̃) is defined as:
V t+1(s̃) = maxX∈X (s̃)Q

t+1(s̃,X). (11)
After sampling, we obtain a much smaller MDP, and can

then solve it by value iteration. The pseudo-code of the
detailed MDP approximation algorithm is shown in Algorithm
1. The output of this algorithm is an approximately optimal
strategy of Problem (8), which is also an approximate NE of
the stochastic potential game of e-taxis (cf. Theorem 2). The
computation complexity of this algorithm is O(HA(AK)2H),
where A is the maximum number of elements in X (s̃t) for all
possible s̃t.

Algorithm 1: MDP approximation by sampling
Input: Initial state s̃t and the slot t
Output: ∀Xt ∈ X , π̃t(s̃t,Xt)

1: Solve Problem (10) to obtain the optimal value
F̃max(s̃t).

2: Sample the set of actions X (s̃t).
3: for each Xt ∈ X (s̃t) do
4: Sample the K most probable next-states S(s̃t,Xt).
5: Update the state transition function φ̃s(s̃t+1|s̃t,Xt).
6: Compute Qt(s̃t,Xt).
7: end for
8: The action should be taken under s̃t is

X̃ = arg maxXt∈X (s̃t)Q
t(s̃t,Xt)

9: for Xt ∈ X do
10: if Xt = X̃ then
11: π̃t(s̃t,Xt) = 1
12: else
13: π̃t(s̃t,Xt) = 0
14: end if
15: end for
16: return ∀Xt ∈ X , π̃t(s̃t,Xt)

VI. SYSTEM EFFICIENCY

A. System Efficiency Analysis

For a non-cooperative mobility-on-demand system consist-
ing of e-taxis, an important question to the online platform
is how close the joint actions of the drivers are to maximize
the income of the online platform. The platform income is
formulated as:

∑m
k=1 αĴ

π
k (s1), where π is the concatenation

of m e-taxis’ strategies and Ĵπk (s1) is the total fare of rides
that the e-taxi k serves. It is assumed that the platform takes
a cut from the fare cost of a ride and the ratio is α. Note that
the system efficiency does not consider the e-taxis’ payment
for charging, which is different from [24] that uses the sum
of all players’ utility to measure the system efficiency.

Given the definition of system efficiency, we observe that
the NE of the stochastic e-taxi game does not always maximize
the system efficiency. To demonstrate this, let us consider an
example with two regions and two e-taxis. In this example,
we only consider the future one time slot, i.e., H = 1. The
parameters of each region are set as r1 = 22, r2 = 16, τ1 =
τ2 = 4, d1 = d2 = 1. For each e-taxi, there are two actions.

TABLE I
TABLE OF EACH E-TAXI’S UTILITY AND VALUE OF POTENTIAL FUNCTION

UNDER DIFFERENT ACTIONS

Action of e-taxi #2
Region 1 Region 2

Action of
e-taxi #1

Region 1 (14,14), 32 (18,12), 30
Region 2 (12,18), 30 (8,8), 20

The utility of each e-taxi and the value of the potential function
under the different actions of two e-taxis are shown in Table I.
The first two values in the parentheses represent the utility of
each e-taxi and the last value is the potential function value. It
is clear that both e-taxis would go to the first region at the NE,
maximizing the potential function. However, the NE actions
do not achieve the system optimum as 12+18>14+14.

B. Achieving System Efficiency by Pricing Schemes

Given that drivers are self-interested, we now design a
pricing scheme for the platform managers to induce drivers
to reach the NE that is system optimum. In the real world
ride-sharing systems, the platforms have already applied in-
centives to impact the actions of drivers. As the platforms are
responsible for distributing revenue to drivers, this provides
opportunities for the designed pricing scheme to be applied.

The high-level idea of the pricing scheme is that if a
driver’s actions are similar to his/her actions in a system
optimal strategy compared with other drivers, this driver will
get some reward; otherwise, this driver will be charged a
penalty. There might be multiple strategies that maximize the
system efficiency simultaneously. When applying a system-
wise optimal strategy, a driver may have the minimum utility
compared with other drivers. We select a strategy from these
strategies, which can maximize the minimum utility of drivers
and denote it as π̄. This max-min operation is widely used to
enhance the fairness among agents [25].

The pricing function for each e-taxi k during slot t for given
the system state st is designed as
P (st, πtk) = 1

2 (Dπt
k,π̄

t
k(st)− 1

m−1

∑
k′ 6=kD

πt
k′ ,π̄

t
k′ (st)) (12)

where Dπt
k,π̄

t
k(st) is the difference when taking two different

actions under the two strategies, i.e.,
Dπt

k,π̄
t
k(st) =

∑
j π

t
k(st, j)

(
fc(pj , 1) + fc(pj ,

∑
j π

t
k(st, j))

)
+
∑
i π

t
k(st, i)fr(d

t
i, 1)−

(∑
i π̄

t
k(st, i)fr(d

t
i, 1)

+
∑
j π̄

t
k(st, j)

(
fc(pj , 1) + fc(pj ,

∑
j π̄

t
k(st, j))

))
It is noted that given system state st, the total payment to

the e-taxi manager is
∑m
k=1 P (st, πtk) = 0, i.e., the budget of

the pricing scheme is balanced.
After applying the pricing scheme, the utility of an e-taxi k

taking action atk during slot t for system state st changes as:
R̄k(st, atk,a

t
−k) = Rk(st, atk,a

t
−k)− P (st, πtk)

We use RIk(st,at) to denote the utility of the e-taxi k during
slot t for serving passengers under the joint action at. It is
noted that if the e-taxi k selects to charge the battery or
continues to deliver passengers, RIk(st,at) is equal to 0. Then
we have

∑m
k=1RIk(st,at) =

∑M
i=1 Ii(a

t)fr(d
t
i, Ii(a

t)).



Theorem 3. The stochastic e-taxi game with pricing is a
stochastic potential game with a potential function defined as

Φ̄π(s1) = 1
2

∑H
t=1 E

[
βt
∑m
k=1RIk(st,at)|π

]
(13)

Corollary 1. With the pricing scheme, the NE of the e-taxi
game obtained from maximizing the potential function, i.e., Eq.
(13), achieves system efficiency.

After applying the pricing scheme, the utility functions of
drivers change, introducing a new non-cooperative game. The
drivers have different NE strategies in the new game. Theorem
3 implies that the new e-taxi game is also a potential game,
and the potential function is equal to half of the total fare cost
of rides that all drivers serve. From Theorem 2, the strategies
of drivers that maximize the potential function (i.e., optimizing
the system efficiency) is the NE. Therefore, the NE obtained
by maximizing Eq. (13) achieves system efficiency. It is noted
that this pricing scheme can be implemented in an online way,
where the on-demand system managers need to notify drivers
the pricing function ahead.

VII. TRACE-BASED SIMULATIONS

A. Simulation Setting

We use three datasets to conduct the trace-based simula-
tions. The first dataset includes the trajectory data of nearly
700 e-taxis. Each e-taxi has a wireless communication module
and a GPS device, which are used to upload the real-time
location and the occupancy status every 30 seconds. The
second dataset is for charging stations. There are 37 charging
stations deployed in the city, which have different number of
charging points. They are built only for e-taxis to encourage
the deployment of the e-taxi system. The dataset includes
the GPS location and the number of charging points in each
charging station. The last dataset contains the information of
passenger trips, including when and where a passenger is
picked up and dropped off, and the fare cost of the trip. The
three datasets are collected from the same city, where the e-taxi
system and the charging stations only for e-taxis are deployed.

There are five strategies compared in the evaluation. (i)
Efficient pricing schemes (EPS): after applying the pricing
scheme, the utility function of drivers changes, introducing the
different NE of the game. We assume that the drivers follow
the new NE. (ii) Nash Equilibrium (NE): it is assumed that
each driver follows the Nash Equilibrium strategy without the
designed pricing scheme. (iii) Reactive to passenger demand
(R2D): an e-taxi first filters the regions that can be reached
within a time slot, and then selects the target region from
the filtered regions based on a probability distribution, which
is defined based on the passenger demand in these filtered
regions. (iv) Reactive to trip fare (R2F): an e-taxi selects the
region that has the maximum average trip fare in the historical
data. (v) Oracle [13]: it is assumed that there is a centralized
controller that optimizes and controls all e-taxis’ actions to
maximize the system efficiency over a future time horizon,
demonstrating the upper bound of system efficiency. This so-
lution assumes that e-taxis are cooperative and approximately
characterizes the system optimum, which is however not the

case in the competitive mobility-on-demand systems. In R2D
and R2F, the strategy for charging is the same as that in [26]
by which an e-taxi only charges its battery when the remaining
energy is below 15% and selects the charging station with the
minimum waiting time. It is noted that R2D and R2F consider
optimizing the utility of the current time slot rather than the
long-term cumulative utility. We do not compare our pricing
scheme with the existing ones [9], [10] because they have
the different objectives, e.g., incentivizing drivers to work in
hours when taxi supply is low or increasing the fare cost to
maximize market revenue rather than addressing the inefficient
competition among e-taxis.

We use the following metrics to compare the performance
of the five strategies. (i) Daily utility per e-taxi: it is equal to
the total income of an e-taxi minus the payment for charging
during a day. In the evaluation, we use the time-varying
electricity price from [27] as charging prices. (ii) System
efficiency: it is defined as the fare cost of all rides during
a day times the rate that is taken by the online platforms,
i.e., 35% [28]. Since we use the data from Shenzhen, a city in
China, for our evaluation, the unit of system efficiency is the
Chinese Yuan (CNY). (iii) Number of served passengers: it is
the number of passengers that are served by e-taxis during a
day. The length of a time slot is 20 minutes. We consider the
future four time slots, i.e., H = 4, and we set K = 5.

B. Results

1) Comparison of different strategies: We measure the
system efficiency of the different strategies and present the
results in Figure 2. There are two approximated NE strategies
evaluated in this figure: the first one is the approximated
NE of the stochastic game (i.e., NE), and the second one
is the improved approximated NE of the stochastic e-taxi
game with the proposed pricing scheme (i.e., EPS). Since
oracle focuses on maximizing the fare cost of all rides by
coordinating their actions, it represents the maximum system
efficiency. We observe that the system efficiency of the original
NE is 73.5% of that of the oracle, meaning that the NE of
the stochastic e-taxi game is somewhat far from achieving
the system optimum due to the non-cooperative environment.
Nonetheless, the new NE with the proposed pricing scheme
achieves a similar (95.5%) system efficiency compared with
oracle, demonstrating that our design of the pricing scheme
is effective in improving the NE of the e-taxi system. The
second observation is that the number of served passengers
of the original NE is 86.2% of that of the oracle, meaning
the NE of the competitive game misses some passengers due
to competition for passengers with high fare cost of rides. In
spite of that, the new NE with the pricing scheme increases
the number of served passengers, i.e., 91.4% of that of the
oracle, showing that our pricing scheme indirectly enhances
the service quality for passengers.

We plot the average daily utility per e-taxi (with standard
deviation marked) and the distribution of e-taxis’ daily utility
in Figures 3 and 4. We have several observations. First, the
new NE with the pricing scheme achieves a similar (96.1%)
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average daily utility per e-taxi compared with oracle, showing
that our pricing scheme reduces the inefficient competition
for limited passengers and charging points, and enhances
drivers’ utility. Second, our pricing scheme introduces a lower
spread of daily utility among drivers compared with oracle and
the original NE, demonstrating that the pricing scheme can
provide fairer utility for drivers. The reason is that compared
with the original NE, the pricing scheme penalizes and rewards
drivers based on the differences between their actions and
the system optimal actions that optimize fairness. Whereas,
oracle only focuses on optimizing the system efficiency. The
last observation is that the NE with the pricing scheme (EPS)
improves the average daily utility per e-taxi by 30.6%, 154.7%,
and 164.2% compared with the original NE, R2D, and R2F
since the two heuristic algorithms only concentrate on the
regions with many passengers or with high fare cost without
considering the potential competition.

The idle driving distance per e-taxi is plotted in Figure 5.
It is observed that the new NE with the pricing scheme
introduces a similar daily idle driving distance compared with
oracle and reduces that by 11.7%, 19.3%, and 38.5% compared
with the original NE, R2D, and R2F, because both EPS and
oracle pick up more passengers, reducing the idle driving
distance for searching passengers. Since the e-taxis always
seek the regions with the maximum average trip fare by R2F,
the drivers may need to drive idly for a long distance.

2) Performance of the NE: We now evaluate the impact of
e-taxis using heuristic strategies (i.e., R2D and R2F) rather
than the new NE when applying the pricing scheme. Figure
6 plots the system efficiency with the different ratio of e-
taxis using the heuristic strategies. We observe that the system
efficiency drops by 37.4% (25.2%) when 10% e-taxi drivers
use R2D (R2F). This implies that a small number of drivers
that deviate from the new NE with the pricing scheme (EPS)
can impact the system efficiency a lot. The second observation

is that when the ratio of e-taxis using heuristic strategies
increases from 10% to 40%, the system efficiency still de-
creases, indicating the heuristic strategies without considering
the competition reduce the system efficiency.

Figure 7 shows the system efficiency at the original NE and
that from oracle as we expand the passenger demand and the
charging points. The first observation is that the system effi-
ciency improves both at the original NE and with oracle as the
passenger demand and charging points increase. The reason is
that, with such expansions, each e-taxi has more opportunities
to pick up the passengers and can charge the battery with a
shorter waiting time, improving the system efficiency. We also
calculate the ratio between the system efficiency of the NE and
that of the oracle, i.e., the (approximate) price of anarchy. We
observe that the system efficiency of the NE gets closer to the
optimal system efficiency as the passenger demand and charge
points increase. The intuition is that, with such expansions, the
e-taxis have more flexibility and the competition among them
becomes less opportunistic.

VIII. RELATED WORK

Vehicle competition: In the field of transportation, sev-
eral works have studied the competition among vehicles for
passengers [4]–[7] or road network resources [8]. The non-
cooperative game among taxi drivers for passengers is usually
considered as a stochastic game. [4] studies how to compute
the Wardrop Equilibrium distribution of taxis with the com-
plete information. [6] designs a fictitious play algorithm for
each taxi driver to converge to the NE with the assumption
that each driver has the same non-stationary mixed strategy.
[5] and [7] focus on solving the decision problem for a
taxi driver to maximize the expected long-term cumulative
revenue for the individual taxi driver in a non-cooperative
setting. [8] introduces a reinforcement learning-based scheme
to obtain the optimal route choice strategy of vehicles, which
is Nash Equilibrium. In summary, this work differs from
these related works in two aspects. (i) This work studies
a new setting, i.e., competition among e-taxi drivers with
mobility-on-demand platforms. (ii) This work addresses the
platforms’ inefficiency due to drivers’ self-interested actions
by penalizing or rewarding drivers, whereas, the related works
focus on improving drivers’ utility [4]–[8].

Dynamic fare cost of rides: Some works explore the design
of dynamic fare cost of rides to impact the distribution of taxi
supply in spatial-temporal dimensions, which further maxi-
mizes the market revenue [9], [10]. [9] models drivers’ strategy



making process as a game and proposes a dynamic time-
dependent fare structure that incentivizes taxi drivers to work
during the peak time by increasing fare price. [10] designs
the time-of-day pricing framework for taxi systems aiming to
maximize total market revenue by utilizing the temporal non-
stationary nature of the taxi market. However, these works
design dynamic trip fare costs to incentivize drivers to work
in hours when taxi supply is low that do not resolve the system
inefficiency issue due to drivers’ competition.

Vehicle coordination: A handful of works optimize the
efficiency of urban taxi systems by coordinating or guiding
taxis’ behaviors [13], [29]–[36]. Some works [13], [30], [33],
[35] assume that a centralized agent controls and coordinates
taxis’ activities to improve service quality. [31] and [34]
use the multi-agent reinforcement learning to recommend the
charging station or the service request for the individual taxi
to enable coordination and cooperation among taxis. However,
we consider non-cooperative setting that each taxi driver is
self-interested to maximize its own utility instead of optimiz-
ing the performance of the entire taxi system cooperatively.

IX. CONCLUSION

We first investigate the behaviors of electric taxis for serv-
ing passengers and charging batteries in a non-cooperative
environment, and propose an efficient algorithm to find the
Nash Equilibrium (NE) of the e-taxi system. Next, from the
perspective of the service platform, to induce e-taxi drivers to
optimize the system efficiency at equilibria, a pricing scheme
is designed that provably induces the NE to achieve the
system optimum. Finally, trace-driven simulations show that,
compared with the state-of-the-art which optimizes the system
efficiency by coordinating e-taxis but is not an equilibrium, the
NE achieves a system efficiency of merely 73.5% of that of the
cooperative state-of-the-art, and the proposed pricing scheme
improves the price of anarchy to 95.5%.
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