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ABSTRACT

Electric vehicle (EV) fleets, e.g., electric taxis, buses, and trucks, have

been increasingly implemented in cities. Compared with internal-

combustion vehicles, the operation of EV fleets requires resilient

charging infrastructures. Notably, the charging of EV fleets can

bring significant reliability and efficiency challenges to the op-

eration of the underlying power system. Based on the real data

collected from New York City (NYC), our analysis shows that an

increased power load ramping can result from various charging

behaviors of electric taxis (e-taxis). Additionally, the increase of the

peak load can further overload the local power distribution network.

To address these problems, we exploit the possibility of utilizing

e-taxi fleets’ mobility to improve the reliability and reduce the cost

of the power system, while maintaining the taxi service quality.

Specifically, we design POET, a POwer-system-aware E-Taxi coor-

dination algorithm, and evaluate the solution with comprehensive

datasets for taxis and power distribution systems from NYC. These

data include (i) more than 13,000 taxis with more than ten million

taxi trips per month, (ii) a city local power distribution network

with 38 local area substations and nearly 45 GWh overall power

consumption per day, and (iii) deployed EV charging stations. The

extensive data-driven evaluation demonstrates that, compared with

the existing e-taxi charging solution that focuses on optimizations

of taxi service quality, our solution decreases the power load ramp-

ing of local regions by 22.3% and reduces the daily peak charging

load by 44.2% while achieving almost the same taxi revenue.
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1 INTRODUCTION

As various sensing, control, and communication technologies are

deeply embedded into modern transportation systems, vehicles are

becoming increasingly connected and coordinated, enabling new

applications and services of Internet of things (IoT), such as smart

traffic control [1], coordinated heterogeneous transportation sys-

tems [2], and taxi fleet management [3, 4]. Recently, electric vehicle

(EV) designs emerge, accelerating a revolution in existing trans-

portation systems [5]. Since EV has several major advantages over

traditional gas-powered vehicles – environment friendly, cheaper to

maintain, and improved safety [6] – different types of EV fleets, e.g.

electric taxis, buses, and trucks, have been increasingly deployed in

urban cities. For example, e-taxi fleets have been deployed in met-

ropolitan areas, e.g., Amsterdam [7], Shenzhen [8], and London [9].

Notably, Tesla has become the first all-electric car to be approved

for use as an official NYC yellow cab [10].

New challenges arise with such large scale deployment of EV

fleets. The range of most electric vehicles is less than that of gas-

powered vehicles, e.g., below 200 miles [11], and the operation

of EV fleets requires relatively frequent, high-power, and timely

charging. Among the many challenges raised by the large-scale

deployments of EV fleets, an important one is its impact on power

system resilience [12]. The power grids that support all the charging

stations have various limitations and constraints that EV charging

should consider. Indeed, EV fleet charging patterns can significantly

increase the operation cost and compromise the reliability of power

grids. For example, a large number of EVs may need to be charged

at the same time period at a popular location, creating a surge

of power load in a local power distribution network. Moreover,

with fast charging technologies requiring high power, a large load

increase can occur even for a small number of simultaneous charges.

Let us take a close look at the interaction between power grids

and an EV fleet service, e.g. e-taxis. The primary function of an

e-taxi fleet service is to provide flexible mobility for passengers

and meet dynamic passenger demand. This fleet service relies on a

power grid to charge its vehicles at fixed charging stations. This

close dependency between a fleet service and the power grid not

only limits the quality of service that the fleet can provide to its

passengers but also imposes significant pressure on the power grid.

Specifically, this paper studies the effects of fleet service on power

grids, which are manifested as 1) a large amount of additional power

to supply all the e-taxis, 2) an increased city-level and region-level

load ramping due to concentrated charging of e-taxis, and 3) an

increased peak load due to e-taxi charging. Indeed, large ramping

and high peaks typically require more expensive power supplies.

Addressing these issues under the constraints in power grids and

charging infrastructures is a very challenging problem.
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To help the power system improve its resilience and efficiency

in the presence of highly variable generation and load, researchers

have investigated designs for charging station deployment [13],

charging rate control at a charging station [14], and battery tech-

nologies [15]. However, none of these designs utilizes the spatial-

temporal flexibility of taxi service and charging behaviors to co-

optimize the operations of transportation service and power grids.

To the best of our knowledge, this paper is the first one to explore

and show the potential of utilizing the flexibility of e-taxis’ charging

activities and the mobility of e-taxis to achieve high-quality taxi

service with minimum impact on the power grid.

Existing e-taxi fleets are equipped with wireless radios and vari-

ous sensors to collect location, occupancy status, battery status, etc.

This allows not only passenger demand and charging demand to be

analyzed and predicted, but also e-taxis to be dispatched to perform

their services collaboratively. On the other hand, the power grid

can monitor status of each charging station/point, e.g., charging

load, connection status, battery status, etc. These infrastructures

provide an opportunity for power systems and e-taxi fleets to be

connected and coordinated, enabling novel EV fleet services.

Specifically, we consider the e-taxi fleet that aims to achieve

the social optimum of both transportation system and power grid

operations. We consider an e-taxi coordination algorithm with

two sets of objectives: a) efficiently serving the passengers and b)

minimizing its impact on power grid operations. To capture the

above, in addition to maximize the profit for the set of all e-taxis,

we introduce the following power-system-aware metrics in our

objective function: a) the ramping of the total load (i.e., the existing

load plus the additional load for charging e-taxis), b) the ramping

of the load in each region (i.e., the existing load in a region plus

the additional load for e-taxis in the same region), and c) the peak

of total load (i.e., the maximum total load during a day). We note

that these are critical metrics commonly pursued by power system

operators to reduce cost and improve reliability of power supplies.

We note that, in practice, an e-taxi fleet may however not be able

to coordinate with the power system in such an ideal way. In light

of this, we also study the use of Time-Of-Use pricing programs for

the power system to impact the charging behaviors of e-taxis. The

evaluation results show that applying a real-world TOU program

with POET at the peak charging time can effectively reduce the

daily peak load of the city by 36.4%, compared with existing taxi

dispatch solutions that focus on optimizing the passenger service

quality. The POET under the TOU program achieves 85.9% daily

peak load reduction of the POET without TOU, which represents

the ideal taxi coordination algorithm with the power system.

The contributions of this paper are as follows:

• To the best of our knowledge, it is the first work to design a

coordination algorithm for e-taxi fleets to explore the potential

of co-optimizing the quality of taxi service and the cost in the

power grids due to charging.

• This work provides an analysis of the cost in the power grids

given different charging strategies with real-world datasets of

passenger mobility and power grids from NYC. The results show

that various charging behaviors of e-taxis can significantly in-

crease the cost of power supply (e.g., due to increased overall load

and ramping) and challenge the reliability of power distribution

systems (e.g., due to increased ramping and peak loads).

Area
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Figure 1: Demonstration of a power grid

• We formulate the e-taxi coordination problem of charging and

serving passengers as a multi-objective mixed-integer linear pro-

gramming problem. Different from previous e-taxi charging re-

search that only focuses on reducing charging cost or match-

ing taxi supply with passenger demand, our problem considers

matching both passenger demand and power load to improve

taxi service quality and decrease the cost of power grids.

• Our study is based on very comprehensive datasets from NYC

that consist of (i) over 13,000 taxis with over ten million taxi trips

per month, (ii) a local power distribution network with 38 area

substations and nearly 45 GWh overall daily power consumption,

and (iii) deployed electric vehicle charging stations with 750

charging ports. The extensive data-driven evaluation shows that

our solution significantly decreases the power load ramping of

local regions by 22.3% and reduces the daily peak charging load

by 44.2% with only a 1.4% decrease in the taxi revenue compared

with the existing solution only optimizing taxi service quality.

2 MOTIVATION

2.1 Data Description

In this part, we describe the data collected from Manhattan, includ-

ing the data for power distribution network, EV charging stations,

and taxi trip records. Table 1 shows the examples of the three

datasets.
Table 1: Attributes of the datasets

Power distribution network

Network vertices, hosting capacity (MW),

predicted power load & corresponding datetime

Electric vehicle charging station

Station name and address, GPS location, # of outlets

Taxi trip record

Pickup datetime and GPS location,

dropoff datetime & GPS location,

trip distance (mile), fare amount ($)

City power distribution network: Figure 1 depicts the main com-

ponents of a power grid. In this work, we focus on the city power

distribution network, including the area substations, local power

distribution networks, and end users. The electric service in NYC

is provided by Con Edison [16]. The company partitions the entire

area of Manhattan into multiple local regions.The end users in a

local region are supplied by the local distribution network from

the same area substation. A local region is described as a polygon

bounded by the GPS coordinates of multiple geographical locations.

As shown in Table 1, the hosting capacity platform [17] shows the

area substation hosting capacity and the forecasted hourly power

load from end users in the same region for three years.
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Figure 2: The city’s load
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Figure 3: A region’s load

Electric vehicle charging stations: With the growth in the electric

vehicle (EV) market, commercial EV charging stations have already

been deployed across the world. We retrieve the information of the

current nearly 290 EV charging stations in Manhattan from [18].

It includes station name, address, GPS coordinates, the number of

charging ports, and charging power for each charging station.

Taxi trip record data: Multiple types of sensors, e.g., GPS devices,

and communication modules, have already been deployed in the

taxis to upload the real-time trip record data for monitoring and

improving the service quality. The New York City Taxi and Limou-

sine Commission (TLC) has already collected and published the taxi

trip records data from 2009 to 2019 in [19], which includes pick-up

and drop-off dates/times, pick-up and drop-off GPS locations, trip

distances, and itemized fares. There are over 10 million taxi pickup

records per month in Manhattan of around 13,000 yellow taxis.

2.2 Data-Driven Analysis

In this part, we conduct the data-driven analysis to study how the

future e-taxi fleets influence the city power distribution network.

The analysis results show that the charging behaviors of e-taxis

can result in negative effects on the power grid, e.g., total city-level

load ramping, regional/local-level load ramping, and the increase

of the peaks of local load.
2.2.1 Setup. Since e-taxi fleets have not been deployed in Manhat-

tan, we make several assumptions about future e-taxi systems and

charging infrastructure based on the datasets from the existing sys-

tems. First, we assume that the regular taxis in the taxi dataset are

upgraded to e-taxis. Second, based on the implementation of e-taxis

in London [9] and Shenzhen [20], we set up the specifications of

e-taxis as: 40 kWh battery capacity; 50 kWmaximum charging rate;

174 miles maximum distance. Third, the current EV charging sta-

tions are expanded (at the same locations) so that there is a charging

port for every three e-taxis [21]. Since e-taxis need to recharge their

battery quickly to serve passengers during daily operations [22],

we assume that the charging points are DC fast chargers (50 kW).

The predicted load from users provided by ConEd is employed as

the actual load. A time slot is set as 10 minutes.

Two basic charging strategies are employed in this analysis to

determine the charging behaviors of e-taxis. The first strategy is

called reactive charging to the e-taxi’s remaining energy (R2E) [23].

An e-taxi starts to charge the battery only when its remaining

energy is below a threshold, i.e., 15%. The charging station with

the minimum sum of driving time and waiting time is selected

by an e-taxi for charging. The charging process terminates when

the battery is fully charged. The second strategy is called reactive

charging to the e-taxi’s idling time (R2I). At the beginning of a time

slot, a centralized controller first dispatches e-taxis over the regions

for matching the passenger demand. After dispatching, if the e-taxi

(a) Reactive to e-taxi energy (b) Reactive to e-taxi idling

Figure 4: Increase of local peak load due to e-taxis

supply is more than the passenger demand in a region, some e-taxis

are idling and are scheduled to the nearest station with at least an

open charging port for charging the battery during the current time

slot. Such a process repeats at the beginning of every time slot. It is

noted that a part of passenger demand is not satisfied in the case of

R2E because some of the vehicles have to stop to charge. It is also

shown in Figure 10 that R2E introduces less profit than R2I does.

The results demonstrate three types of power load. The first one

is the power load from the end users. The second type is from the

end users and the e-taxis by the strategy R2E. The last type is from

the end users and the e-taxis by the strategy R2I.

2.2.2 Results. Figure 2 shows the total load of the city during

a day. Due to the charging behaviors of the e-taxis, the load of

the city during a time slot increases by 3.0% and 2.5% on average

when using the two charging strategies. In detail, the daily peak

power load increases from 2.76 GW to 2.83 GW and the daily total

power consumption increases from 45.59 GWh to 46.95 GWh by

R2I. This suggests that transmission and generator capacities need

to increase significantly as more and more EVs are adopted. Notably,

the cost of such upgrades would however be very high [24]. We also

observe that the total load by the strategy that is reactive to e-taxi

energy ramps up and down from 9 am to 6 pm. To match the power

demand with high ramping, the power system operators need to

rely on fast-ramping generators or energy storage which can be

very expensive [25]. The exact cost will depend on the day-to-day

operation cost of the power system. We leave accurate long-term

cost modeling of power load profiles (and their changes with better

managed e-taxi coordination) for future work.

In Figure 3, we plot the local power load by the different charging

strategies, where a representative region is selected. The main

observation is that there exists a power load ramping for both

strategies. For example, the load of a time slot decreases from 119

MW to 115 MW, and increases back to 123 MW from 10 am to 6

pm by the strategy that is reactive to e-taxi energy. Meanwhile, the

curve of the strategy that is reactive to e-taxi idling fluctuates from

8 am to 12 pm and from 7 pm to 10 pm. The fast ramping of local

loads can cause voltage rise and fall outside the normal region.

We obtain the (daily) peak load in each region of three types of

power loads. We then show the increase of peak loads due to the

e-taxis by two strategies. The value is equal to (the daily max power

load in a region by a strategy - the daily max power load in the same

region without e-taxis)/the daily max power load in the same region

without e-taxis. The results are shown in Figure 4. We observe that

there are 7 and 11 regions where the increase of peak load due to

the e-taxis is above 9% by the two strategies. Such an increase could
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Figure 5: Framework of POET
result in the overloading of power distribution networks due to

the constraints of a large number of system components, e.g., the

capacities of local transformers and lines.

In summary, our data-driven analysis results show that the e-

taxis’ charging activities require a large amount of additional power

to support e-taxis, and could increase the city-level and region-level

power load ramping and the daily peak power load.

3 POET OVERVIEW

To address the negative impact of e-taxi charging on the power grid,

we design a POwer-system-aware E-Taxi coordination algorithm,

called POET. Specifically, POET coordinates the e-taxis’ behaviors

of charging batteries and searching for next passengers, aiming to

maximize the utility of serving passengers and minimize the impact

on the city distribution network. Figure 5 shows the framework

of POET. It is designed based on the existing taxi system, where

multiple devices, i.e., GPS modules, fare meters, and communication

modules, are installed in the taxis. These devices are used to report

real-time locations and occupancy status, and receive scheduling

commands for improving the taxi service quality [26, 27].

As shown in Figure 5, the algorithm periodically makes the

coordination decisions, i.e., how many e-taxis are scheduled for

charging in spatial-temporal dimensions (charging decisions), and

how many e-taxis are dispatched in spatial-temporal dimensions

for serving passengers (dispatching decisions). This coordination

algorithm consists of two components: an e-taxi system model and

an optimization problem. The e-taxi system model describes how

the states of an e-taxi fleet transit over the discrete temporal domain

given the decisions. It is fed by the real-time e-taxi information and

the historical passenger trip data. During the daily operation, the

power system managers always send the power load information

and the hard power system constraints to the optimization problem

component, which determines the charging and dispatch decisions.

There are two control loops in this system. One loop is in the

e-taxi systems for dispatch decisions. The coordination algorithm

determines the dispatch decisions of e-taxis based on the predicted

passenger demand, and then dispatches e-taxis to serve passen-

gers. Another loop is in the power systems for charging decisions.

E-taxis are scheduled to charge their batteries at the charging sta-

tions, and the charging decisions are obtained based on information

shared from power systems, e.g., current loads and charging load

constraints. These two loops affect each other. For example, the

charging decisions influence the current and future e-taxi supply for

serving passengers. The dispatch decisions affect the distribution of

e-taxis, which is considered when making the charging decisions.

Therefore, the charging and dispatch decisions correlate with each

other and must be considered jointly.

4 LOCAL POWER DISTRIBUTION NETWORK

According to the structure of power distribution networks as shown

in Figure 1, we assume that there are𝑚 transformers that supply

power to at least a charging station over the city. Let 𝐵 ∈ 𝑅𝑚 with

𝐵𝑘 representing the capacity of transformer 𝑘 . Suppose there are 𝑛𝑖
charging stations in region 𝑖 and the number of charging stations

in a city is 𝑛 =
∑𝑛
𝑖=1 𝑛𝑖 . Let 𝑅

𝑡𝑐 ∈ {0, 1}𝑚×�̄� represent the relation

between transformers and charging stations, where 𝑅𝑡𝑐
𝑘,𝑗

= 1 if 𝑘-th

transformer supplies power to charging station 𝑗 ; otherwise, it is 0.
Let 𝐿𝑒𝑡 be a length 𝑛 column vector, and 𝐿𝑒𝑡𝑗 describes the charg-

ing power load at charging station 𝑗 during slot 𝑡 . Let 𝐿𝑜𝑡 be a length
𝑚 column vector, and 𝐿𝑜𝑡

𝑘
describes the power load from consumers

except e-taxis on transformer 𝑘 during slot 𝑡 . To avoid overloading

the transformers, resulting in temperature rise and power distribu-

tion network instability, we constrain that 𝑅𝑡𝑐𝐿𝑒𝑡 +𝐿𝑜𝑡 ≤ 𝐵, where
𝑅𝑡𝑐𝐿𝑒𝑡 is a length𝑚 column vector, representing the charging load

from e-taxis on each transformer during slot 𝑡 . The above equation
describes the constraints of charging load at each charging station

during each time slot to ensure the reliability of power systems.

Discussion: The structures of the local power distribution net-

work can be either radial or meshed [28]. In this work, we take the

radial network as an example to describe how the power demand

from e-taxis and other users influence the local distribution net-

work. To prevent an overload of the distribution network, certain

constraints from the distribution network exist. For example, if a

charging station and end users share a power line, their total power

load should not exceed the line capacity. Similar constraints can be

derived for a meshed network using power flow equations.

5 E-TAXI SYSTEMS

We first discretize the spatial and temporal dimensions. One day is

partitioned into multiple time slots, where a time slot is indexed by

𝑡 . Let 𝑡 be the current time slot and we consider future 𝑇 time slots

for coordinating e-taxis. The entire area of a city is divided into 𝑛
regions based on the power grid as described in Section 2.1.

5.1 State of E-taxi Systems

We discretize the remaining energy of an e-taxi into �̂� levels. Let

𝑅𝐸𝑡 be the remaining energy of an e-taxi at the beginning of slot 𝑡 .
We use a linear model to describe how the remaining energy of e-

taxis changes over the time [29] [30]. If an e-taxi works during time

slot 𝑡 , 𝑅𝐸𝑡+1 = 𝑅𝐸𝑡 − �̂�1; otherwise, 𝑅𝐸𝑡+1 = 𝑅𝐸𝑡 + �̂�2, where �̂�1 (�̂�2)
is the levels that the remaining energy changes if an e-taxi works

(charges) during slot 𝑡 . We assume that an e-taxi does not consume

energy during a time slot if it only waits for a free charging port in a

charging station. We note that there are several factors influencing

the battery discharging process of e-taxis, e.g., air density, vehicle

mass, and traveling time [31]. Our solution can also integrate more

sophisticated discharging models beyond linear ones.

There are three states of an e-taxi: working on the road for

searching or delivering passengers, waiting in a charging station

for a free charging port, and connecting with a charging port. To

simplify the description, we call e-taxis with one of these states as

working, waiting, and charging e-taxis. The state of an e-taxi system

is defined as how many e-taxis with the different remaining energy

levels are in one of three states in spatial-temporal dimensions. We
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define several notations to describe the state of an e-taxi system,

i.e., 𝑉 𝑙,𝑡𝑖 ,𝑂𝑙,𝑡𝑖 , and 𝐷𝑙,𝑡𝑗 , and they are introduced one by one.

Let 𝑉 𝑙,𝑡𝑖 ,𝑂𝑙,𝑡𝑖 be the number of vacant and occupied e-taxis with

remaining energy level 𝑙 in region 𝑖 at the beginning of time slot 𝑡
before scheduling. By taking advantage of the GPS and communica-

tion devices installed in e-taxis, we update 𝑉 𝑙,𝑡𝑖 ,𝑂𝑙,𝑡𝑖 with real-time

data, e.g., GPS locations and occupancy status, where 𝑡 is the current

time slot. We define 𝐷𝑙,𝑡𝑗 as the number of e-taxis with remaining

energy 𝑙 in station 𝑗 at the beginning of slot 𝑡 , which includes the

e-taxis that wait or charge the battery during slot 𝑡 − 1.

Decision variables: There are two types of e-taxi coordination

decisions for the unoccupied e-taxis: how many e-taxis are dis-

patched between regions for serving passengers (i.e., taxi dispatch),

and how many e-taxis are scheduled to the different charging sta-

tions (i.e., charging scheduling). We define 𝑋 𝑙,𝑡𝑖, 𝑗 ∈ N as the number

of e-taxis with remaining energy level 𝑙 are scheduled from region

𝑖 to charging station 𝑗 at the beginning of time slot 𝑡 . The range
of 𝑙 is [1, �̂�], meaning e-taxis with any remaining energy level can

be scheduled for charging. In detail, we use 𝑥𝑙,𝑡𝑖, 𝑗 ∈ N to denote the

number of current unoccupied working e-taxis with remaining en-

ergy 𝑙 that are dispatched from region 𝑖 to station 𝑗 during slot 𝑡 . Let

𝑥𝑑𝑙,𝑡𝑗, 𝑗 ′ ∈ N be the number of e-taxis with energy 𝑙 in station 𝑗 that

are scheduled to station 𝑗 ′. Given 𝑥𝑙,𝑡𝑖, 𝑗 and 𝑥𝑑𝑙,𝑡𝑗, 𝑗 ′ , 𝑋
𝑙,𝑡
𝑖, 𝑗 is represented

as: 𝑋 𝑙,𝑡𝑖, 𝑗 = 𝑥𝑙,𝑡𝑖, 𝑗 +
∑�̄�
𝑗 ′=1 𝑅

𝑟𝑐
𝑖, 𝑗 ′𝑥𝑑

𝑙,𝑡
𝑗 ′, 𝑗 , where 𝑅𝑟𝑐 ∈ {0, 1}𝑛×�̄� is a matrix

that represents the relation between regions and charging stations,

where 𝑅𝑟𝑐𝑖, 𝑗 = 1 if station 𝑗 locates at region 𝑖; otherwise, it is 0.

We use 𝑌 𝑙,𝑡𝑖,𝑖′ ∈ N to denote the number of e-taxis with energy 𝑙

that are dispatched from region 𝑖 to 𝑖 ′ for serving passengers during

slot 𝑡 . Let 𝑦𝑙,𝑡𝑖,𝑖′ ∈ N denote the number of currently unoccupied

working e-taxis with energy 𝑙 that are dispatched from region 𝑖 to

𝑖 ′ during slot 𝑡 . We define 𝑦𝑑𝑙,𝑡𝑗,𝑖 ∈ N as the number of e-taxis with

energy 𝑙 in station 𝑗 that are scheduled to region 𝑖 , where these
e-taxis wait or charge the battery during slot 𝑡−1 in station 𝑗 . Given

𝑦𝑙,𝑡𝑖,𝑖′ and 𝑦𝑑𝑙,𝑡𝑗,𝑖 , we represent 𝑌
𝑙,𝑡
𝑖,𝑖′ as: 𝑌

𝑙,𝑡
𝑖,𝑖′ = 𝑦𝑙,𝑡𝑖,𝑖′ +

∑�̄�
𝑗=1 𝑅

𝑟𝑐
𝑖, 𝑗𝑦𝑑

𝑙,𝑡
𝑗,𝑖′ .

It is noted that all the unoccupied e-taxis, i.e., working on the

road without passengers, charging the battery, or waiting for a free

charging port, are considered in the charging scheduling and taxi

dispatch decisions. To simplify the description, we define 𝑋 𝑡 and
𝑌 𝑡 as the scheduling decisions for charging and serving passengers

during slot 𝑡 , where 𝑋 𝑡 = {𝑥𝑙,𝑡𝑖, 𝑗 , 𝑥𝑑
𝑙,𝑡
𝑗, 𝑗 ′ }1≤𝑙≤�̂�,1≤𝑖≤𝑛,1≤ 𝑗, 𝑗 ′ ≤�̄� and

𝑌 𝑡 = {𝑦𝑙,𝑡𝑖,𝑖′, 𝑦𝑑
𝑙,𝑡
𝑗,𝑖 }1≤𝑙≤�̂�,1≤𝑖,𝑖′ ≤𝑛,1≤ 𝑗≤�̄� .

In this work, we consider the e-taxis that are in any one of three

states for charging or serving passengers. It means that e-taxis are

instructed to terminate the charging process or leave the waiting

queue for serving passengers or charging the battery in another

charging station. We have the following constraints:∑�̄�
𝑗=1 𝑥

𝑙,𝑡
𝑖, 𝑗 +

∑𝑛
𝑖′=1 𝑦

𝑙,𝑡
𝑖,𝑖′ = 𝑉 𝑙,𝑡𝑖 ,

∑�̄�
𝑗 ′=1 𝑥𝑑

𝑙,𝑡
𝑗, 𝑗 ′ +

∑𝑛
𝑖=1 𝑦𝑑

𝑙,𝑡
𝑗,𝑖 = 𝐷𝑙,𝑡𝑗 (1)

5.2 E-Taxi Supply and Passenger Demand

Given the historical dataset of passenger trip records, we can es-

timate the dynamic passenger demand in spatial-temporal dimen-

sions, i.e., how many passengers request taxi service in a region

during a time slot. Let 𝑟𝑡𝑖 be the number of passengers that request

taxi service during time slot 𝑡 in region 𝑖 .

Taxi supply: We define 𝑆𝑙,𝑡𝑖 as the number of e-taxis with re-

maining energy 𝑙 that can serve passengers in region 𝑖 during time

slot 𝑡 after taxi dispatch and charging scheduling. We have the fol-

lowing equations to describe how𝑉 𝑙,𝑡𝑖 ,𝑂𝑙,𝑡𝑖 and 𝑆𝑙,𝑡𝑖 change between

time slot 𝑡 and 𝑡 + 1.

𝑆𝑙,𝑡𝑖 = 𝑉 𝑙,𝑡𝑖 +
∑�̄�
𝑗=1 𝑅

𝑟𝑐
𝑖, 𝑗𝐷

𝑙,𝑡
𝑗 −

∑�̄�
𝑗=1 𝑋

𝑙,𝑡
𝑖, 𝑗 +

∑𝑛
𝑖′=1 (𝑌

𝑙,𝑡
𝑖′,𝑖 − 𝑌 𝑙,𝑡𝑖,𝑖′ ) (2)

𝑉 𝑙,𝑡+1𝑖 =
∑𝑛
𝑖′=1 𝑃𝑣

𝑡
𝑖′,𝑖𝑆

𝑙+�̂�1,𝑡
𝑖′ +

∑𝑛
𝑖′=1𝑄𝑣𝑘𝑖′,𝑖𝑂

𝑙+�̂�1,𝑡
𝑖′ (3)

𝑂𝑙,𝑡+1𝑖 =
∑𝑛
𝑖′=1 𝑃𝑜

𝑡
𝑖′,𝑖𝑆

𝑙+�̂�1,𝑡
𝑖′ +

∑𝑛
𝑖′=1𝑄𝑜𝑡𝑖′,𝑖𝑂

𝑙+�̂�1,𝑡
𝑖′ (4)

where 𝑃𝑣𝑡𝑖′,𝑖 , 𝑃𝑜
𝑡
𝑖′,𝑖 , 𝑄𝑣𝑡𝑖′,𝑖 , 𝑄𝑜𝑡𝑖′,𝑖 ∈ [0, 1] describe the mobility

patterns of taxis for different pairs of regions during time slot 𝑡 .
𝑃𝑣𝑡𝑖′,𝑖 (𝑃𝑜

𝑡
𝑖′,𝑖 ) is the probability that an unoccupied taxi from region

𝑖 ′ at the beginning of slot 𝑡 will travel to region 𝑖 and become unoc-

cupied (occupied) by the end of time slot 𝑡 . Similarly, 𝑄𝑣𝑡𝑖′,𝑖 (𝑄𝑜𝑡𝑖′,𝑖 )

describes the probability that an occupied taxi from region 𝑖 ′ at
the beginning of 𝑡-th slot travels to region 𝑖 and becomes vacant

(occupied) by the end of time slot 𝑡 . The historical data is used to

learn the taxis’ mobility patterns by frequency theory of probability.

We constrain that:
∑𝑛
𝑖=1 𝑃𝑣

𝑡
𝑖′,𝑖 + 𝑃𝑜𝑡𝑖′,𝑖 = 1,

∑𝑛
𝑖=1𝑄𝑣𝑡𝑖′,𝑖 +𝑄𝑜𝑡𝑖′,𝑖 = 1.

Discussion: In this work, the taxi mobility pattern is learned

from the historical data, which can be sometimes inaccurate due to

the uncertain travel delays. To address this issue, we can build the

model of the taxi mobility patterns by assuming 𝑃𝑣 , 𝑃𝑜 , 𝑄𝑣 , and
𝑄𝑜 follow the different distributions extracted from the historical

data. Then the problem is to determine the e-taxi charging and

dispatch decisions with the probability distributions of the taxi

mobility patterns. Since the main technical task of this work is not

to schedule e-taxis with uncertain traveling delays, we will leave

the studies with uncertain travel delays for future work.

In Eq. (2), the number of e-taxis in each charging station with

the different remaining energy level, i.e., 𝐷𝑙,𝑡𝑗 , is determined by

the dynamic charging supply and the scheduled charging requests

during the previous slot. Therefore, the taxi supply and passenger

demand model, and the charging supply and request model couple

with each other by the dynamic scheduling decisions of charging.

5.3 Charging Supply and Request Model

In this section, we first formulate the dynamic charging supply

constrained by the power distribution network, and the charging

requests determined by the charging decisions. Then we model

how to derive the number of e-taxis with the different remaining

energy at the beginning of slot 𝑡 when given the charging requests

and supply for slot 𝑡 − 1.

Charging supply: The charging supply means the maximum

number of e-taxis that can be charged simultaneously during time

slot 𝑡 at 𝑗-th charging station, denoted as 𝑒𝑡𝑗 . Suppose there are 𝑝 𝑗
charging ports at 𝑗-th charging station. To avoid the overload on

network transformers, the number of e-taxis that can be charged si-

multaneously is constrained by the capacity of transformers, i.e., 𝐵.
We use 𝑃 to denote the charging power of e-taxis. Then the maxi-

mum power load from 𝑗-th station during time slot 𝑡 is 𝐿𝑒𝑡𝑗 = 𝑒𝑡𝑗 ∗ 𝑃 .

Given the limited number of charging points at station 𝑗 and the
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power load constraint (i.e., 𝑅𝑡𝑐𝐿𝑒𝑡 +𝐿𝑜𝑡 ≤ 𝐵), we have the following
equation:

𝑅𝑡𝑐𝑒𝑡𝑃 + 𝐿𝑜𝑡 ≤ 𝐵, 𝑒𝑡𝑗 ≤ 𝑝 𝑗 (5)

where 𝑒𝑡 is a length 𝑛 column vector.

Charging requests: The charging requests represent the num-

ber of e-taxis requesting the charging service at the station 𝑗 during
slot 𝑡 . We assume that the charging stations are deployed for only

e-taxis [20, 30] and the charging requests at each station are only

determined by the charging decisions.

Since the charging supply may be not sufficient to satisfy the

charging requests, i.e., 𝑒𝑡𝑗 <
∑�̂�
𝑙=1

∑𝑛
𝑖=1 𝑋

𝑙,𝑡
𝑖, 𝑗 , only part of e-taxis are

selected to connect with the charging ports. We define 𝑢𝑙,𝑡𝑗 as the

number of e-taxis that are charged at the station 𝑗 during slot 𝑡
with energy 𝑙 before charging. We constrain them as

𝑢𝑙,𝑡𝑗 ≤
∑𝑛
𝑖=1 𝑋

𝑙,𝑡
𝑖, 𝑗 ,

∑�̂�
𝑙=1 𝑢

𝑙,𝑡
𝑗 ≤ 𝑒𝑡𝑗 (6)

Finally, at the beginning of slot 𝑡 + 1, the e-taxis with remaining

energy 𝑙 at the station 𝑗 consist of the e-taxis with remaining energy

𝑙 after charging during slot 𝑡 and the e-taxis with remaining energy

𝑙 that are not charged during slot 𝑡 . Then we have the following

function to derive 𝐷𝑙,𝑡+1𝑗 : 𝐷𝑙,𝑡+1𝑗 = 𝑢𝑙−�̂�2,𝑡𝑗 +
∑𝑛
𝑖=1 𝑋

𝑙,𝑡
𝑖, 𝑗 − 𝑢𝑙,𝑡𝑗 .

5.4 Power-System-Aware E-taxi Coordination

In this work, we want to schedule e-taxis for charging and serving

passengers to match the dynamic passenger demand and reduce

the negative impact on power systems. The objective consists of

maximizing the utility of the e-taxi system and optimizing the

performance measurement metrics of power systems.

5.4.1 Constraints. The traveling distance of an e-taxi is bounded

during a time slot due to the limited speed and traveling time. So

an e-taxi cannot be scheduled to a far charging station or region.

We define two constraint parameters, i.e., 𝑑𝑠𝑡𝑖,𝑖′ ∈ {0, 1} and 𝑑𝑐𝑡𝑖, 𝑗 ∈

{0, 1}. If an e-taxi can reach region 𝑖 ′ from region 𝑖 within slot 𝑡 ,
𝑑𝑠𝑡𝑖,𝑖′ = 0; otherwise, it is 1. If an e-taxi can reach charging station

𝑗 from region 𝑖 within slot 𝑡 , 𝑑𝑐𝑡𝑖, 𝑗 = 0; otherwise, it is 1. These

two constraint parameters are obtained based on the traveling time

between two locations and the length of a time slot. For example, the

e-taxi fleet can acquire the traveling time from the center location

of region 𝑖 starting at slot 𝑡 to that of region 𝑖 ′ by sending requests

to map service providers, e.g., Google Map. If the received traveling

time is longer than a time slot, 𝑑𝑠𝑡𝑖,𝑖′ = 1; otherwise, it is 0. Finally,

we constrain that

𝑋 𝑙,𝑡𝑖, 𝑗𝑑𝑐
𝑡
𝑖, 𝑗 = 0, 𝑌 𝑙,𝑡𝑖,𝑖′𝑑𝑠

𝑡
𝑖,𝑖′ = 0 (7)

The sustainable operation of e-taxis is a major concern for e-taxi

systems. E-taxis consume energy when driving and they should

avoid using up energy on the road. We assume that all e-taxis follow

the scheduling decisions and constrain that all low energy e-taxis

must be scheduled for charging. We have another constraint:

𝑆𝑙,𝑡𝑖 = 0, 1 ≤ 𝑙 ≤ �̂�1 (8)

5.4.2 Objectives. The primary objective of an e-taxi system is to

maximize its utility by scheduling e-taxis for charging or serving

passengers [32]. The utility is equal to the total revenue from serv-

ing passengers minus the cost of e-taxi systems.

E-taxi fleet utility: In order to increase the revenue from serv-

ing passengers, an e-taxi system usually allocates the taxi supply

across the city to match the passenger demand in spatial-temporal

dimensions. However, the supply that an e-taxi system can pro-

vide may not satisfy the passenger demand during the peak hours,

e.g., 17:00∼19:00, in some regions. We define the number of passen-

gers that are served in region 𝑖 during slot 𝑡 as min{𝑟𝑡𝑖 ,
∑𝐿
𝑙=1 𝑆

𝑙,𝑡
𝑖 }.

Here, it is supposed that a passenger can be served as long as there

is an unoccupied e-taxi in the same region during the same slot.

The passenger may wait in the taxi stations on roads [26] or send

the service request by mobile phones, e.g., Uber and Lyft.

The average revenue coming from serving a passenger varies

in spatial-temporal dimensions, e.g., drivers can earn more money

when picking up passengers in an airport. Let 𝑅𝑒𝑡𝑖 be the average
revenue from picking up a passenger in region 𝑖 during slot 𝑡 , which
is predicted based on the historical data by, e.g., linear regression or

neural network. The total revenue during the future time horizon

(from current time slot 𝑡 to 𝑡 +𝑇 − 1) is formulated as: 𝐽𝑟𝑒𝑣𝑒𝑛𝑢𝑒 =∑𝑡+𝑇−1
𝑡=𝑡

∑𝑛
𝑖=1 min{𝑟𝑡𝑖 ,

∑�̂�
𝑙=1 𝑆

𝑙,𝑡
𝑖 } ∗ 𝑅𝑒𝑡𝑖 , where 𝑟𝑡𝑖 is the number of

passengers that request taxi service during time slot 𝑡 in region 𝑖 ,

and 𝑆𝑙,𝑡𝑖 as the number of e-taxis with remaining energy 𝑙 that can
serve passengers in region 𝑖 during time slot 𝑡 after taxi dispatch
and charging scheduling.

The cost of e-taxi systems consists of the payment of electric

power that e-taxis consume and the idle driving on the road due to

coordination decisions. We assume the power of charging is con-

stant in the spatial-temporal dimensions. However, the price per

kWh (i.e., electricity rate) changes in the spatial-temporal dimen-

sions, e.g., the rate may be high in the central areas and it is low in

the sub-urban areas, or the electricity rate increases during the pe-

riod when there is a lot of power load. The total cost of electricity is

formulated as: 𝐽𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =
∑𝑡+𝑇−1
𝑡=𝑡

∑�̄�
𝑗=1𝐶

𝑡
𝑗 ∗

∑𝐿
𝑙=1

∑𝑛
𝑖=1 𝑋

𝑙,𝑡
𝑖, 𝑗 , where

𝐶𝑡𝑗 represents the cost of consuming energy if an e-taxi charges

in station 𝑗 during time slot 𝑡 , which is equal to electricity rate ∗

power of charging ∗ length of a time slot. The units of electricity

rate, power of charging, and length of a time slot are $/kWh, kW,

and hour, respectively.

Due to scheduling for charging or taxi dispatch, the e-taxis idly

drive on the road, which is also the cost of the e-taxi system. Given

the city structure, we use 𝜇𝑖,𝑖′ to describe the driving distance from

region 𝑖 to 𝑖 ′, where 𝜇𝑖,𝑖′ = 𝜇𝑖′,𝑖 . Let 𝜑𝑖, 𝑗 be the driving distance

from region 𝑖 to charging station 𝑗 or from station 𝑗 to region 𝑖 . We

define 𝜈 𝑗, 𝑗 ′ as the driving distance from the charging station 𝑗 to
𝑗 ′. The total idle driving distance due to scheduling decisions is:

𝐽𝑖𝑑𝑙𝑒 =
∑
𝑡,𝑙

( ∑
𝑖, 𝑗 (𝑥

𝑙,𝑡
𝑖, 𝑗 +𝑦𝑑𝑙,𝑡𝑗,𝑖 )𝜑𝑖, 𝑗 +

∑
𝑖,𝑖′ 𝑦

𝑙,𝑡
𝑖,𝑖′𝜇𝑖,𝑖′ +

∑
𝑗, 𝑗 ′ 𝑥𝑑

𝑙,𝑡
𝑗, 𝑗 ′𝜈 𝑗, 𝑗 ′

)
.

Let 𝛽 be the cost of power when an e-taxi drives idly per unit

distance, and it is equal to electricity rate ∗ energy consumption

per unit distance. In summary, the utility of an e-taxi system is

formulated as: 𝐽𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝐽𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐽𝑝𝑎𝑦𝑚𝑒𝑛𝑡 − 𝛽 ∗ 𝐽𝑖𝑑𝑙𝑒 .
Power System Operational Cost: The other objective of an

e-taxi system is to minimize the influence on the power distribution

network, i.e., reducing the city-level and region-level power load

ramping and shaving peak power load.
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Power load ramping reduction: The power load in region 𝑖 during
slot 𝑡 is the sum of power load from end users and charging stations

in region 𝑖 during slot 𝑡 , formulated as 𝑈 𝑡𝑖 = 𝑈 𝑡𝑖 +
∑�̄�
𝑗=1

(
𝑅𝑟𝑐𝑖, 𝑗 ∗

𝑃
∑�̂�
𝑙=1 𝑢

𝑙,𝑡
𝑗

)
, where𝑈 𝑡𝑖 represents the power load in region 𝑖 during

time slot 𝑡 and 𝑈 𝑡𝑖 denotes the power load from users except e-

taxis in region 𝑖 during time slot 𝑡 . Therefore, the load ramping in

region 𝑖 between slot 𝑡 and 𝑡 + 1 is |𝑈 𝑡+1𝑖 −𝑈 𝑡𝑖 |. The total amount

of the region-level load ramping over 𝑇 consecutive time slots is:

𝐽𝑟𝑒𝑔𝑖𝑜𝑛 =
∑𝑛
𝑖=1

∑𝑡+𝑇−2
𝑡=𝑡

|𝑈 𝑡+1𝑖 −𝑈 𝑡𝑖 |.

The city-level load ramping from slot 𝑡 to 𝑡 + 1 is |
∑𝑛
𝑖=1𝑈

𝑡+1
𝑖 −∑𝑛

𝑖=1𝑈
𝑡
𝑖 |. The amount of city-level load ramping over𝑇 consecutive

time slots is: 𝐽𝑐𝑖𝑡𝑦 =
∑𝑡+𝑇−2
𝑡=𝑡

|
∑𝑛
𝑖=1𝑈

𝑡+1
𝑖 −

∑𝑛
𝑖=1𝑈

𝑡
𝑖 |. Thus, the total

amount of city-level and region-level load ramping is: 𝐽𝑟𝑎𝑚𝑝𝑖𝑛𝑔 =
𝐽𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐽𝑐𝑖𝑡𝑦 .

Peak shaving of power load: The effectiveness of shaving peak

power load is measured relative to how much energy the customer

typically used on other days preceding the current day during hours

similar to the current hours. We use 𝑈𝐵𝑡 to denote this typical

amount of energy the e-taxi fleet uses during slot 𝑡 .
During slot 𝑡 , the e-taxi fleet reduces the total power load from

𝑈𝐵 by max{0,𝑈 𝐵 −
∑𝑛
𝑖=1𝑈

𝑡
𝑖 }. Hence the amount of power load

reduction for shaving power load is: 𝐽𝑝𝑒𝑎𝑘 =
∑𝑡+𝑇−1
𝑡=𝑡

max{0,𝑈 𝐵𝑡 −∑𝑛
𝑖=1𝑈

𝑡
𝑖 }.

5.4.3 Optimization problem. In summary, we formulate the opti-

mization problem of e-taxis’ scheduling as:

max
𝑋 𝑡 :𝑡+𝑇−1,𝑌 𝑡 :𝑡+𝑇−1

𝐽 = 𝐽𝑢𝑡𝑖𝑙𝑖𝑡𝑦 − 𝛾 (𝐽𝑟𝑎𝑚𝑝𝑖𝑛𝑔 + 𝛾1 𝐽𝑝𝑒𝑎𝑘 ), s.t. (1) ∼ (8)

(9)

where𝑋 𝑡 :𝑡+𝑇−1 = {𝑋 𝑡 , ..., 𝑋 𝑡+𝑇−1}, 𝑌 𝑡 :𝑡+𝑇−1 = {𝑌 𝑡 , ..., 𝑌 𝑡+𝑇−1} rep-
resent the coordination decisions from slot 𝑡 to 𝑡 +𝑇 − 1. 𝛾 is the

weight parameter to balance maximizing the utility of e-taxi sys-

tems and minimizing the negative impact on the distribution net-

works. 𝛾1 is a parameter to balance the weight between reducing

power load ramping and shaving peak load. By adding the slack

variables to remove the min and max function in the objective func-

tion, the optimization problem is a multi-objective mixed-integer

linear programming problem, which can be solved by, e.g., branch-

and-bound [33] and cutting-plane [34]. In the evaluation, the global

optimal coordination decisions can be obtained in less than one

minute using a multi-core PC by a solver, Gurobi [35].

Since the locations and remaining energy of the e-taxis are dy-

namic and uncertain over time, we design a model predictive con-

trol (MPC) based algorithm to adjust coordination decisions with

real-time status information. Alg. 1 shows the pseudo-code of the

MPC algorithm. At the beginning of each time slot, the algorithm

updates the real-time information, e.g., locations and remaining

energy, using the sensors and communication modules installed in

the e-taxis. Given the historical passenger mobility data and power

demand data, linear regression is used to estimate the future passen-

ger demand. Since the electric company provides its estimation of

future power demand [17], we directly use these prediction results

in this work. The algorithm obtains the decisions for the future 𝑇
slots by solving Eq. (9), and the coordination decisions of current

Algorithm 1: E-taxi coordination algorithm with real-

time information

Require: Duration of one time slot: 𝑡1 minutes; time horizon𝑇 time

slots; e-taxi charging power 𝑃 ; number of charging ports 𝑝 𝑗 ;
transformer capacity 𝐵; average revenue 𝑅𝑒𝑡𝑖 ; parameters

𝑅𝑡𝑐 , 𝐿𝑜𝑡 , 𝑅𝑟𝑐 , �̂�, �̂�1, �̂�2, 𝛽,𝑇𝑅,𝑇𝑅
𝑡
𝑖 ,𝑈 𝐵,𝛾,𝛾1

Ensure: Control decision: 𝑥𝑙,𝑡𝑖,𝑗 , 𝑥𝑑
𝑙,𝑡
𝑖,𝑗 , 𝑦

𝑙,𝑡
𝑖,𝑖′
, 𝑦𝑑𝑙,𝑡𝑗,𝑖 , 𝑖, 𝑖

′ ∈ [1, 𝑛],

𝑗 ∈ [1, �̄�], 𝑙 ∈ [1, �̂�], 𝑡 ∈ [0, 24 ∗ 60/𝑡1 ]
1: while At the beginning of each 𝑡1-minutes time slot do

2: Update current time slot as 𝑡 , sensor information for initial

positions and energy status of e-taxis𝑉 𝑙,𝑡
𝑖 , 𝐷𝑙,𝑡

𝑖 and𝑂𝑙,𝑡
𝑖 ; Update

the driving distance constraint parameters 𝑑𝑐𝑡𝑖,𝑗 , 𝑑𝑠
𝑡
𝑖,𝑖′

, and

electricity rate𝐶𝑡
𝑗 ; Update the passenger demand and estimated

power load of end users based on historical data and real-time

sensor information.

3: Solve the e-taxi coordination problem, Eq. (9) to get the charging

scheduling decision.

4: Send current time slot’s coordination decisions: 𝑥𝑙,𝑡𝑖,𝑗 , 𝑥𝑑
𝑙,𝑡
𝑖,𝑗 , 𝑦

𝑙,𝑡
𝑖,𝑖′
,

𝑦𝑑𝑙,𝑡𝑗,𝑖 ,.

5: end while

6: return Coordination scheduling decisions

slot 𝑡 are applied to the e-taxis. Our MPC-based algorithm tries

to match e-taxis’ scheduling with the remaining energy of e-taxis,

passenger mobility model, and distribution of charging stations

during the future time slots. MPC has already been widely used

as a framework to adapt control decisions to the real-time system

status. However, the optimization problem is formulated based on

the specific e-taxi coordination problem studied in this work. The

variables, constraints, objectives, and system models are unique.

6 POETWITH TIME-OF-USE PROGRAMS

In the previous section, we propose an e-taxi coordination algo-

rithm where the e-taxi fleet co-optimizes the operational cost of

power systems and the e-taxi service quality. This coordination

algorithm demonstrates the potential benefit to power systems by

coordinating e-taxis. Whereas, in the real world, such a coordina-

tion may not be practical when the fleet is a self-interested entity. In

practice, one widely used mechanism for power systems to reduce

peak load is the Time-Of-Use [36] electricity pricing. To induce

power-system-friendly charging activities by e-taxis, it is essential

in practice to design the TOU program for e-taxis. The power sys-

tem can model that the e-taxi fleet determines the charging and

dispatch decisions by solving the following optimization problem:

max
𝑋 𝑡 :𝑡+𝑇−1,𝑌 𝑡 :𝑡+𝑇−1

𝐽 = 𝐽𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐽𝑝𝑎𝑦𝑚𝑒𝑛𝑡 , s.t. (1) ∼ (8) (10)

Let 𝐹 (𝑋 𝑡 :𝑡+𝑇−1) be a function describing the operational cost of

power systems given the charging decisions of e-taxis, i.e.,𝑋 𝑡 :𝑡+𝑇−1.
The dynamic electricity price in spatial-temporal dimensions (i.e.,𝐶𝑡𝑗 )

is obtained by solving the following optimization problem

argmin𝐶𝑡
𝑗

𝐹 (argmax𝑋 𝑡 :𝑡+𝑇−1 𝐽𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐽𝑝𝑎𝑦𝑚𝑒𝑛𝑡 ) (11)

Some intuitions of designing the TOU program are: (i) the electric-

ity price can affect e-taxis’ coordination by directly changing the

profit of an e-taxi fleet; (ii) the dynamic electricity price in spatial
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Figure 6: City-level power load

ramping

Figure 7: Region-level power

load ramping

Figure 8: Peak load increase

per region

Figure 9: Daily peak charging

load

dimension can help to balance the charging load across the regions

and reduce the region-level load ramping or peak power load; (iii)

the time-varying price can contribute to indirectly controlling the

power load during a day, such as high price to decrease the charging

load during the period with high power load from other end users.

In this work, we provide a preliminary study of TOU’s impact on

an e-taxi fleet to achieve the potential of optimizing power sys-

tem metrics. We leave a more detailed and novel design of TOU

programs for future work.

7 EVALUATION

7.1 Methodology

To evaluate POET in a real-world scenario, we use the dataset

described in Section 2.1 to conduct the trace-driven simulation. We

assume that all the taxis in the dataset are e-taxis and the passenger

mobility pattern does not change when the e-taxis are deployed

in the city. We extract the passenger mobility information during

each time slot from the historical trips of passengers. The electricity

company provides the forecast of the hourly power load in each

region. We use half of the forecast as the actual power load and

the other part as the predicted power load from end users. POET is

compared with several solutions.

• Taxi service with regular charging (TRC) [30]: it determines

where, when and how long the e-taxis are charged. It aims to

maximize the number of served passengers and minimize the

idle waiting time for charging and the idle driving time to the

charging stations.

• Taxi service considering power systems (TCPS): it first uses TRC

to determine the charging and dispatch decisions. Then it reallo-

cates the charging demand determined in the first step and then it

re-computes the charging decisions to minimize the region-level

load ramping and shave region-level peak load.

• Reactive to e-taxi energy (R2E) [23]: given current slot 𝑡 , the e-
taxis are scheduled for charging if their remaining energy is below

15%. These e-taxis with low energy are scheduled to the different

regions to minimize the region-level power load ramping and

shave region-level peak load, i.e., min
∑𝑛
𝑖=1 |𝑈

𝑡
𝑖 − 𝑈 𝑡−1𝑖 |. This

method does not optimize the city-level load ramping and peak

load since it only determines the charging load distribution in

the spatial domain.

• Reactive to e-taxi idling (R2I): given current slot 𝑡 , it considers
the idle e-taxis for charging. This method assigns a part of idle

e-taxis to charge, aiming to minimize the region-level and city-

level load ramping and shave peak power load, i.e., minimizing

this objective function at each current slot 𝑡 ,
∑𝑛
𝑖=1 |𝑈

𝑡
𝑖 −𝑈 𝑡−1𝑖 | +

|
∑𝑛
𝑖=1𝑈

𝑡
𝑖 −

∑𝑛
𝑖=1𝑈

𝑡−1
𝑖 | + 𝛾1 max{0,𝑈 𝐵 −

∑𝑛
𝑖=1𝑈

𝑡
𝑖 }, where the

power load of a region or the city in slot 𝑡 − 1 is known.

In the evaluation, the default values of 𝛾 and 𝛾1 are 0.05 and

1. 𝑈𝐵 is the historical average daily peak power load of the city.

Several metrics are used to measure the performance. (i) City-level

load ramping: it is the city-level load ramping during a day, defined

as
∑𝑒𝑛𝑑−1
𝑡=𝑠𝑡𝑎𝑟𝑡 |

∑𝑛
𝑖=1𝑈

𝑡+1
𝑖 −

∑𝑛
𝑖=1𝑈

𝑡
𝑖 |. (ii) Power load ramping per

region: it is the load ramping for any region 𝑖 during a day, defined

as
∑𝑒𝑛𝑑−1
𝑡=𝑠𝑡𝑎𝑟𝑡 |𝑈

𝑡+1
𝑖 −𝑈 𝑡𝑖 |. For the two metrics, the start time slot is

9:00 and the end time slot is 19:00. The reason is that the power

load of users except e-taxis during this time period does not change

a lot and the load ramping due to the e-taxis is demonstrated more

clearly. (iii) Increase of region-level daily peak load: it is equal to

(daily peak load of the region 𝑖 with e-taxis - daily peak load of the

region 𝑖 without e-taxis) / daily peak load of the region 𝑖 without
e-taxis. (iv) Profit per day: the amount of money that the e-taxis

earn per day minus the payment for charging. The electricity rate is

set as $0.21 per kWh. We use Gurobi [35] to solve the optimization

problem, where the branch-and-bound algorithm is implemented

to find the global optimal solution for the mixed-integer linear

programming problem.

7.2 Results

The evaluation result shows that compared with TRC that focuses

on optimizing the taxi service quality, our solution POET reduces

the impact on the power systems significantly with little sacrifice

on the profit of the e-taxi fleet. The main results are as follows:

• POET reduces the city-level power load ramping compared with

other solutions between 4.5% and 31.8%.

• POET reduces the power load ramping of a region compared

with other solutions between 8.3% and 22.3%.

• POET decreases the daily peak charging load of a city between

44.2% and 67.8% compared with other solutions.

• POET achieves the second highest profit for the e-taxi fleet and

reduces the profit by 1.4% compared with the highest profit.

7.2.1 Power load ramping. Figure 6 shows the total load ramping of

the city by the five charging solutions. The main observation is that

POET decreases the city-level load ramping by 15.5%, 4.5%, 31.8%,

and 10.0% compared with the other four solutions respectively. It

is clear that purely reactive to the remaining energy of e-taxis can

significantly raise the city-level load ramping due to potential con-

centrated charging. For example, passenger demand increases from
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Figure 10: Profit of e-taxi sys-

tems

Figure 11: Impact of uncoordi-

nated e-taxis on POET

Figure 12: E-taxi profit with

fleet expansion

Figure 13: City-level load

ramping with fleet expansion

Figure 14: Idle waiting time

and driving distance

Figure 15: POET under Time-

of-use pricing

6:00 to 10:00 and decreases from 11:00 to 16:00. Most e-taxis have

near full energy at the beginning of the daytime and reach the

threshold of low energy during lunchtime. Figure 7 shows the local

load ramping per region by the five solutions. POET outperforms

the other four solutions with the least power load ramping of a

region, e.g., it decreases this value by 22.3%, 20.6%, 20.4%, and 8.3%

compared with TRC, TCPS, R2E, and R2I. The performance of R2I

(i.e., second lowest load ramping) demonstrates that explicitly con-

sidering the metrics of power systems and conducting the partial

charging are useful to reduce the impact on the power systems.

By comparing the performances of POET and R2I, we conclude

that optimizing the city-level load ramping during several consecu-

tive time slots is effective in reducing the ramping, which further

decreases the operation cost for power network operators.

7.2.2 Region-level daily peak load & daily peak charging load. Fig-

ure 8 shows the distribution of the increase of the region-level daily

peak load. It is observed that POET increases the daily peak load

of most regions by less than 5.0%, while TRC, R2E and R2I some-

times increase the region-level daily peak load by more than 15.0%.

Since TCPS also considers the reduction of region-level peak load,

it achieves the second best performance in terms of the increase of

region-level daily peak load. R2E only schedules e-taxis for charging

when they have low energy (e.g., <15%) and R2I limits the number

of e-taxis for charging to shave power load. Due to such logic of

R2E and R2I, they accumulate a large amount of e-taxis with low

energy for charging, resulting in the increase of peak load.

Figure 9 shows the daily peak charging load of a city by five so-

lutions. We can observe that POET reduces the daily peak charging

load by 44.2%, 44.6%, 67.8%, and 52.8% compared with the other four

solutions. By comparing the performances of TRC and R2I, it is

concluded that scheduling a sufficient number of e-taxis to charge

the battery proactively is helpful to reduce the peak charging load.

Because R2I selects a small number of e-taxis with sufficient energy

for charging in order to shave peak load even though it considers all

the idle e-taxis, resulting in the concentrated charging activities of

accumulated low energy e-taxis and high peak charging load. TRC

and TCPS have similar performance because they have the same

logic to determine how many e-taxis should be charged during a

time slot. TCPS takes a step further to assign the e-taxis to different

regions to optimize the region-level power system performance.
7.2.3 Profit. A primary metric of an e-taxi system is its profit. Fig-

ure 10 shows the money that the e-taxi system earns minus the

payment for electrical power per day, and there are three observa-

tions. The first is that the profit reduces only 1.4% per day when

changing the scheduling solution from TRC to POET. Since there

is a trade-off between maximizing the profit of e-taxi systems and

minimizing the costs of power systems, it is natural that POET

misses a part of the profit. The second is that the profit of the e-taxi

system increases if the scheduling solutions adapt to the variation

of passenger demand in the temporal dimension. For example, the

four solutions (i.e., POET, TRC, TCPS and R2I) that consider the

passenger demand outperform R2E that determines when to charge

based on the remaining energy of e-taxis. Specifically, compared

with R2E, the e-taxi system earns 0.18 million more dollars per day

by taking POET. The last observation is that dispatching e-taxis

for matching the passenger demand in the future several time slots

is useful to increase the profit, e.g., compared with R2I, the e-taxi

fleet’s profit increases by 5.0% and 6.5% by POET and TRC.

7.2.4 Impact of uncoordinated e-taxis. Given the scale of the taxi

system for a large city, some e-taxis may not fall into the category

of being centrally coordinated to optimize the service quality and

operational cost of power systems simultaneously. Figure 11 shows

the daily profit of an e-taxi fleet and the city-level load ramping

by POET with different ratios of unmanaged e-taxis, where the

unmanaged e-taxis charge their battery when the remaining energy

is below 15% and select the charging station with the minimum

driving time plus waiting time. The main observation is that the

profit decreases and the city-level load ramping increases with

the increase of unmanaged e-taxis. For example, the daily profit

decreases by 6.6% and the city-level load ramping rises by 15.4%

when the ratio of unmanaged e-taxis changes from 0% to 80%.
7.2.5 E-taxi fleet expansion. We envision that the future fleet of

e-taxis is likely larger than the currently available fleet, partly due

to the time spent on charging the batteries. Figures 12 and 13 show

the e-taxi fleet profit and the city-level load ramping by POET,

R2E, and R2I with different expansion ratios of the current fleet.

There are twomain observations: (i) our solution POET consistently

outperforms the other two solutions with the different ratios of
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Figure 16: Impact of the weight on optimizing distribution

network performance (𝛾 ) Figure 17: Impact of the weight on shaving peak load (𝛾1)

expanding e-taxis: e.g., when expanding the e-taxi fleet by 40%, the

daily profit by POET is 150 thousand and 60 thousand dollars more

than that by R2E and R2I respectively; (ii) the daily profit and the

city-level load ramping increase with the expansion of the e-taxi

fleet. E.g., the city-level load ramping of POET rises by 13.7% when

the fleet expands by 10%; Still, POET reduces the city-level load

ramping significantly compared with R2E and R2I.
7.2.6 Idle waiting time and driving distance. Figure 14 shows the

average idle waiting time for a free charging port and the average

idle driving distance to charging stations of an e-taxi per day. We

have several observations from the figure. The first one is that POET,

TRC and TCPS introduce shorter waiting time compared with R2E

and R2I. Because both R2E and R2I introduce the concentrated

charging activities when many e-taxis are close to using up energy

during a short time period as explained previously. The second

observation is that R2I introduces the longest idle driving distance.

The reason is that e-taxis are frequently scheduled to the charging

stations for partial charging (i.e., only charged for a time slot) by

R2I. Although POET, TRC and TCPS also conduct partial charging,

they optimize the idle driving distance in the objective function

and the e-taxis may be charged at the same region after dropping

off passengers with little idle driving distance.

7.2.7 Comparison of Co-optimization and TOU. In the previous

parts, we evaluate and show the performances of POET, which is

an ideal case that the fleet is willing to work for the power system.

In this part, we would like to study how much the e-taxi fleet can

contribute to the power system under a Time-Of-Use program. We

first evaluate POET under two real-world time-of-use programs in

New York [37] and California [36], called POET+NY and POET+CA,

respectively. As shown in Figure 15, the time-of-use program is

useful to reduce the daily peak charging load of an e-taxi fleet,

such as decreasing it from 99.46 MW to 91.75 MW and 95.8 MW

respectively, but the decrease is not significant. We then customize

the existing time-of-use program to evaluate whether the peak

charging load can be reduced more significantly.

We use the electricity price data from a real-world TOU pro-

gram [36], where there is a time window with high electricity

prices to shave the peak load. In this experiment, the time window

is set as four hours. The electricity price is $0.29 per kWh before

the time window, $0.43 during the time window, and $0.32 after the

time window. We change the beginning time of the time window

from 7 am to 12 pm, and plot the daily peak load in Figure 15. There

are three main observations. (i) The TOU program can significantly

reduce the daily peak load compared with TRC, e.g., nearly 36.4%

reduction when the TOU starts at 7 am. (ii) The second observation

is that when the beginning time of TOU changes from 10 am to 11

am, the daily peak load increases by 33.2% because the daily peak

load usually exists between 10 am and 11 am, which is not included

in the time window when the program starts at 11 am. (iii) The

TOU demand response programs can help to reduce the daily peak

load of e-taxi fleets, but there is still a gap from using the ideal

coordination algorithm POET.

7.2.8 Impact of 𝛾 and 𝛾1 on POET. Figure 16 shows how the value

of 𝛾 influences the performance of POET. It is observed that when

the weight on optimizing power system metrics rises, the city-level

and region-level power load ramping decreases, the e-taxis’ profit

reduces, and the daily region-level peak load does not change a

lot. Figure 17 shows how the value of 𝛾1 affects the performance of

POET. The main observation is that when increasing the weight (𝛾1)
on shaving peak load, the daily region-level peak load decreases, the

load ramping increases, and the e-taxis’ profit reduces. According

to Figure 16 and Figure 17, we can observe the trade-off between

shaving peak load and reducing power load ramping. Some possible

scenarios of the trade-off are (i) when the power load from users

except e-taxis decreases, some e-taxis should be charged to reduce

the load ramping, which conflicts with shaving the power load;

(ii) when the power load from users except e-taxis increases in the

future time slots, some e-taxis should be charged now to reduce

the load ramping, also conflicting with power load shaving.

8 DISCUSSION

Future electric vehicles: With the advancements of battery technol-

ogy, the battery capacity and EV driving distance will increase [5,

38]. However, charging the higher-capacity battery fully using the

same time will require higher charging power, e.g., Tesla super-

charging 150 kW. As a result, the power load variation of power

systems can rise even more dramatically. Meanwhile, more EVs

will be on the road besides e-taxis, so the demand for EV charging

will also increase, introducing an even higher burden on the power

systems. Therefore, it is expected that the challenges for power

systems will become even severer in the future.

Implementation of POET : To make the data-sharing between

power systems and e-taxi fleets feasible, one practical scenario is to

have the e-taxi fleets participate in demand response (DR) programs,

where power systems provide incentives for e-taxis to address real-

time power system needs. The design of new DR programs that

would allow effective collaboration between e-taxi fleets and power

systems is left for futurework. Nonetheless, this paper demonstrates



POET: Towards Power-System-Aware E-Taxi Coordination under Dynamic Passenger Mobility e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA

great potential of such collaboration in greatly benefiting power

systems at little cost of e-taxi fleets, and mechanisms to tap into

such benefits are of great interest for future studies.

Competitive scenarios of power systems and electric vehicles: This

work demonstrates the potential benefit to power systems by coor-

dinating e-taxis in a cooperative setting. However, in the real world,

power systems and electric vehicle fleets may play competing roles

instead of fully cooperative ones. The power systems may design

the incentive mechanisms or dynamic electricity prices to impact

the charging behaviors in practice. Some lessons can be learned

from this work for the power systems in a non-cooperative setting:

(i) the power system can impact the electric vehicle fleets’ charging

behaviors by time-of-use or incentive mechanisms to optimize its

operational cost while still ensuring the service quality of elec-

tric vehicles; (ii) the power system would need to have a model of

how the electric vehicle fleets react to the incentive mechanisms or

time-of-use programs when designing the incentive mechanisms or

time-of-use programs; (iii) the information sharing between power

systems and electric vehicle fleets is useful to improve the efficiency

of potential incentive mechanisms/demand response programs.

9 RELATEDWORK

EV charging behaviors coordination: The coordination of elec-

tric vehicle fleets charging behaviors [23, 30, 31, 39–41] focuses on

recommending electric vehicle fleets when, where and how long

to charge the battery for improving the fleet service quality or

reducing the cost of charging. [30] proposes a proactive partial

charging strategy for electric taxis to provide flexible time and

duration of charging for matching the passenger demand in spatial-

temporal dimensions. This work differs from [30] in (i) designing

the cross-system coordination framework with data sharing to ex-

plore the possibility of using the flexibility of electric vehicles to

optimize the power systems instead of only considering electric

vehicle fleets, and (ii) modeling the power system needs and how

the charging behaviors affect the performance of power systems

in a centralized vehicle coordination problem. [23] develops an

electric taxi charging scheduling framework to inform the electric

taxi drivers when and where to charge the battery. Whereas, these

related studies only consider the performance of e-taxis, e.g., reduc-

ing e-taxi waiting time at charging stations or matching passenger

demand [23, 30, 31, 39–41], which ignore the negative influence of

e-taxis’ charging behaviors on the stability and reliability of power

networks. Furthermore, we utilize the flexibility and mobility of

e-taxis to provide demand response services, co-optimizing the

power grid and the transportation service quality.

Grid integration of EVs: Load management systems of EVs [14,

42–47] are proposed to ensure the stability and increase the effi-

ciency of the power grid under the dynamic charging behaviors

of EVs. [43] presents a reputation-based system to allocate power

to EVs in the smart grid, which considers the power demand and

deadlines of EVs. [14] proposes a stochastic optimization-based

scheme to ensure both the stability of the grid and the quality of

services of electric vehicles by managing the charging rate and

balancing demand. [46] recommends the charging behaviors of EVs

based on the dynamic changes of time-varying electricity price.

[47] proposes an integrated price-based demand response program

for the energy market to support the stability of the power grid.

These works focus on optimizing the performance of power grids,

while our work co-optimizes the e-taxi fleet and power grids with

a detailed and realistic model of the transportation system with

e-taxis, and evaluated based on real-world data.

Joint modeling of power systems and electric transporta-

tion systems: [48, 49] investigates the interaction between au-

tonomous mobility-on-demand (AMoD) fleets and the power net-

work, showing that the coordination between AMoD and the power

systems can optimize the power generation cost and the AMoD

system’s performance simultaneously. While both of these works

formulate static optimization problems for both the electric ve-

hicle fleets and power systems, this paper focuses on designing

a dynamic coordination algorithm for e-taxi fleets during daily

operations. [50] provides retail pricing mechanisms and designs

iterative wholesale market-clearing algorithms to maximize the

social welfare in coupled electric vehicles and power grids, where

the drivers make battery charging decisions only, differing from

the e-taxi fleet considered in this paper where both charging and

serving passengers are key decisions. [51] studies the fast charging

station recommendation problem for electric vehicles to promote

the stability of the coupled power-transportation system. Different

from this paper, it considers private electric vehicles that do not

need to serve passengers. [52] designs a fuzzy logic controller at the

energy storage systems, connecting power grids and electric bus

networks, to stabilize the grid and achieve the required frequency

of buses. This work differs from [52] in utilizing the flexibility of

electric taxis to co-optimize power and transportation system objec-

tives. [53] proposes a rebalancing and vehicle-to-grid coordination

strategy for transportation systems consisting of autonomous ve-

hicles, while it assigns the vehicles to parking facilities to provide

vehicle-to-grid services. [54] explores an integrated pricing strategy

for road tolls and electricity prices to coordinate the load levels of

the power distribution network and transportation network. It does

not consider dynamically coordinating EVs’ charging behaviors to

improve the service quality of EV fleets.

10 CONCLUSION

We investigate how the charging load from e-taxi fleets impacts

the power grid with real-world datasets. The data-driven analysis

shows that the charging behaviors of e-taxis can lead to an increased

power load ramping of a city as well as local regions within it,

and the increase of peak power load. To address this problem, we

propose an e-taxi coordination algorithm – POET – to co-optimize

the operations of taxi service and power grids by exploiting the

flexibility of e-taxi charging while serving passengers. Trace-based

simulation demonstrates that, compared with the existing e-taxi

charging solution that focuses on optimizations of taxi service

quality, POET significantly decreases the power load ramping of

local regions by 22.3% and reduces the daily peak charging load by

44.2% while achieving almost the same taxi revenue.
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