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Abstract— As electric vehicles (EV) gradually replace tradi-
tional fuel vehicles and provide transportation services in cities,
e.g., electric taxi/bus fleets, solar-powered charging stations with
energy storage systems have been deployed in urban areas to
provide charging services for EV fleets [1]. The mixture of solar-
powered and traditional charging stations brings efficiency
challenges to charging stations and reliability challenges to
power systems. In this paper, we explore e-taxis’ mobility and
charging demand flexibility to co-optimize service quality of e-
taxi fleets and system cost of charging infrastructures, such
as under-utilization of solar power and reliability issues of
the power distribution network due to reverse power flow.
Specifically, we propose SAC, an e-taxi coordination framework
to dispatch e-taxis for charging or serving passengers under
spatio-temporal dynamics of renewable energy and passenger
mobility. We formulate the e-taxi fleet coordination problem as
a multi-criterion mixed-integer linear programming problem.
We evaluate our solution with a comprehensive dataset for
e-taxi systems and charging infrastructures including 726 e-
taxis, 7,228 regular fuel taxis, 37 working charging stations, and
62,100 collected taxi trips per day. Our data-driven evaluation
shows that SAC significantly outperforms existing solutions,
reducing the total reverse power flow per day by up to
95.3%, while maintaining e-taxi service quality with very small
overhead.

I. INTRODUCTION

As battery technologies become mature, electric vehicles

(EVs) have obtained significant attention and are regarded

as an alternative to fuel vehicles due to their advantages,

e.g., environment-friendliness, quietness, and less frequent

maintenance [2]. For example, the EU plans to phase out

fuel vehicle sales by 2035, and many other countries also

have pitched similar plans [3]. Meanwhile, various types

of EV fleets have already been progressively expanded in

urban cities. For instance, an increasing number of Tesla

taxis trickled into New York City in 2020 [4]. Some other

cities, e.g., London, Shenzhen, and Singapore [5], are also

electrifying their taxi fleets.

To address the challenge of charging large-scale EV fleets,

charging stations have been increasingly deployed in urban

areas. Besides the traditional charging stations drawing en-

ergy from power systems, there is a trend towards installing

solar-powered charging stations that, while still connected to

the grid, harness environmentally friendly renewable energy.

To best utilize the solar-powered charging stations, EV fleets

charging activities play a key role. For example, as the

local power distribution systems may have limits on the
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reverse power flows from excess solar generation [6], [7]

(as reflected in, e.g., limited hosting capacity), unorganized

e-taxi charging may lead to unnecessarily curtailed solar

power at certain charging stations due to under-utilization

and limits on reverse power flows, while drawing power from

the grid to charge at other charging stations. With spatiotem-

poral dynamics of solar energy and passenger demand, it is

very challenging to coordinate an e-taxi fleet to efficiently

utilize solar power for charging while fulfilling the dynamic

passenger demand.
Previous works have explored designs for EV charging

scheduling at a solar-power charging station [8], modulating

solar array output based on fairness [9], and scheduling nu-

merous distributed energy resource [10]. However, little work

has been done to jointly consider solar power generation

and passenger mobility, and co-optimize the service of an e-

taxi fleet and the social cost of the charging infrastructures.

This work presents the first study for coordinating an e-taxi

fleet that optimizes the service quality of e-taxi fleets while

minimizing the system cost of charging infrastructures.
In particular, the proposed framework, called Solar-Aware-

Charging (SAC), schedules e-taxi fleets with two objectives:

(i) serving passengers efficiently, and (ii) reducing the cost

of charging infrastructures. Although the e-taxi company

sacrifices its utility to consider the system cost of charging

infrastructures, the incentive mechanism, such as [11], can

be implemented by the owner of charging infrastructures

to compensate the e-taxi company and induce it towards

achieving social optimum. We use the number of served

passengers to measure the service quality, and we consider

the following solar-aware metrics to measure the cost of

solar-powered and battery-equipped charging infrastructures:

(i) reverse power flows from the solar-powered charging

stations, (ii) energy losses due to charging or discharging

energy storage systems at the stations, and (iii) the amount

of power drawn from the local distribution system to supply

e-taxis in addition to using the solar power. SAC aims to

maximize an e-taxi fleet’s utility while utilizing e-taxis’

charging demand flexibility to maintain high efficiency of

charging stations. SAC allows the e-taxi fleet and solar-

charging stations to work cooperatively to maximize the

social welfare for both the transportation and energy system

metrics.
The contributions of this work are as follows.

• To the best of our knowledge, it is the first work to

coordinate an e-taxi fleet for optimizing charging cost

with both conventional and renewable energy while

maintaining the taxi service quality.



Fig. 1: Illustration of power systems with both solar-powered

and conventional charging stations

• We propose SAC, an e-taxi fleet coordination frame-

work to dispatch e-taxis for either charging or serving

passengers under spatio-temporal dynamics of renew-

able energy and passenger mobility. We formulate the

e-taxi fleet coordination problem as a multi-criterion

mixed-integer linear programming problem.

• We evaluate the proposed solution, SAC, with a com-

prehensive real-world dataset consisting of 726 e-taxis,

7,228 regular fuel taxis, 37 working charging stations,

and total 62,100 collected taxi trips per day. Our data-

driven evaluation shows that our solution significantly

reduces the total reverse power flow per day by 94.8%

while only reducing the number of served passengers by

2.3% compared to the solution focusing on optimizing

the e-taxi service quality.

II. BACKGROUND

Figure 1 demonstrates the architecture of power systems

with both solar-powered and traditional charging stations.

The entire city is partitioned into multiple local regions by

the power systems. The users in a local region are powered

by the same area substation. In each local region, there

are two types of users, i.e., regular end users and charging

stations. Based on the source of power, charging stations

are classified into conventional charging stations and solar-

powered charging stations. The former type of charging

stations is powered by local power distribution networks,

and the latter one is powered by both solar panels and local

distribution networks.

There are four main components in a solar-powered

charging station [12], [13], i.e., solar panel, energy storage

systems, chargers, and bidirectional inverter. The solar panel

converts solar radiation into solar energy, which can be used

to charge the electric vehicles (EVs), be stored in the storage

systems, or be fed to the local distribution network. When the

solar energy is not fully utilized by e-taxis, the extra power

can be stored for the future charging demand as long as the

battery is not full. EVs are charged when connecting with

the chargers, and the energy may come from the solar panel,

Fig. 2: SAC Framework Design

the storage systems, or the local distribution network. The

bidirectional inverter transmits the AC power coming from

the distribution network to the DC power used in a charging

station or in the opposite direction.

We assume that the solar-powered charging station with

storage works by the following policy. (i) If the generated

solar energy is more than the power demand due to e-taxi

charging, and the energy storage is full, the extra energy is

fed to the local distribution network. (ii) If the generated

solar energy is more than the power demand due to e-taxi

charging, and the energy storage is not full, the extra energy

is stored in the energy storage. (iii) If the generated solar

energy is less than the power demand due to e-taxi charging

and the storage cannot provide sufficient energy to meet the

charging demand, the energy from the solar panel, the local

distribution network, and the storage is used to charge the

EVs. (iv) If the generated solar energy is less than the power

demand due to e-taxi charging and the storage can provide

sufficient energy to meet the charging power demand, the

energy from the solar panel and the storage is used to charge

the EVs.

III. SAC OVERVIEW

In this work, we design a solar-aware charging coordina-

tion framework, called SAC, to schedule e-taxis for charging

and serving passengers under the scenario that both solar-

powered charging stations and conventional charging stations

are available. The design of SAC is shown in Figure 2. The

e-taxi scheduler is implemented in the city transportation

center to coordinate the activities of e-taxis, i.e., dispatching

e-taxis for charging or picking up passengers. The objectives

of the e-taxi scheduler are (i) maximizing the number of

served passengers, (ii) reducing the idle driving distance due

to dispatching, (iii) minimizing the reverse power flow and

the energy loss due to charging or discharging the energy

storage systems, and (iv) reducing the power drawn from

the local power distribution network to the charging stations

and thereby increasing the local usage of solar power.

It is assumed that e-taxis report their real-time status and

passenger trip data to the city operation center to improve

the utility of e-taxi systems. Meanwhile, the charging stations

share their information with the city operation center, i.e., the

amount of generated solar energy, the remaining energy of



energy storage, and the number of vehicles in each charging

station, in order to facilitate the e-taxi scheduler to reduce

the cost in power systems due to charging.

Two control loops exist in this system. The first loop is

in the e-taxi system. During the daily operation, the e-taxi

scheduler determines the dispatching commands for either

serving passengers or charging the battery. When the e-

taxis are moving the passengers, the passenger trip data

is collected and uploaded to the city operation center. The

future passenger demand is predicted using the stored pas-

senger trip data and is fed to the e-taxi scheduler for making

better dispatching decisions. The second loop connects the

e-taxi system and the power system. The e-taxi scheduler

determines when and which charging stations the e-taxis

should use to charge the battery. The charging stations upload

their real-time remaining energy in the storage systems as

well as the real-time charging demand to the e-taxi scheduler.

The former data helps the scheduler to detect whether the

generated and stored power is sufficient for charging e-taxis

the amount of reverse power flow if any. The latter data

is used to estimate the available charging resource for e-

taxis. The external weather forecast data and the solar power

generation data are input to the solar power predictor to

estimate the amount of future solar power.

IV. CHARGING STATION MODEL

In this section, we propose the model of solar-powered

charging stations with storage systems and conventional

charging stations. Specifically, we formulate in more detail

the policy of a solar-powered charging station given the

charging demand and the solar power generation (cf. Section

II).

A. Solar-powered Charging Station with Storage

It is assumed that there are Ms solar-power charging

stations with storage and Mt conventional charging stations

in a city. We use Cj to describe the storage capacity at

charging station j. A day is discretized into multiple time

slots, and we use k to represent a time slot. Let gkj be the

maximum solar power output by the solar panel at solar-

powered station j during slot k. Let rkj be the amount

of remaining energy in the storage of the station j at the

beginning of slot k. We define γc (γd) as the maximum

charging (discharging) rate of the storage system.

Let ekj denote the energy charging or discharging rate of

the storage system in the station j during the slot k. If ekj > 0,

the storage system is charged; otherwise, it is discharged.

The unit of ekj is kilowatt. The remaining energy changes

between slot k and k + 1 as:

rk+1
j = rkj + ekj ∗K (1)

where K is the length of a time slot, e.g., 5 minutes.

Given the maximum charging or discharging rate, the actual

charging or discharging rate should be bounded as:

−γd ≤ ekj ≤ γc (2)

The amount of stored energy should not violate the storage

capacity, which is formulated as

0 ≤ rkj ≤ Cj (3)

Let dkj represent the charging demand from EVs in the station

j during slot k. The unit of dkj is also kilowatt. According

to the policy that each charging station follows, ekj is related

to the amount of solar power, the charging demand, and the

amount of stored energy.

If the solar power is more than the power demand for

charging, i.e., gkj ≥ dkj , the amount of extra solar power that

should be stored is gkj − dkj . Meanwhile, the actual power

charging rate of the storage system should be no more than

the maximum charging rate γc. The stored energy ekj ∗ K
should not exceed the remaining storage capacity Cj − rkj .

We have ekj = min{gkj − dkj , γc, (Cj − rkj )/K}.

If the solar power is less than the charging demand,

i.e., gkj < dkj , some extra energy is discharged from the stor-

age. The discharging rate of the storage system is bounded by

the maximum discharging rate γd. Meanwhile, the amount of

discharged power, i.e., |ekj |∗K, should not exceed the amount

of stored energy rkj . According to the two constraints, we

have ekj = −min{dkj − gkj , γd, r
k
j /K}. In summary, ekj is

modeled as:

ekj =

{
min{gkj − dkj , γc, (Cj − rkj )/K} if gkj ≥ dkj

−min{dkj − gkj , γd, r
k
j /K} otherwise

(4)

Given the charging demand (dkj ), the solar power (gkj ),

and the charging or discharging rate of the storage system

(ekj ), the power demand from station j on the local power

distribution network during slot k is:

Dk
j = ekj + dkj − gkj

If Dk
j > 0, the power is drawn from the local distribution

network to the charging station; otherwise, the power is fed

into the local distribution network.

Given the bidirectional inverter j associated with the solar-

powered charging station j, we use B+
j and B−

j to represent

the capacity of this inverter to transmit power from the local

distribution network to the charging station or in the opposite

direction. Then the power flowing through the inverter in

either direction should be constrained as:

−B−
j ≤ Dk

j ≤ B+
j (5)

B. Conventional Charging Stations

Let D̃k
j be the amount of energy that the j-th conventional

charging station consumes due to charging the e-taxis during

the slot k. It is noted that D̃k
j ≥ 0 and a conventional

charging station is only powered by the local distribution net-

work. Since the j-th inverter associated with a conventional

charging station j is unidirectional, let B̃j be the capacity of

this inverter. We also constrain that

D̃k
j ≤ B̃j (6)

Compared with the conventional charging stations, the

solar-powered ones utilize the renewable energy reducing

the greenhouse gas emissions and the energy loss during

transmission. However, the distributed solar power may result

in reverse power flows that lead to reliability issues of the

power distribution system [14]. Thus, ideally, one would like

e-taxis to be scheduled to charge at the solar-powered stations

in a way that matches the solar power generation. On the

other hand, the locations of solar-powered charging stations

and the number of congested e-taxis at these stations affect



the service quality of e-taxi fleets. For example, a solar-

powered station may be far away from the central business

area, where there is high passenger demand, or the waiting

time is long at some solar-powered stations. Hence it is

challenging to schedule e-taxis for optimizing service quality

while minimizing cost of charging infrastructures. In the next

section, we propose our formulation of e-taxi systems and

the optimization problem of e-taxi coordination.

V. E-TAXI SYSTEMS

A. E-taxi Systems States and Decisions Variables

The entire city area is partitioned into N regions. We

assume that there are M = Ms + Mt charging stations in

the city. Without loss of generality, it is assumed that the

first Ms charging stations are solar-powered and the last Mt

charging stations are only powered from local distribution

networks. Let Ri,j ∈ {0, 1} describe the relation between

region i and charging station j. Ri,j = 1 if the j-th station

locates in region i; otherwise, it is 0. We define three states

of an e-taxi: working on the road for serving passengers,

waiting in the queue of a charging station for an available

charging point, and charging the battery. If an e-taxi is within

one of the three states, we say that it is a working, waiting,

or charging e-taxi. Let t represent the current time slot, and

k is used to describe any time slot from t to t + T − 1. In

this work, we consider the e-taxi dispatch problem for the

future T time slots.

The remaining energy of an e-taxi is discretized into L
levels. Let REk be the remaining energy of an e-taxi at

the beginning of the time slot k. According to the state

of an e-taxi during slot k, we have the following model to

describe the change of remaining energy between REk and

REk+1. If an e-taxi waits for a charging point during slot

k, REk+1 = REk. If an e-taxi charges the battery during

slot k, REk+1 = REk + L̃, where L̃ > 0 is the number of

levels that the remaining energy increases. If an e-taxi works

on the road and it moves from region i to region i′ during

slot k, REk+1 = REk−Lk
i,i′ . L

k
i,i′ represents the number of

levels that the remaining energy decreases if an e-taxi moves

from region i to i′ during slot k.

The states of an e-taxi system are defined as the number of

e-taxis with the different remaining energy and the different

states in spatial and temporal dimensions. Several notations

are defined to describe the states of an e-taxi system.

Let V k
i,l, O

k
i,l denote the number of unoccupied or occupied

e-taxis with remaining energy l at the beginning of slot k
in region i. If the current time slot is t, V t

i,l and Ot
i,l are

updated by the real-time data (e.g., occupancy status and

GPS locations) from the installed devices (e.g., GPS sensors

and communication modules) in the e-taxis. It is noted that

the unoccupied e-taxis include the idle working e-taxis in

region i, and waiting or charging e-taxis in station j during

slot k − 1, where station j locates in region i.
Decision variables: The e-taxi schedule may dispatch an

occupied e-taxi for charging or serving passengers at the

beginning of slot k. We define Xk
i,i′,l ∈ N as the number

of e-taxis with remaining energy l that are dispatched from

region i to i′ for serving passengers at the beginning of slot

k. Since the e-taxis with any remaining energy are considered

for working, the range of l is between 1 and L.

Y k
i,j,l ∈ N is defined to describe the number of e-taxis

with remaining energy l that are dispatched from region i
to charging station j for charging at the beginning of slot

k. The range of l is also [1, L] and any unoccupied e-taxis

can be scheduled for charging. Due to the limited number of

e-taxis in each region, we constrain that∑N
i′=1 X

k
i,i′,l +

∑M
j=1 Y

k
i,j,l = V k

i,l (7)

B. E-taxi Systems State Transition Model

Based on the historical passenger trip data, the future

passenger demand in spatial-temporal dimensions can be

estimated, i.e., how many passengers will request the taxi

service in a future time slot k in region i, denoted as rki .

Let Sk
i,l represent the number of unoccupied e-taxis with

remaining energy l that can move passengers in region i
during slot k after dispatching. We have the following model

to describe the state transition of an e-taxi system between

slot k and k + 1:

Sk
i,l=

∑N
i′=1

Xk
i′,i,l

V k+1
i,l =

∑N
i′=1

Pvk
i′,iS

k

i′,l+Lk
i′,i

+
∑N

i′=1
Qvk

i′,iO
k

i′,l+Lk
i′,i

+
∑M

j=1 Ri,jU
k+1
j,l

Ok+1
i,l =

∑N
i′=1

Pok
i′,iS

k

i′,l+Lk
i′,i

+
∑N

i′=1
Qok

i′,iO
k

i′,l+Lk
i′,i

(8)

where Pvki′,i, Poki′,i, Qvki′,i, Qoki′,i ∈ [0, 1] describe taxis’

mobility patterns between two regions during the time slot

k. Pvki′,i(Poki′,i) is the probability that an unoccupied e-taxi

travels from region i′ at the beginning of slot k to i by the end

of slot k and it becomes unoccupied (occupied). Similarly,

Qvki′,i(Qoki′,i) describes the probability that an occupied taxi

travels from region i′ at the beginning of k-th slot to region

i and it becomes vacant (occupied). The taxis’ mobility pat-

terns are learned by applying frequency theory of probability

to the historical e-taxi trajectory data, and we constrain that:∑N
i=1 Pvki′,i + Poki′,i = 1,

∑N
i=1 Qvki′,i +Qoki′,i = 1.

In the above model, Uk+1
j,l ∈ N represents the number of

e-taxis with remaining energy l in charging station j at the

beginning of time slot k + 1. It is related to the number of

e-taxis that are dispatched to station j and the number of

available charging points in station j. We will discuss how

to derive Uk+1
j,l according to the charging supply request in

each charging station.

C. E-taxi Energy Transition Model in Charging Stations

The charging request in a charging station means the

number of e-taxis with different remaining energy that want

to charge the battery at a charging station j. It is determined

by the decision variables of dispatching for charging. The

number of e-taxis with remaining energy l that request

charging service in station j during slot k is:
∑N

i=1 Y
k
i,j,l.

The charging supply in a charging station represents the

number of e-taxis that are charged simultaneously in a

charging station j, denoted as nk
j . Let pj be the number

of charging points installed in charging station j and let P



denote the e-taxi charging rate. For a traditional charging

station, we have

nk
j ≤ min{pj , B̃j/P}

For a solar-powered charging station, the number of e-taxis

that are charged simultaneously is constrained by the capac-

ity of a bidirectional inverter and the number of installed

charging points, i.e.,

−B−
j ≤ ekj + nk

j ∗ P − gkj ≤ B+
j , nk

j ≤ pj
Due to the limited number of charging request, we have

nk
j ≤ ∑N

i=1

∑L
l=1 Y

k
i,j,l

Given charging supply, i.e., nk
j and charging request,

i.e.,
∑N

i=1

∑L
l=1 Y

k
i,j,l, a question is which e-taxis should

be charged if the charging request is more than the charging

supply. In this work, we formulate the order of e-taxis for

charging in a station j as the variables, i.e., uk
j,l is the number

of e-taxis with remaining energy l that are charged in station

j during slot k. We constrain that
∑L

l=1 u
k
j,l = nk

j and

uk
j,l ≤ ∑N

i=1 Y
k
i,j,l. Then at the beginning of slot k + 1,

the number of e-taxis with the different remaining energy l
in station j is formulated as:

Uk+1

j,l+L̃
= uk

j,l +
∑N

i=1 Y
k
i,j,l+L̃

− uk
j,l+L̃

(9)

D. Optimization Problem

In this work, e-taxis are scheduled to optimize the service

quality of e-taxi fleets while minimizing the system cost of

the charging infrastructure. These two types of objectives are

formulated as follows.

1) Utility of E-taxi Systems: Since the primary task of

e-taxi systems is to serve as many passengers as possible,

we use the number of served passengers as a metric to

measure the utility of e-taxi systems. The number of served

passengers over all the N regions from slot t to t+T − 1 is

Jserved =
∑

i,k min{rki ,
∑L

l=1 S
k
i,l}

The dispatch of unoccupied e-taxis makes them drive idly

on the road, which is the cost of dispatching. Based on

the road network of a city, we use μi,i′ to describe the

idle driving distance from region i to i′. λi,j is defined to

denote the idle driving distance from region i to charging

station j. Therefore, the total idle driving distance because

of dispatching decisions from slot t to t+ T − 1 is

Jidle =

t+T−1∑
k=t

(∑
i,i′

μi,i′

L∑
l=1

Xk
i,i′,l +

∑
i,j

λi,j

L∑
l=1

Y k
i,j,l

)
The above objective function considers the idle driving

distance to a charging station or another region.

2) System Cost of the Charging Infrastructure: During the

daily operation of solar-powered charging stations, the cost

due to the reverse power flows is formulated as:

Jreverse =
t+T−1∑
k=t

Ms∑
j=1

max{0,−Dk
j } ∗K

The charging or discharging behaviors of the storage

systems result in the energy loss formulated as:

Jloss =
t+T−1∑
k=t

Ms∑
j=1

α ∗ |ekj | ∗K
where α ∈ (0, 1) is the energy loss ratio if the power is

charged to or discharged from the storage systems.

As discussed in Section IV-A, during the daytime, e-taxis

should ideally take full use of the solar power to charge.

During the nighttime, the stored energy should also be fully

used to be ready to operate in the next day with solar power.

Therefore, the third energy-related cost metric is defined as

the energy drawn from the power distribution system:

Jenergy =

t+T−1∑
k=t

M∑
j=1

max{0, Dk
j } ∗K

3) Constraints: The traveling distance of an e-taxi is

bounded during a time slot due to the limited speed and

traveling time. So an e-taxi cannot be scheduled to a far

charging station or region. We define two constraint param-

eters, i.e., dski,i′ ∈ {0, 1} and dcki,j ∈ {0, 1}. If an e-taxi

can reach region i′ from region i during the time slot t,
dski,i′ = 0; otherwise, it is 1. If an e-taxi can reach the

charging station j from region i during the time slot t,
dcki,j = 0; otherwise, it is 1. We note that traffic conditions

may change during the day. The constraint parameters dski,i′
and dcki,j can reflect such changes. For example, during the

slot k with heavy (light) traffic, e-taxis cannot (can) reach

region i′ from i within a time slot, and dski,i′ = 1 (dski,i′ = 0).

Therefore, our formulation can incorporate real-time traffic

conditions in a city. Finally, we constrain that

Xk
i,i′,ldc

k
i,i′ = 0, Y k

i,j,lds
k
i,j = 0 (10)

The sustainable operation of e-taxis is a major concern

for e-taxi systems. E-taxis consume energy when driving and

they should avoid using up energy on the road. We assume

that all e-taxis follow the scheduling decisions and constrain

that all low energy e-taxis must be scheduled for charging.

We have another constraint:

Sk
i,l = 0, 1 ≤ l ≤ L (11)

4) Optimization Problem Formulation: In summary, we

formulate the optimization of the centralized e-taxi scheduler

as:

max
X,Y

J = Jserved + β1Jidle + β2(Jreverse + Jloss + Jenergy)

(12)
where β1, β2 < 0 are the weight parameters to balance the

different objectives due to the trade-off among them.

After adding the slack variables to remove the min and

max function in the objectives, this optimization problem is

a mixed-integer linear programming problem. This problem

can be solved by branch-and-bound [15], which is widely

used in the existing solvers, e.g., Gurobi and optimization

toolbox of Matlab.

VI. EVALUATION

A. Data Description

We use three datasets to conduct the data-driven evaluation

for e-taxis in Shenzhen. The first dataset is the charging
station data. There are 37 active charging stations deployed

in the city. At each charging station, there is a potentially

different number of identical charging points, e.g., from 10

to 100. The charging station data includes the GPS location

and the number of charging points of each charging station.

The second dataset includes taxi trajectory data. Each

taxi, i.e., either a fuel taxi or an e-taxi, has a GPS device and



TABLE I: Specification of the e-taxi model in the dataset [16]

Battery capacity 57 kWh
Charging rate 30 kW

Maximum distance 300 km

a communication module such that it can upload its real-time

information twice per minute. The real-time information of

a taxi includes the plate number, time stamp of uploading,

GPS location, and occupancy status. The dataset includes

the data for both fuel taxis and e-taxis. In our evaluation, we

use the number of passengers that the fuel taxis servers to

estimate the passenger demand of e-taxis that may miss the

passengers due to charging.

The third dataset is the passengers’ transaction data.

Each record in this dataset represents a taxi trip, including

when and where the passenger is picked up and dropped

off and the taxi plate number. Based on the second and third

dataset, we estimate the passenger demand for e-taxis in each

region of the city during the different time intervals.

B. Methodology

We use the dataset introduced as above to conduct a

trace-driven simulation to evaluate the performance of SAC.

The city is divided into regions based on the locations of

charging stations, i.e., every charging station is regarded as

the center of a region and the boundary of two regions

has the same distance to the center of these two regions.

We define the length of a time slot as 20 minutes. The

passenger mobility model in spatial-temporal dimensions is

extracted from the passengers’ transaction data. The future

time horizon is defined as six time slots, and the weight

β1 = β2 = −0.1. The specification of the e-taxi model in

the dataset is shown in Table I.

Given the number of fuel taxis and e-taxis in the dataset,

we use the passengers served by fuel taxis to estimate the

passenger demand of e-taxis between any two regions in

each time slot. Since solar-powered charging stations have

not been deployed in the city, we set up whether a charging

station is powered by solar according to its surrounding

environment. If a charging station is in an open parking lot,

it is assumed to be powered by the solar, and the size of

the solar array is equal to the area size of the parking lot.

If a charging station is in a building, it is assumed to draw

energy solely from the power system. In total, 16 charging

stations are assumed to be powered by the solar. The size

of storage systems in each solar-powered charging station is

set up as 2.4 MWh storage per 1-MW solar system [17].

We compare our solution, i.e., solar-aware charging (SAC)

with the following existing solutions to show its effective-

ness. (i) p2Charging [18]: this solution focuses on deter-

mining when, where and how long e-taxis are charged. This

solution aims to maximize the number of served passengers

while minimizing the idle driving time to charging stations

and the idle waiting time at charging stations. (ii) REC [19]:

this method only schedules e-taxis for charging when their

remaining energy is below 15%, and an e-taxi is dispatched

to a charging station introducing the minimum waiting time

Fig. 3: Reverse power flow

comparison

Fig. 4: Reverse power flow

over time

at the station and idle driving time to the station. (iii) Solar-
Aware Heuristic (SAH): it is a heuristic solution aiming at

taking full use of the generated solar power. This baseline

also schedules e-taxis to charging stations only when their

remaining energy is below 15%. Suppose the current time

slot is denoted as t, an e-taxi is scheduled to the charging

station to minimize
∑Ms

j=1 |gtj − dtj |, where gtj is the current

generated solar power in station j and dtj is the charging

demand in station j. If there is no solar power during slot

t, e.g., nighttime, this method schedules e-taxis to minimize

the power drawn from the power distribution system by using

the stored energy as much as possible.

We use the following metrics to demonstrate the perfor-

mance of different solutions. (i) Reverse power flow per
day (per slot) is equal to the total amount of reverse power

flow from solar-powered charging stations to the local power

network during a day (a time slot). (ii) Energy loss is

equal to the total amount of loss due to energy charged

to or discharged from energy storage systems during a day.

The ratio of energy loss is set as 10% due to the typical

90% efficiency of bidirectional inverters [20]. (iii) Power
drawn from the power distribution system is defined as the

amount of energy that all the charging stations consume from

the local power network. (iv) number of served passengers
per day. (v) Idle driving distance per day is defined as

the distance that e-taxis drive idly for charging or finding

the next passengers.

C. Results

As the evaluation results show, our solution SAC reduces

the cost of charging stations significantly with little loss on

the service quality of e-taxi fleets compared with p2Charging

that is designed to optimize e-taxi service quality. In detail,

we summarize the main results as follows:

• SAC decreases the reverse power flow per day by 94.8%

with little overhead, i.e., reducing the number of served

passengers by 2.3% and increasing the idle driving

distance per day by 9.0% compared with the solution

only optimizing the e-taxi service quality.

• SAC decreases the reverse power flow per day by 78.7%

while increasing the number of served passengers by

75.7% compared with the solar-aware heuristic solution

only focusing on matching the solar power.

• SAC decreases the energy loss due to charging and

discharging storage systems by up to 65.4% compared

with the other three solutions.



Fig. 5: Energy loss and power demand Fig. 6: # of served passengers per day
Fig. 7: Idle driving distance of an e-taxi

per day

1) Social Cost: Figure 3 shows the total reverse power

flow from the solar-powered charging stations to the local

power distribution network during a day by the four charging

scheduling methods. Figure 4 shows the reverse power flow

during each time slot of a day by the different charging

strategies. The main observation is that SAC decreases the

reverse power flow per day by 94.8%, 95.3%, and 78.7%

compared with the other three methods respectively. It is

clear that the solutions that match charging with the solar

power significantly reduce the reverse power flows, e.g., SAC

and SAH outperform p2Charging and REC. Although SAH

tries to match the solar power, it introduces more reverse

power flow than SAC due to potential less coordinated

dense charging. For example, passenger demand increases

from 6:00 to 10:00 and decreases from 10:00 to 16:00.

Most e-taxis have near full energy at the beginning of a

day, e.g., 6:00, and are close to using up energy during

lunchtime, e.g., after 12:00. Therefore, there exists a large

amount of reverse power flow before lunchtime, which is also

shown in Figure 4. Meanwhile, REC also generates more

reverse power flow than p2Charging because it is reactive to

remaining energy even though both of them do not consider

how to match the solar power.

The left bars of Figure 5 show the energy loss at the solar-

powered charging stations due to charging and discharging

energy storage systems. First, SAC reduces the energy loss

by 54.4%, 39.5% and 65.4% compared with p2Charging,

REC, and SAH. The reason is that SAC makes near full

use of the solar power and reduces the amount of energy

charged into the storage, which is shown in Figures 3 and

4. Secondly, SAH introduces the maximum energy loss. The

reason is that this method does not fully utilize solar power

during the daytime due to reactive to remaining energy and

concentrated charging. During the nighttime, this method

also wants to fully utilize the stored energy, resulting in a

lot of energy loss.

The right bars of Figure 5 also demonstrate the power

drawn from the power distribution system by the charging

stations. The first observation is that the power demand on

the local distribution network decreases by 42.5%, 35.2%,

and 23.4% when changing the solution from p2Charging,

REC, or SAH to SAC. We also observe that making full use

of solar power can significantly decrease the power drawn

from the power distribution system. For example, both SAC

and SAH have lower power demands from the distribution

system that p2Charging and REC.
2) Performance of e-taxi service: An important objective

of an e-taxi fleet is to provide good service quality for

passengers. Figure 6 shows the number of served passen-

gers per day by the four solutions, and there are several

observations. The first one is that the number of served

passengers reduces by 2.3% when changing the scheduling

solution from p2Charging to SAC, where p2Charging focuses

on optimizing the service quality. As we trade-off between

optimizing the service quality of e-taxi fleets and reducing

the power system cost, it is reasonable that SAC misses a

small percentage of potential passengers but significantly

reduces the power system cost. The second observation

is that scheduling e-taxis with the consideration of future

passengers is useful to serve more passengers. For example,

compared with reactive to e-taxis’ remaining energy (REC),

10.5% and 11.3% more passengers are served by SAC and

p2Charging respectively. The last observation is that naively

incorporating the objective of matching the solar power with

charging can significantly influence the service quality of e-

taxi fleets. For example, although both REC and SAH are

reactive to e-taxis’ remaining energy, the latter solution may

miss some passengers since the e-taxis are assigned to a

group of solar-powered charging stations introducing longer

idle waiting time for a free charging point.
Figure 7 shows the total idle driving distance of e-taxis

per day by the four solutions. The main observation is that

SAC introduces 9.8%, 10.6%, and 4.1% more idle driving

distance compared with p2Charging, REC and SAH. Since

SAC frequently schedules e-taxis for charging and serving

passengers, it is reasonable that more idle driving distance

is introduced.

VII. RELATED WORK

In this section, we classify the related work into two

categories: (i) EV charging activities coordination, and (ii)

EV scheduling at solar-powered charging stations. The first

category focuses on coordinating the charging locations of

EVs, and the latter one studies how to schedule e-taxis’

charging at a particular station.
EV charging activities coordination: As the number of

EVs increases, some solutions [19], [21], [18], [22], [23] are



proposed to recommend EVs where to charge for minimizing

the charging cost. [21] designs a charging recommendation

system to minimize the total idle time under fairness con-

straints for an e-taxi fleet. [23] guides a group of EVs to de-

cide the traveling path for optimizing traveling time, payment

for charging, energy consumption, and range anxiety given

the source and destinations of EVs. [19] proposes a real-time

charging scheduling framework to recommend when and

where to charge, guaranteeing bounded waiting time for e-

taxis. However, these related works concentrate on reducing

the cost of charging without optimizing the service quality

of electric vehicle fleets [19], [21], [22], [23] or reducing the

cost of charging infrastructures [19], [21], [18], [22], [23].

EV scheduling at charging stations: In reality, drivers

may park EVs at the charging stations for park-and-charge,

and configure when to pick up EVs. With this operation

mode, the scheduling solutions [24], [25], [8], [26] are

proposed to meet the time requirement of drivers while mini-

mizing the charging cost. When the picking up and dropping

off time of EVs are known, [8] uses linear programming to

determine the amount of energy delivered to each vehicle

during a time slot for maximizing the utilization of solar

energy while maintaining similar energy among EVs. [24]

studies how to assign charging rate to EVs to satisfy their

charging demand before their deadlines with minimum pay-

ment in a solar-powered charging station. [25] conducts both

experimental and theoretical analysis of different scheduling

algorithms at charging stations and shows their performance.

Firstly, these studies [24], [25], [8], [26] research a different

application scenario, i.e., park-and-charge, and this work

studies the urban e-taxi fleet service. Secondly, these works

focus on optimizing the performance of EVs at a charging

station, while our work aims to optimize the performance of

e-taxi fleets and the cost of an entire charging infrastructure.

VIII. CONCLUSION

We explore e-taxis’ mobility and charging demand flex-

ibility to co-optimize the e-taxi fleets’ service quality and

the system cost of the charging infrastructures. We propose

an e-taxi coordination framework, i.e., SAC, to schedule e-

taxis for picking up passengers or charging under dynamic

renewable energy and passenger mobility patterns in spatial-

temporal dimensions. We evaluate the effectiveness of SAC

with real-world multi-source data. Trace-driven simulation

results show that our solution can decrease the daily reverse

power flow by up to 95.3% while maintaining e-taxi service

quality with very little overhead, significantly outperforming

existing solutions.
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