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Abstract—Joint outage identification and state estimation is
studied in power systems in which cascading outages dynamically
develop and network states dynamically evolve. A recursive
algorithm is developed that computes in closed form the joint
posterior of cascades and network states at every time step. A
beam search technique is employed that prevents the number
of cascades to compute from growing exponentially. Because
the joint posterior is a sufficient statistic for jointly identifying
the cascades and estimating the states, the derived closed forms
can be applied to develop the optimal dynamic joint detector
and estimator under any performance criterion. We simulate
cascading line outages with uncertain network states in the
IEEE 14-bus and 57-bus systems, and the proposed algorithm
is evaluated for dynamically identifying outages and estimating
states at every time step. It is observed that retaining just a few
cascades in the beam search can achieve a joint identification and
estimation performance close to that with all cascades retained.

I. INTRODUCTION

Lack of situational awareness in power transmission systems
has been a prominent cause of blackouts [1]. In particular,
earlier component outages (e.g., tripping of lines and gener-
ators), if not attended in time, can quickly escalate to large-
scale cascading failures that render major parts of the system
out of power. When component failures dynamically develop,
it is crucial to identify and keep track of in real time which
components are in outage so that informed control actions can
be taken accordingly. A closely related problem is estimating
the states (conventionally defined as voltage phasors) in the
power network [2]. In the presence of cascading failures,
state estimation becomes much more challenging than under
normal conditions, as it needs to be performed with outage
identification simultaneously.

Outage identification has been primarily studied in a static
setting. Methods based on exhaustive search over the set of
outage hypotheses have been developed to detect single and
two-line outages in power transmission networks [3], [4].
A recent work exploiting the sparsity of line outages has
been developed to identify more-than-two-line outages [5].
Another recent work developed message passing algorithms to
identify an arbitrary number of line-outages [6]. One common
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assumption in these works is that the network states are known.
In practice, however, states are not known accurately, and must
be estimated by using the same set of measurements based
on which outage identification is performed. Early work on
performing state estimation when there are topological errors
include [7]–[9], among others. A key idea therein is to relax
the binary status of lines (connected vs. disconnected) to real
numbers, so that heuristics on estimating continuous variables
can be used to estimate the line status together with the states.
Recently, sparsity of topological errors has been exploited
to further improve state estimation with such topological
error processing [10]. In these works, the primary goal is
to improve state estimation performance despite topological
errors. Optimal joint outage identification and state estimation
has been developed in [11]. There, a Bayesian framework is
employed, and the joint posterior of the outages and states is
computed in closed form.

We study joint outage identification and state estimation
in a dynamic setting. Previous works that focus on dynamic
state estimation include [12]–[15], among others. In this
paper, in addition to dynamically evolving states, we consider
dynamically developing outages that are typical in cascading
failures. We model the outage dynamics as follows: at every
time step, one additional line outage occurs. To optimally track
the outage patterns and estimate the states simultaneously, we
develop a recursive algorithm that efficiently computes the
joint posterior (given all the past sensor measurements) of
the cascade history and the current states. This joint posterior
then enables us to perform joint outage identification and
state estimation optimally under any performance criterion. As
the cascade failures develop, the number of possible cascades
grows exponentially with time. To address this problem, we
employ a beam search technique that keeps a limited number
of most probable cascades at every time step. We simulate
cascading failures in the IEEE 14-bus and 57-bus systems,
and apply the developed recursive algorithm to jointly identify
outages and estimate states at every time step. We observe that
the joint identification and estimation performance with just a
few cascades retained in the beam search is close to that with
all cascades retained.

The remainder of the paper is organized as follows. The
system model is established in Section II, and the problem



of joint dynamic outage identification and state estimation is
formulated. A recursive algorithm that computes in closed
form the joint posterior of cascades and network states is
developed in Section III. The algorithm is evaluated with
simulated cascading failures in Section IV. Conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

We study joint outage identification and state estimation in
a power transmission network that dynamically evolves over
time. We begin with the following general form of network
state and observation equations:

xt+1 = ft(xt) + ut, (1)
zt = ht(xt) + vt, (2)

where the quantities are defined as follows.
• The network states at time t are denoted by xt. The state

transition from time t to t+ 1 is driven by ft(·) and ut.
• The measurements at time t from the sensors that monitor

the grid are denoted by zt. ht(·) and vt are the observation
function and noise at time t.

In power systems, xt is conventionally defined to include the
voltage magnitudes and phase angles at all the buses. zt can
be measurements of voltage and current magnitudes and phase
angles, power flows, and power injections. The observation
function ht(·) that relates zt to xt is determined by
• power network topology and parameters,
• sensor types and locations, and
• power flow equations.

Under normal operating conditions, network topology does
not change, network parameters change much more slowly
than state dynamics, and sensors are static. As a result, ht(·)
stays approximately the same over time. Knowing ht(·), the
primary task is then estimating xt from zt. However, when
component failures and outages occur, the network topology
changes, and so does ht(·). As these outages (and hence ht(·))
are not known to the operator a-priori, they must be identified
in conjunction with estimating xt.

A. Outage Dynamic Model

We focus on identifying cascading failures of transmission
lines while simultaneously estimating network states. In partic-
ular, we study the following model by which outages evolve:
• At time 0, the network is in normal condition.
• For every t ≥ 0, from time t to t+ 1, one additional line

outage occurs.
We denote the line outage pattern at time t by Ht. An
illustration of cascading line outages is depicted in Figure 1.

We assume that the outage transition probability
p(Ht+1|Ht

0, z
t
1) is known, where Ht

0 , {H0, . . . ,Ht},
and zt1 , {z1, . . . , zt}. In other words, given a particular
cascade history Ht

0 and all the past observations zt1, we
can compute the probability for the next failure to occur at
each of the remaining lines. For example, one can compute
estimates of the states x̂t based on Ht

0 and zt1, and hence that

Fig. 1. The development of cascading failures over time. The solid and dashed
lines denote the connected and disconnected transmission lines, respectively.

of the power flows on all the transmission lines. Then, based
on how close each line’s power flow is to the corresponding
line flow capacity, the probability for the next failure to occur
at each line can be estimated.

We further assume that, once the outage pattern Ht is given,
ft(·) and ht(·) are determined.

B. State Dynamic Model
Because of the nonlinearity of the power flow equations,

ht(·) is in general a nonlinear observation function (cf. Chapter
2 of [2]). With a crude estimate of the states, a linearized
model can be obtained using the Jacobian of ht(·). In this
paper, we employ the following linear dynamics in modeling
state transitions and observations:

xt+1 = Ftxt + ut, (3)
zt = Htxt + vt, (4)

where ut and vt are independent zero-mean sequences. We
note that such a linear dynamic model has been previously
employed in forecasting-aided state estimation [14]. With
renewable energy sources (e.g., wind and solar) integrated
into power systems, the temporal characteristics of renewable
power generation can also be modeled into the state transition
matrix Ft. We further assume that x0, ut and vt follow
Gaussian distributions.

C. Optimal Joint Outage Identification and State Estimation
Given the outage and state dynamic models, our goal is to

perform optimal joint identification of Ht
0 and estimation of

xt at each time t. For this, our approach is to compute the
joint posterior of the cascade history and the state vector,

p(Ht
0, xt|zt1) = p(xt|Ht

0, z
t
1)p(Ht

0|zt1). (5)

We note that the joint posterior is a sufficient statistic for
jointly identifying the cascades and estimating the states.
Thus, knowing this joint posterior, we can make the joint
identification and estimation decision optimally under any
performance criterion.

III. RECURSIVE COMPUTATION OF JOINT POSTERIOR

In this section, we provide an algorithm that computes the
joint posterior (5) recursively in closed form. This algorithm
consists of three building blocks: a) computing the posterior
conditional probability density function (PDF) of the states
p(xt|Ht

0, z
t
1), b) computing the posterior probability mass

function (PMF) of the cascade history p(Ht
0|zt1), and c) a

beam search technique that keeps the number of cascades
manageable.



A. Posterior Conditional PDF of States

First, given the cascade history Ht
0, all the state transition

matrices F1, . . . , Ft and observation matrices H1, . . . ,Ht are
known (cf. (3) and (4)). As a result, p(xt|Ht

0, z
t
1) is a Gaussian

PDF, whose mean and covariance matrix can be tracked via
a Kalman filter [16]. Similarly, prediction and smoothing,
namely computing p(xt+1|Ht

0, z
t
1) and p(xt−1

0 |Ht
0, z

t
1), can

also be performed using Kalman filters. Here, for later use in
computing the posterior PMF of cascade history, we present
the recursive formulas for computing p(xt+1|Ht

0, z
t
1) ∼

N(x̂t+1|t,Ht
0
,Σt+1|t,Ht

0
) as follows:

x̂t+1|t,Ht
0

= Ftx̂t|t−1,Ht−1
0

+ FtKt(zt −Htx̂t|t−1,Ht−1
0

),

(6)

Σt+1|t,Ht
0

= Ft(I −KtHt)Σt|t−1,Ht−1
0
FT
t +Qt, (7)

with the gain matrix

Kt = Σt|t−1,Ht−1
0
HT

t (HtΣt|t−1,Ht−1
0
HT

t +Rt)
−1, (8)

where Rt = Cov(vt), Qt = Cov(ut), and I is the identity
matrix. Recursive formulas for p(xt0|Ht

0, z
t
1) can be derived

similarly [16].

B. Posterior PMF of Cascade History

To compute p(Ht
0|zt1) recursively, we first apply Bayes’

formula as follows:

p(Ht
0|zt1) =

p(zt|Ht
0, z

t−1
1 )p(Ht

0|zt−1
1 )

p(zt|zt−1
1 )

. (9)

We note that

p(Ht
0|zt−1

1 ) = p(Ht|Ht−1
0 , zt−1

1 )p(Ht−1
0 |zt−1

1 ), (10)

where the outage transition probability p(Ht|Ht−1
0 , zt−1

1 ) is
known by assumption. Next, from the linear observation model
(4) and the fact that p(xt|Ht−1

0 , zt−1
1 ) is a Gaussian PDF, it

follows that p(zt|Ht
0, z

t−1
1 ) is also a Gaussian PDF. Thus, it

suffices to compute its mean and covariance matrix. Employ-
ing the recursively-computed mean and covariance matrix of
xt given zt−1

1 and Ht−1
0 , after some simple algebra, we have

ζt|t−1,Ht
0
, E(zt|Ht

0, z
t−1
1 ) = Htx̂t|t−1,Ht−1

0
, (11)

Ct|t−1,Ht
0
, Cov(zt|Ht

0, z
t−1
1 ) = HtΣt|t−1,Ht−1

0
HT

t +Rt.

(12)

Accordingly, we have the following lemma:

Lemma 1. The posterior PMF of the cascade history can be
computed by

p(Ht
0|zt1) =

p(Ht|Ht−1
0 , zt−1

1 )p(Ht−1
0 |zt−1

1 )

f(zt1) det(Ct|t−1,Ht
0
)1/2

· exp

(
−1

2
‖zt − ζt|t−1,Ht

0
‖2
C−1

t|t−1,Ht
0

)
, (13)

where f(zt1) is a normalization factor such that∑
Ht

0
p(Ht

0|zt1) = 1, and the notation ‖x‖2Σ denotes
xT Σx for any positive definite matrix Σ.

Recursive Joint Posterior Algorithm
Initialization:

Let the set of cascades at time 0, {H0}, contain the healthy grid.
Let x̂0|−1 = E(x0), and Σ0|−1 = Cov(x0).

At time t (t ≥ 1),
Generate possible cascades up to time t:

Based on each cascade retained up to time t − 1, Ht−1
0 , generate all

cascades Ht
0 that add one additional line outage at time t. Collect all

cascades so generated in the set {Ht
0}.

Compute the joint posterior of cascades and states recursively:
For each cascade collected in {Ht

0}, compute p(Ht
0|zt1) from (13),

x̂t+1|t,Ht
0

from (6), and Σt+1|t,Ht
0

from (7).
Keep no more than K cascades up to time t using beam search:

Among all the collected cascades {Ht
0}, keep up to K of them with

the highest non-zero p(Ht
0|zt1), discard the remaining cascades, and

normalize the retained p(Ht
0|zt1) to sum up to 1.

Clearly, based on x̂t|t−1,Ht−1
0

, Σt|t−1,Ht−1
0

and
p(Ht−1

0 |zt−1
1 ), we can now compute x̂t+1|t,Ht

0
, Σt+1|t,Ht

0
and

p(Ht
0|zt1) from (6),(7) and (13).

C. Beam Search

A remaining challenge of tracking the cascade history is that
the size of the set of all possible cascades grows exponentially
with time (cf. Figure 1). Specifically, the number of possible
cascades up to time t is of the order L!

(L−t)! , where L is the
number of transmission lines in the network. Thus, it is not
computationally efficient to keep track of all possible Ht

0 and
compute all p(Ht

0|zt1). To address this, we employ a beam
search technique that keeps the most likely K cascades at each
time step [17], where K is a fixed number.

For each cascade up to the previous time step, one of the
remaining (up to L) lines can fail, leading to a cascade up
to the current time step. Using beam search, we need only
to compute up to KL joint posteriors p(xt|Ht

0, z
t
1)p(Ht

0|zt1)
at each time step t. In summary, we have the Recursive Joint
Posterior Algorithm for recursively tracking the joint posterior
of cascades and states.

IV. SIMULATION RESULTS

We simulate cascading failures of lines in the IEEE 14-
bus (cf. Figure 2) and 57-bus systems using the software
toolbox MATPOWER [18]. The simulation starts from the
baseline topology with no outage, and develops until 5 lines
are in outage. At each time step, the next failure occurs
uniformly randomly among the remaining lines, and we rule
out the cases in which the network becomes disconnected. In
our simulations, we let the power injections at all the buses
stay static but uncertain, with a diagonal covariance matrix,
implying independently (but not identically) distributed power
injections. We denote by κ the ratio between the standard
deviation and the mean of a power injection, which indicates
how accurately we know this power injection. We employ
the DC power flow model [19]. Thus, the power injections
fully determine all the power flows and bus voltage phase
angles given an outage pattern, and hence can be viewed as the
network states xt [11]. Accordingly, we focus on evaluating



Fig. 2. IEEE 14-bus system.

the performance of identifying cascading line outages with the
network states being unknown but static. We employ phasor
measurement units (PMUs) to measure voltage phase angles
at buses, and assume that the PMU measurement noise has
zero mean and a standard deviation of 0.3 degree. This degree
of accuracy conforms to the IEEE standard for PMUs [20],
although we note that recent development has further improved
the state-of-the-art PMU accuracy to 0.01 degree [21].

We employ the Recursive Joint Posterior Algorithm for
computing the joint posterior of cascades and states in real
time as time increases from 1 to 5. At each time step
t (1 ≤ t ≤ 5), we employ the maximum a-posteriori
probability (MAP) rule and declare Ĥt

0 , argminHt
0
p(Ht

0|zt1)
as the cascade identification decision. In practice, our primary
interest in real time is the current time’s outage pattern Ht,
instead of the entire cascade history Ht

0. Thus, in evaluating
the algorithm, we define that an error occurs at time t if Ĥt

is different from the true outage pattern at this current time.
Note that, even if the declared cascade history has errors, it is
possible that the current outage pattern implied by this cascade
history is still correct. Furthermore, even if an error was made
in declaring an outage pattern at a previous time, it is still
possible that we correctly declare the true outage pattern at
the current time.

In the IEEE 14-bus system, we employ 6 PMUs at buses
1, 3, 7, 11, 12, and 14. These PMU locations are selected with a
criterion previously developed to optimize the identification of
single line outages, and thus provide an optimal performance
for correct outage identification at time step 1 in our setting.
We refer the reader to [11] for detailed derivations of these
optimal locations. As a heuristic, better identification at the
initial stage can reduce identification error propagation at
later stages in a cascade. We plot the error probabilities for
identifying the current outage pattern at times t = 1, . . . , 5 in
Figure 3. Each data point is averaged over 10000 Monte Carlo
runs. In this figure, we compare the identification performance
for two levels of accuracy of state knowledge: κ = 0.1 and
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Fig. 3. Error probability for identifying the outage pattern at different cascade
stages in the IEEE 14-bus system.

κ = 0.3. For each level, we compare the performance for
K = 1, 2, 3 and 20 cascade histories to keep in the beam
search. When K = 1, we observe that the error probability
increases as a cascade develops. This is due to an error
propagation phenomenon as follows: since we only keep the
most probable cascade history at every time step, if an error
occurs in any time step, this error will be kept in the next
time step, and the correct cascade history will be lost forever.
Interestingly, once we keep two possible cascades in the beam
search, the error probability decreases as a cascade develops,
meaning that the effect of error propagation is effectively
reduced. Another reason for the decreasing error probability as
t increases is that the states are static in our simulation, and
hence the accuracy of our knowledge on states improves at
every time step with the computed posterior on states. This
further suggests that accurate outage identification plays a
key role in achieving accurate state estimation. We perform
a similar experiment in the IEEE 57-bus system, in which
we employ 20 PMUs, and consider the case of κ = 0.1
as the accuracy of the state knowledge. The identification
error probabilities are plotted in Figure 4. We observe trends
that are similar to those in the IEEE 14-bus system. It is
worth noting that the locations of the PMUs can significantly
affect the joint cascade identification and state estimation
performance. Optimization of sensor locations for tracking
cascading failures is left for future work.

A natural question that arises is: how many retained cas-
cades in the beam search are sufficient? To answer this ques-
tion, we plot in Figure 5 the identification error probabilities
as a function of K for different cascade stages (t) in the IEEE
14-bus system. We observe a sharply diminishing return on
reducing the error probability as K increases. In particular,
for the case of κ = 0.1, we never observe more than 13
cascades with non-zero posterior probabilities (defined as
greater than 10−5 in our simulation) at any time. In other
words, with K = 13, it is essentially guaranteed that we
are achieving the same joint outage identification and state
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Fig. 4. Error probability for identifying the outage pattern at different cascade
stages in the IEEE 57-bus system.
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Fig. 5. Error probability for identifying the outage pattern with different
numbers of cascades retained in beam search in the IEEE 14-bus system.

estimation performance as if K =∞. A similar phenomenon
is observed for the IEEE 57-bus system.

V. CONCLUSION

We have studied jointly identifying outages and estimating
states in a power system in which cascading line outages
dynamically develop and states dynamically evolve. We have
modeled the outage dynamics to have one additional line
failure at every time step, and modeled the states to follow
linear dynamics. A recursive algorithm is developed that com-
putes in closed form the joint posterior of the cascade history
and the network states given all the past sensor observations.
Because the joint posterior is a sufficient statistic for jointly
identifying the cascades and estimating the states, based on the
developed closed forms, dynamic joint outage identification
and state estimation can be optimally performed under any
performance criterion. Since the number of possible cascades
grows exponentially with time, we have employed a beam

search technique that keeps a limited number of cascades when
computing the joint posterior. We have evaluated the proposed
algorithm for identifying cascading line outages at every time
step with uncertain network states in the IEEE 14-bus and
57-bus systems. Our results indicate that keeping just a few
cascades in the beam search suffices to successfully control
identification error propagation, and to achieve a joint outage
identification and state estimation performance close to that
with all cascades retained.
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