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Abstract—Joint outage identification and state estimation in
power systems is studied. A Bayesian framework is employed,
and a Gaussian prior distribution of the states is assumed. The
joint posterior of the outage hypotheses and the network states
is developed in closed form, which can be applied to obtain the
optimal joint detector and estimator under any given performance
criterion. Employing the minimum probability of error as the
performance criterion in identifying outages with uncertain states,
the optimal detector is obtained. Efficiently computable perfor-
mance metrics that capture the probability of error of the optimal
detector are developed. Under simplified model assumptions,
closed-form expressions for these metrics are derived, and these
lead to a mixed integer convex programming problem for opti-
mizing sensor locations. Using convex relaxations, a branch and
bound algorithm that finds the globally optimal sensor locations is
developed. Significant performance gains from using the optimal
detector with the optimal sensor locations are observed from
simulations. Furthermore, performance with greedily selected
sensor locations is shown to be very close to that with globally
optimal sensor locations.

Index Terms—Joint detection and estimation, smart grid, outage
identification, state estimation, PMU, sensor placement, Chernoff
bound, mixed integer convex programming, branch and bound.

I. INTRODUCTION

T HE lack of situational awareness has been identified as
a major cause of power system blackouts [3]. In partic-

ular, outages of power system components (e.g., transmission
lines and transformers), if not timely identified, can escalate
to cascading outages that quickly lead to large-scale islanding
and loss of loads. Thus, as key functions of wide-area moni-

Manuscript received October 02, 2013; revised March 10, 2014; accepted
July 01, 2014. Date of publication July 23, 2014; date of current version
November 18, 2014. This work was supported in part by the Air Force Office
of Scientific Researchunder MURI Grant FA9550-09-1-0643, in part by the
Office of Naval Researchunder Grant N00014-12-1-0767, and in part by the
DTRA under Grant HDTRA1-08-1-0010. Some preliminary results of this
paper were presented in part at the IEEE Power and Energy Society General
Meeting, San Diego, CA, 2012 [1]. Some results related to but different from
this paper were presented at the IEEE Conference on Decision and Control,
Florence, Italy, 2013 [2]. The guest editor coordinating the review of this
manuscript and approving it for publication was Dr. Danilo Mandic.
Y. Zhao is with the Department of Electrical Engineering, Stanford

University, Stanford, CA 94305 USA, and also with the Department of Elec-
trical Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
yuez@stanford.edu).
J. Chen is with the Department of Electrical Engineering, University of Cal-

ifornia, Los Angeles, CA 90095 USA (e-mail: cjs09@ucla.edu).
A. Goldsmith is with the Department of Electrical Engineering, Stanford Uni-

versity, Stanford, CA 94305 USA (e-mail: andrea@stanford.edu).
H. V. Poor is with the Department of Electrical Engineering, Princeton Uni-

versity, Princeton, NJ 08544 USA (e-mail: poor@princeton.edu).
Digital Object Identifier 10.1109/JSTSP.2014.2342191

toring systems (WAMS), outage detection and state estimation
are crucial for the grid to monitor its health and quickly react to
power failures. For reliable and robust performance, it is clear
that WAMS face an increasing need to process a diverse set
of measurements arriving at disparate time scales. On the one
hand, legacy WAMS have primarily relied on supervisory con-
trol and data acquisition (SCADA) systems, with conventional
sensors often providing infrequent (ranging from seconds to
minutes) and asynchronous measurements. On the other hand,
phasor measurement units (PMUs) have also been increasingly
deployed in wide area transmission networks. They are able to
accurately measure voltage and current phasors at a high fre-
quency (e.g., 30 measurements per second) with synchronized
and accurate time stamps [4]. However, the high cost of PMUs
has limited the scale of their deployment, and this raises the im-
portant question ofwhere to place the PMUs to best improve the
grid’s situational awareness. Clearly, outage detection, state es-
timation and optimization of sensor locations are strongly cou-
pled problems that jointly influence the performance of WAMS.
Outage detection in transmission networks has receivedmuch

attention recently. A decision-tree based approach has been de-
veloped in [5], where outage detection is based on simulated
“ ” (and a few “ ”) contingencies and real-time mea-
surements from PMUs. Also using PMU measurements, detec-
tion and identification of transmission line outages have been
studied in [6], [7] and [1] as a hypothesis testing problem for
a power system in a quasi-steady state (i.e., after fast system
dynamics converge). In [8], this problem has been formulated
as a sparse recovery problem for which efficient algorithms are
developed. In all these works, a critical assumption is that the
system states and/or power injections at all the buses are ac-
curately and instantaneously known. However, this knowledge
may not be accurately available in practical applications.
Indeed, state estimation has been a key function inWAMS for

power transmission networks [9], [10]. Basic state estimation
assumes prior knowledge of the network topology and param-
eters, and uses measurements with enough redundancy to infer
the complete set of static or quasi-steady states of the network.
There is also a bad data detection function that filters out erro-
neous measurements [9], [11]. However, once an outage hap-
pens (e.g., a line trips), the prior information will not reflect the
actual network topology anymore, and the resulting state esti-
mates can diverge significantly from the actual states because
of model mismatch. Clearly, the coupled tasks of outage detec-
tion and state estimation are both inference tasks using the same
set of sensor measurements available, together with prior infor-
mation. An interesting issue is thus how these two tasks can
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be jointly and optimally performed. The problem of identifying
outages jointly with state estimation first appeared in the sem-
inal paper [12]. A similar problem has appeared in advanced
state estimation with topological error processing [13], [14]:
there, the state estimator takes into account a set of switches
in the network whose status (open/close) is uncertain, and esti-
mates the states together with the status of the switches. An-
other approach for topological error processing that exploits
prior knowledge on sparsity of the errors is developed in [15].
In all these works, heuristics are provided, and optimality is not
assured.
For optimizing sensor (and in particular PMU) locations,

many studies have addressed this problem for different perfor-
mance objectives, including network observability [16], outage
detection [5]–[8], state estimation [17]–[19], and data attack
detection [20], [21]. For each of these objectives, because of
the combinatorial nature of the problem, finding the globally
optimal sensor locations is in general NP hard, and conse-
quently heuristics have been developed. In [18], it is shown that
a good approximation ratio can be achieved by a greedy PMU
placement algorithm for appropriate objectives.
In this paper, we model and solve joint outage identification

and state estimation for a power system in a quasi-steady state.
We focus on using linear approximations of the nonlinear power
flow and measurement models. We employ a Bayesian frame-
work and introduce prior distributions on the outage events and
the network states. Assuming Gaussian prior conditional distri-
bution of states and Gaussian noises, we develop in closed form
the joint posterior distribution of the outage hypotheses and the
network states. The joint posterior can then be applied to obtain
an optimal joint outage detector and state estimator under any
given criterion.
We further consider the performance criterion of minimum

probability of error in identifying outages in the presence of un-
certain states. To capture the probability of error in this multiple
hypothesis testing problem, we first develop a Chernoff bound
on the pairwise error probability. The developed bound is shown
to be easily computable by solving a scalar convex optimiza-
tion problem via bi-section. Under simplified model assump-
tions, the bound can be expressed in closed form. Based on these
pairwise error bounds, three heuristics are developed for com-
puting appropriate metrics that capture the actual probability of
error. Based on the developed metrics, a greedy algorithm is
first developed for optimizing sensor locations. Next, with the
closed-form metrics derived under simplified model assump-
tions, the problem of sensor location optimization is formulated
as a mixed integer-convex programming problem. Based on a
convex relaxation of this problem, a branch and bound algo-
rithm that finds the globally optimal sensor locations is then de-
veloped. From extensive simulation results, we see that the op-
timal detector that takes into account the uncertainty of states
significantly outperforms the simpler one that assumes accu-
rate knowledge of states. Furthermore, the performance gain
from optimizing sensor locations is shown to be significant as
well. The performance with greedily selected sensor locations
is shown to be very close to that with globally optimal locations.
The remainder of the paper is organized as follows. In

Section II, the system model is established. We formulate the

problem of jointly performing outage identification and state
estimation, and the problem of sensor location optimization.
In Section III, we derive the joint posterior distribution of the
outage hypotheses and the network states. In Section IV, we
develop a Chernoff bound on the pairwise error probability of
outage identification, based on which metrics that capture the
actual probability of error are proposed. In Section V, algo-
rithms for optimizing sensor locations are developed. Extensive
simulation results are provided in Section VI. Conclusions are
drawn in Section VII.

II. PROBLEM FORMULATION

In a power transmission network, we consider outage identi-
fication and state estimation jointly performed based on a set of
sensor measurements. We denote the scenario of a normal con-
dition with no outage by . When outages occur (e.g., tripping
of lines or transformers), the relation between sensor measure-
ments and network states changes due to the changes of the net-
work topology and parameters. We denote a set of outage events
of interest by , also referred to as outage hy-
potheses, in the remainder of the paper. The following measure-
ment model captures the coupled relations between measure-
ments, outages and states:

(1)

where is the measurement vector, is the net-
work state vector, is the measurement noise vector, and
is the observation function that relates measurements to states
under the particular outage hypothesis . In power systems,
the states of the network usually refer to the voltage magnitudes
and phase angles at all the buses. The measurements can in-
clude power, voltage magnitude and current magnitude mea-
surements, as well as synchronized voltage phasor measure-
ments [9]. The observation function under hypothesis
depends on the topology and parameters of the power grid, as
well as the types and locations of the sensors, which are typi-
cally known to the system operator. For typical forms of , we
refer the readers to [9] (cf. Chapter 2 therein).
If we know exactly the present outage event , estimating

the states from the measurements is a standard state estima-
tion problem [9]. However, if we mistakenly assume an incor-
rect outage hypothesis and hence a wrong observation model,
the state estimates can arbitrarily differ from the actual states.
Thus, in the presence of outages, identifying the true outage
event is not only itself of paramount importance, but also a pri-
mary task on which state estimation critically depends. Ideally,
if we know exactly all the network states , identifying the true
outage event from observing reduces to a classic multiple hy-
pothesis testing problem [22]. In practice, however, the states
are only to be estimated from observing the same set of mea-
surements , and are not known accurately. Therefore, we study
the problem of identifying outages with uncertain states, which
is the key in joint inference of outage events and network states.

A. Linear Model

The observation functions are in general nonlinear in
power systems, which further complicates outage identification
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with uncertain states. In this paper, we consider a linear approx-
imation of :

(2)

where is an observation matrix under hypoth-
esis . Such an approximation can be made by either applying
a DC power flow model [23], or using the Jacobian of
around a crude estimate of the states [9]. We note that this ap-
proximation can also be used as an intermediate step for solving
the original nonlinear problem (1) in the following two ways:
• After obtaining an outage detection decision with a
linear model (2), finer state estimation can then be per-
formed with the nonlinear model (1) using a standard
Gauss-Newton method [9].

• The latter approximation with a Jacobian can be applied
iteratively within a standard Gauss-Newton procedure.

B. Power Injections as States in DC Power Flow Model

When applying the DC power flow model, the states are con-
ventionally defined to be , where contains
the voltage phase angles at all the buses. Typically, the voltage
phase angle at one of the buses (the reference bus) is set to zero,
and we effectively have state variables. From the DC
model, we also have , where is the power in-
jection vector at all the buses, and is a weighted graph Lapla-
cian of the power network based on its topology and line reac-
tances [23]. We note that the power injections fully determine
the network states via , where is the pseudoinverse
of . As a result, we can also consider as the network states
without any ambiguity. In this case, the linear model continues
to hold with a new observation matrix under outage .
Because the power injections must always be balanced (from
the lossless assumption in DC power flow), i.e., ,
we again have effectively state variables in the system.
We will see in later sections that it is sometimes more conve-

nient to consider power injections (i.e., generation and loads) as
network states. This is because prior information on generation
and loads are sometimes easier to obtain than that on voltage
phase angles, and do not instantly change as outages occur.

C. A Bayesian Framework

We employ a Bayesian framework for joint outage identifica-
tion and state estimation. Without loss of generality (WLOG), a
joint prior distribution of the outage hypothesis and the network
states can be written as

(3)

where denotes the prior probability mass function (PMF)
of and denotes the prior conditional probability
density function (PDF) of given . Similarly, given mea-
surements , the joint posterior distribution can be written as

(4)

The joint posterior is a sufficient statistic for joint detection and
estimation. Thus, instead of being functions of , the optimal de-
cision rule and the optimal estimator need only be functionals

of (see e.g., (12) below as a functional of ).
After the joint posterior is computed, it can then be used to ob-
tain optimal detection and estimation decisions under any given
performance criterion. We will compute closed form expres-
sions for the joint posterior (cf. (4)) in Section III.
Next, we focus on the performance criterion of minimum

probability of detection error in identifying outages with un-
certain states. This is because the outage detection decision to
a large extent dictates the state estimation performance. Specif-
ically, we find the optimal detection decision rule, denoted by

, that solves the following problem:

(5)

where . After
finding , we characterize its performance by providing an ef-
ficiently computable performance metric that captures .
The developed performance metric not only reveals clear in-
tuition, but also provides rigorous and effective guidance for
finding the optimal locations to collect sensor measurements.

D. Optimal Sensor Locations

A different set of sensor locations will lead to a different
set of observation matrices . Sensor locations thus have
a significant impact on the performance of outage identification
and state estimation. With a constrained amount of sensing re-
sources, selecting an optimal set of sensor locations becomes a
crucial task. In practice, depending on the application scenarios,
the time scale of selecting sensor locations can vary greatly. For
example, for sensor installations that consider long term perfor-
mance, sensor locations need to be optimized based on data of
network outages and states collected over a long period. In con-
trast, given a set of sensors already installed, sensor polling for
real time measurements operates on a much faster time scale.
Both applications of sensor selection have strong economic in-
centives, as we would like to reduce the cost of sensor installa-
tion, as well as that of low latency communications for real time
measurements.
To formulate the problem, first consider a complete set of

sensor candidates with corresponding measurement vector
and observation matrices . This complete set embodies all
possible sensor types and locations that we consider in the net-
work. Specifically, each row of and corresponds to a
possible measurement from a potential sensor of a certain type
measuring at a particular location. Then, selecting sensor lo-
cations becomes selecting rows of , or equivalently, (the
same set of) rows of for each . Because of
the combinatorial nature of this problem, finding globally op-
timal sensor locations is in general NP hard.
Based on the developed performance metric, a greedy al-

gorithm of sensor location selection is first introduced. Next,
with simplifications of the metric, we formulate a mixed integer
convex programming problem, and develop convex relaxations
that can be efficiently solved. We finally exploit these relax-
ations to develop branch and bound algorithms that can effec-
tively find the globally optimal sensor locations under simplified
metrics.
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III. JOINT POSTERIOR AND OPTIMAL DETECTOR

We assume a Gaussian prior conditional PDF of the network
states: under outage hypothesis ,

(6)

where the conditional prior mean and covariance matrix
can vary among different hypotheses s. In power sys-

tems, such priors can come from many different information
sources, such as previous state estimation results, and knowl-
edge of real time generation and loads obtained from sensing
and/or forecast (particularly when we view power injections
as network states in the DC power flow model). Moreover, as
will be shown below, the joint prior distribution (3) and (6)
is a conjugate prior, as it produces a posterior distribution of
the same family. Thus, the prior information here can also be
viewed as the posterior distribution obtained in our Bayesian
framework from previous joint detection and estimation using
past measurements. We assume Gaussian measurement noises

. Here, does not depend on the hypothesis
. This is because, in practice, is primarily determined by

sensor characteristics that are independent of outage events1.
To compute the joint posterior (4), we first note that esti-

mating given a hypothesis is a classic linear estimation
problem. The posterior conditional PDF of is given by (see
e.g., [24])

(7)

where ’s minimum mean square error (MMSE) estimate and
its covariance matrix are

and (8)

with the maximum likelihood (ML) estimate and Fisher infor-
mation matrix as

and

Note that the ML estimate reduces to a weighted least squares
solution because of the linear Gaussian model. The derivation of
(8) which combines the prior and the ML estimate to form the
MMSE estimate can be found in [24] (cf. Chapter 3, Lemma
3.4.1 therein).
Next, we compute the posterior PMF of . Since

, it follows that we need to compute . As
we assumed a Gaussian conditional prior on and a Gaussian
noise of , it follows that also has a Gaussian distribution con-
ditioned on each hypothesis . It is thus sufficient to compute
the mean and covariance matrix of given each . With some
simple algebra, we have, ,

(9)

(10)

1For the general case in which depends on , the developed methods
in this paper apply as well.

Accordingly, we have the following lemma:
Lemma 1: The posterior PMF of can be computed by

(11)

where is a normalization factor that keeps
and are given by (9) and

(10), and the notation denotes for any positive
definite matrix .
We note that, alternatively, (11) can be derived by computing

. For details of this integra-
tion as well as the case of uninformative prior (i.e., ),
we refer the reader to [2]. In summary, Lemma 1 and (7) together
give the complete expression of the joint posterior distribution
of the outage events and the network states (4).
From now on, we employ the performance criterion of min-

imum probability of error for outage detection with uncertain
states (5). The optimal detection is achieved by applying the
maximum a-posteriori probability (MAP) rule [22]. From com-
puting the posterior PMF of the outage hypotheses by Lemma
1, the optimal detection rule is thus

(12)

IV. PERFORMANCE METRICS

Given the observation matrices , we have developed
the optimal outage detector based on the joint posterior of the
outage hypotheses and the network states. The next design goal
for a monitoring system is to optimize the observation matrices

via, e.g., appropriately selecting sensor locations, in order
to further improve the outage identification performance. For
this, we first need to understand how the observation matrices

affect such performance. This motivates the derivations
of performance metrics in this section.

A. Bound on Pairwise Error Probability

The optimal detection rule (12) can have complicated de-
cision regions that render computing the probability of error
difficult. To characterize the probability of error, we start with
bounding the pairwise error probability between any two of the

hypotheses: Suppose and are the only two hy-
potheses considered, and define

(13)

i.e., the probability of claiming when is the ground truth.
From the optimal detection rule (12), when is true, is
declared if and only if ,2 and vice versa.
Substituting (11), we arrive at the following lemma, whose
proof is relegated to Appendix A.
Lemma 2 (Linear Quadratic Detector): The optimal detector

is a linear quadratic detector:

(14)

2We neglect the case , since it happens with probability
zero in our context.
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where

(15)

(16)

with computed by (9) and (10).
We note that the above binary hypothesis testing problem falls

into the category of the general Gaussian problem as introduced
in [25], and linear quadratic detectors have appeared in many
other applications as well. From Lemma 2,

(17)

Now, we provide an upper bound on (17) by
developing a Chernoff bound: ,

(18)

where , and (18) is fromMarkov’s
Inequality. Note that, when , we have that ,
and always upper bounds

. It is immediate to prove that is a convex func-
tion of in the support of such that .
After substituting (15) for , the following theorem provides
a closed form expression of , whose proof is relegated to
Appendix B.
Theorem 1:

(19)

where

(20)

(21)

(22)

(23)

with the notation in (20) denoting the largest gen-
eralized eigenvalue of the matrix pair .
Because is a convex function, the optimal that min-

imizes the error bound (18),

(24)

can be found efficiently with a bi-section algorithm [26]. Ac-
cordingly, we have the following Chernoff bound on the pair-
wise error probability:

(25)

Here, does not yet have an explicit form. To analytically un-
derstand how the observation matrices affect the detec-
tion performance, we seek approximate but explicit form of the
pairwise error bound (25) in the next subsection.

B. Performance Metrics With Simplified Model Assumptions

We now consider a simpler case in which we assume a perfect
prior on network states as follows:

(26)

where is the all-zero matrix. Assuming accurate knowledge in
state estimates, we particularly focus on the problem of outage
detection. In the DC power flow model, if we view power in-
jections as states (cf. Section II-B), (26) can also mean that we
assume accurate knowledge of the generation and loads in the
network. We note that this assumption is an approximation, and
is made for a power system in a quasi-steady state [6], [10]. This
is a good approximation when we have real time sensor mea-
surements that can closely track the network states prior to an
outage, and then the main issue becomes the potential network
topological change due to outages.
Equation (26) leads to a simpler optimal detector as follows.

From (10), , and the linear quadratic
detector (14) (cf. Lemma 2) reduces to a linear detector with

The computation of error bounds also greatly simplifies to an
explicit form (as opposed to being algorithmically solved by
a convex optimization), as shown in the following corollary
whose proof is relegated to Appendix C:
Corollary 1: With a perfect prior on network states (26),

(27)

where .
Furthermore, if we have no knowledge about the outage hy-

potheses, it is typical to assume a uniform prior on the outage
hypotheses. Now that , we have

(28)

The intuition behind (28) is clear: as a weighted distance
between the two measurement mean vectors under the two
hypotheses increases, the error probability decreases mono-
tonically. The lower the measurement noise is, the larger the
weighted distance is.
Substituting (9) into (28), the relation between the observa-

tion matrices and the pairwise error bound is then crystal-
ized. As will be shown later, these simplifications on the perfor-
mance metric provide valuable insight and great convenience in
the optimization of sensor locations.



ZHAO et al.: IDENTIFICATION OF OUTAGES IN POWER SYSTEMS WITH UNCERTAIN STATES 1145

C. From Pairwise Error Probability to Probability of Error

We have discussed bounds on pairwise error probabilities.
From these, we essentially obtain a matrix of pairwise error
bounds, , where is given by the right
hand side of (25), which upper bounds .
Based on this pairwise error bound matrix, the next step is to
approximate the probability of error (5) in the original
problem. A series of heuristics for computing performance met-
rics on are as follows:
• “Sum-Sum” metric (union bound): A standard technique
is to apply a union bound on all the error events

for each particular , and we have

(29)

Since this bound is the weighted sum of the sums within
each row of , we term it the “Sum-Sum” metric, de-
noted by .

• “Sum-Max” metric: As opposed to summing over all error
events, we can instead use the following approximation:

(30)

This metric chooses a single dominant error event under
each hypothesis, and then computes across all hypotheses
a weighted sum of dominant pairwise error bounds.
Accordingly, we term it the “Sum-Max” metric, denoted
by .

• “Max-Max” metric: Finally, a cruder approximation of
is as follows:

(31)

This metric chooses one single dominant error event
(weighted by prior probabilities of the hypotheses) among
all the error events, and uses its error bound to
compute a proxy of the probability of error. Accordingly,
we term it the “Max-Max” metric, denoted by .

When evaluating the above performance metrics, it is impor-
tant to note that the behavior of the measurement means
and covariances from all the outage hypotheses heavily
depends on the physical network topology and parameters, the
set of outage events, the prior on the states, and the sensor loca-
tions. This behavior can be quite arbitrary with a large number
of outage hypotheses: For example, the constellations of the
hypothesis means can have irregular shapes, (which are
quite unlike, e.g., the well designed regular signal constellations
in communication systems). Furthermore, as we identify out-
ages with uncertain states and have limits on sensor accuracies,

can be relatively sizable in practice. As a result, we must
sometimes work in the non-asymptotic regime of the detection

problem in which the probability of error is not very close to
zero (see further details in Section VI below).
Because of the above practical observations, evaluating how

well the approximate metrics work analytically is difficult. In-
stead, as shown later in SectionVI, we use extensive simulations
to evaluate how different metrics capture the actual probabili-
ties of error. The ultimate purpose of deriving the metrics in this
section is to provide a guidance with which sensor locations can
be optimized.

V. FINDING THE OPTIMAL SENSOR LOCATIONS

Any potential sensor at any location, if selected, can con-
tribute a measurement that is a linear function of the network
states (plus noise) given each outage hypothesis (each outage
leads to a different linear observation function due to the spe-
cific topological change that it causes). We denote the set of all
potential locations to collect sensor measurements by with

. We define , and
with

(32)

to capture all the potential sets of measurement equations
(each sensor gives one set of equations for the
hypotheses). In other words, a sensor at a particular location
provides one row in the observation matrix under hypoth-
esis . If we are limited to sensors,
choosing a set of locations is equivalent to choosing among
all the sets of measurement equations. Given a set of sensor
locations, a set of observation matrices is determined, and
the detection performance with this set of sensors can be eval-
uated using the metrics discussed in the last section. Clearly,
given , finding the set of locations with the best detection
performance is a combinatorial optimization that has a worst
case of complexity.

A. A Greedy Algorithm With General Metrics

With the three metrics developed in the last section, we first
have a greedy algorithm as in Algorithm 1 that generates a se-
ries of sensor location sets for the number
of sensors respectively, that satisfy the fol-
lowing consistency property:

(33)

We illustrate the algorithm with the Sum-Max metric as a func-
tion of the sensor locations : .

Algorithm 1: Greedy Sensor Location Selection

Initialize the set of sensors ,

and the number of sensors .

Repeat

,

(34)

Until .
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In other words, we choose up to sensor locations one by
one: At each step, we keep the already chosen locations; from
the remaining locations, we choose the one that minimizes the
current step’s Sum-Max metric on probability of error, and in-
clude it in the set of the chosen locations.
Now, toward finding globally optimal sensor locations, the

general pairwise error bounds (25) as building blocks of the
performance metrics, although efficient to compute, do not
explicitly exhibit how the sensor locations affect the perfor-
mance, and hence do not render a tractable combinatorial
optimization. However, with the simplified metrics developed
in Section IV-B, we show next that the problem can be formu-
lated as a mixed integer convex programming (MICP) problem,
for which convex relaxation and branch and bound algorithms
are developed.

B. Mixed Integer Convex Programming

Consider the case in which we assume a perfect prior on net-
work states (26) and a uniform prior on the outage hypotheses,
the pairwise error bound is given by (28). We further assume
that the measurement noises are independently (but not nec-
essarily identically) distributed across different sensors, i.e.,
is a diagonal covariance matrix.
Now, given the set of all potential sensor locations , we

define as in (9), and
as the vector of measurement noise variances

from all the potential sensors. Given a set of sensor locations
, we define a diagonal location indicator matrix:

and term the location indicator variables. Further define
and as the sub-vectors of and by

extracting the entries whose indices are in , respectively.
It is then straightforward to show that, ,

(35)

Note that (35) is a linear function of the location indicator
variables in the diagonal of . Thus, the pairwise error

bound (28) is a

convex function of .
Because summation and pointwise maximum both preserve

convexity [26], the Sum-Sum, Sum-Max and Max-Max met-
rics (cf. (29), (30) and (31)) are all convex functions of .
Consequently, for finding the optimal set of sensor locations,
we arrive at the following mixed integer convex programming
problem (illustrated with the Sum-Max metric):

(36a)

(36b)

(36c)

C. Convex Relaxation and a Branch and Bound Algorithm

Noting that the only nonconvexity in the above problem (36a)
lies in the integer constraints on (36b), we have the fol-
lowing relaxation of it as a convex optimization that can be
solved efficiently:

(37a)

(37b)

Accordingly, the optimal value of (37a) serves as a lower bound,
denoted by , on the global optimum of (36a). Meanwhile,
Algorithm 1 provides an upper bound, denoted by .
Remark 1 (ANote on the RoundingHeuristic): Another upper

bounding heuristic is to find an integral solution by rounding the
fractional solution obtained from the relaxed problem (37a). In
particular, we consider the heuristic by rounding the largest
fractional entries to 1, and the others to 0. In our simulations,
we found that this rounding heuristic is outperformed by the
greedy algorithm. The reason is that, in the relaxed fractional
solution , it is often some very small non-zero that is
critical in the following sense: losing it will drastically reduce
the weighted mean distance (cf. (28)) in some critical pairwise
error event, and hence leads to significant increase in the error
probability between this critical hypothesis pair. Consequently,
for upper bounding the global optimum, we propose the greedy
algorithm instead of the rounding heuristic, as the former is both
much cheaper computationally and much better in performance.
Thus, we use the relaxation technique not to provide a fractional
solution to round, but to lower bound the global optimum and to
develop a branch and bound algorithm in the following that can
significantly improve the greedy solutions in a few iterations.
For any sensor location , (36a) can be split into two sub-

problems by fixing to be either 0 or 1:

(38a)

(38b)

and

(39a)

(39b)

Similarly to (36a), relaxations of these two sub-problems can
be formed by replacing (38b) and (39b) with (37b), and they
provide lower bounds, denoted by and , on the global
optimum of (38a) and (39a) respectively. Meanwhile, applying
the greedy heuristic under the constraint or
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provides upper bounds, denoted by and , on these
sub-problems’ global optima. Define

and (40)

Then, and are new lower and upper bounds on the original
global optimum (36a) [27].
More generally, the above splitting procedure with relax-

ations and greedy heuristics can be applied on the sub-problems
themselves to form more children sub-problems with lower
and upper bounds. For example, for any location
(36a) can be further split into two sub-problems by adding yet
another constraint or respectively.
We define the following lower and upper bounding oracles,

as well as an oracle that returns the next location to split:
Definition 1: Oracle takes a constraint set as input,

where specifies a set of locations whose indicator variables
are pre-determined to be either 0 or 1. An MICP under the con-
straints is formed, a relaxation is solved, and the optimum of
this relaxation is output by as a lower bound on the op-
timum of the constrained MICP.
For example, in (38a) and (39a), the constraint sets are

and , respectively.
Definition 2: Oracle takes a constraint set as input.

An MICP under the constraints is formed, a greedy solution is
found byAlgorithm 1, and the achieved objective value is output
by as an upper bound on the optimum of the constrained
MICP.
Definition 3: Based on the order of the locations chosen by

Algorithm 1, Oracle outputs the first location that is
chosen by this heuristic.
When a sub-problem with constraints needs to be split fur-

ther, is the location we choose to perform the splitting
by fixing to be either 0 or 1.
We now provide a branch and bound algorithm as in Algo-

rithm 2 where is the maximum number of iterations al-
lowed. As the algorithm progresses, a binary tree is developed
where each node represents a constraint set. The leaf nodes are
kept in . The tree starts with a single node with an empty con-
straint set. When a sub-problem corresponding to a leaf node
is split into two new sub-problems, the two new constraint

sets and become the children of the parent constraint
set .
In Algorithm 2, (42) is a generalization of (40). This means

that the current global lower bound equals the lowest lower
bound among all the leaf node constraint sets. This is true be-
cause all the leaf nodes represent a complete partition of the
original parameter space [27]. At the beginning of every itera-
tion, in choosing which leaf node to split (41), we select the one
that gives the lowest lower bound (i.e., the current global lower
bound). It is a heuristic based on the reasoning that, by further
splitting this critical leaf node, a higher global lower bound may
be obtained (whereas splitting any other node will leave the
global lower bound unchanged). At iteration , the current lower
and upper bounds on the global optimum are available as and
. When these two bounds meet, i.e., , the solution

that achieves the current upper bound is guaranteed to be glob-
ally optimal.

Algorithm 2: Sensor Location Selection using Branch and
Bound

Initial step: ,

the initial constraint set: ,

the initial set of leaves of the tree of constraint sets

(initially a single node): .

Compute .

While or , repeat

Choose which leaf node constraint set to split:
(41)

Choose the next location to split, ,

Form two new constraint sets,

.

In the set of leaves , replace the parent constraint set
with the two children and :

.

Compute new lower and upper bounds for the two new
constrained MICP:

,

Update the global lower and upper bounds,
(42)

.

Choose the best achieved solution so far:

.

Return the greedy solution under the constraint set .

We note that Algorithm 1 is a degraded version of
Algorithm 2 with just one iteration. As the total number
of possible constraint sets is (corresponding to the
location indicator matrices ), Algorithm 2 is guaranteed to
converge in iterations (and in practice many fewer as will
be shown in the next section). To limit the algorithm’s run time,
a maximum number of iterations can be enforced as in
Algorithm 2.

VI. SIMULATION

In this section, we evaluate the developed optimal detection
rule (cf. (12)), approximate performance metrics (cf. (29), (30)
and (31)), and algorithms for optimizing sensor locations (cf.
Algorithm 1 and 2), via simulations in the IEEE 14 bus system
(cf. Fig. 1 [28]) using the software toolbox MATPOWER [29].

A. Set-Up and System Parameters

We employ a DC power flowmodel in the simulations. As ex-
plained in Section II-B, here we view power injections as states
of the network. Note that power injections do not automatically
change when the network topologies change as a result of out-
ages, as long as the power balance is still satisfied, and before
generation control or load shedding is performed. In contrast,
voltage phase angles (i.e., the conventional “states”) do instantly
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Fig. 1. IEEE 14 bus system.

change once there is a topological change. Thus, viewing power
injections as states provides us the convenience that the prior
distributions of power injections do not need to depend on the
outage hypothesis, in contrast to the general case of (6). For the
prior distributions, we employ the typical real power injections
from the IEEE 14 bus system data as the prior means, and we
employ a diagonal prior covariance matrix, implying indepen-
dently (but not identically) distributed power injections. We de-
note by the ratio between the standard deviation and the mean
of a power injection. The lower is, the more information we
know about the states (i.e., the power injections). We assume all
the power injections have the same . We will let for
the most part in our simulations, and finally vary to evaluate
its effect on optimal detection performance. We observe from
the test data that buses 7 and 8 do not have power injections.
This leads to the fact that bus 8 can be merged into bus 7, since
bus 7 is the only bus that bus 8 connects to (cf. Fig. 1). Indeed,
as there is no power flow on the line that connects buses 7 and 8,
an outage on this line is intrinsically undetectable. Equivalently,
we work with a network having 13 buses3.
We simulate with an outage event set that includes all the 19

single line outages in the network, and apply a uniform proba-
bility distribution on these 19 outage events. We consider using
only PMUs that measure voltage phase angles at the buses in
real time. We assume PMU measurement noise to be indepen-
dent and identically distributed (IID) Gaussian noise, with zero
mean and standard deviation of 0.005 rad. This degree of ac-
curacy conforms to the IEEE standard for PMUs [30]. We note
that all our developed methodologies apply to any general set of
outage events and any type of sensors as well.

B. Three Metrics for Optimizing Sensor Locations

We have proposed three performance metrics (cf.
Section IV-C) that approximate the probability of error as
guidance for optimizing sensor locations, To compare the three
metrics, we use exhaustive search to find the globally optimal

3We note that this merge of buses 7 and 8 is specific for the test data that we
used, and is not necessary for other test cases.

sensor locations that minimize each of the three metrics, with
the number of sensors sweeping from the minimum 2 (we
consider that there is always a sensor at the reference bus 1)
to the maximum 13 (buses 7 and 8 are merged). For each set
of sensor locations, we evaluate the actual probability of error
using the Monte Carlo method, and run sets of realizations
of the random outage events, power injections and noises. For
each realization, the optimal outage detector with uncertain
states (12) is applied.
Remark 2: The above simulation setting evaluates the case

in which the number of PMUs is no greater than the number
of network states. A natural question arises as to whether “net-
work observability” [9] can be achieved based only on these
sensor measurements. When there is no prior information at
all about the network states, with the number of sensors less
than the number of states to be inferred, network observability
indeed cannot be achieved. In the Bayesian framework con-
sidered in this paper, however, prior information in principle
eliminates the concern of network observability. As indicated
at the beginning of Section III, such prior information can come
from many different sources, including previously computed
state estimates. For example, conventional SCADA can provide
state estimates in relatively slower time scales that set the priors
on the states, while PMUs can provide measurements in much
faster time scales, enabling real time identification of outages.
In these simulations, we are interested in the performance of
real time outage identification based on a few PMU measure-
ments as well as priors on the network states obtained via all
other information sources in slower time scales. We note that
the developed methodologies apply to general simulation set-
tings (including the case of using redundant measurements as
opposed to just a few PMUs).
In Fig. 2, the three metrics achieved (each with a corre-

sponding optimal set of sensor locations) as a function of
the number of sensors are plotted as dash-dotted curves.
The simulated probabilities of errors with the optimal sets of
sensor locations under each metric are plotted in solid lines.
We observe that, in terms of the actual probability of error,
the optimal sensor locations obtained with the Sum-Sum and
Sum-Max metric perform almost the same. The Max-Max
metric, on the other hand, leads to sensor locations that are less
optimal as the actual s are higher. Thus, the Sum-Sum and
Sum-Max metric provide better guidance for optimizing sensor
locations. From the curves, % in all the simulated cases.
We see that a moderate probability of error is likely to be a
typical regime in which the detector operates.
For the metrics themselves, the Sum-Sum metric stays much

above the actual probabilities of error, meaning that the union
bound used in this metric is quite loose. The Sum-Max metric
stays closer to the actual . The Max-Max metric is much
below the actual , meaning that the error events other than
the most dominant one are not really negligible. We observe
that the three metrics themselves are not particularly accurate
in terms of approximating the actual probability of error (e.g.,
the Sum-Sum metric is off by approximately a constant factor
for all the simulated cases). Nonetheless, the primary purpose
of deriving the metrics is to provide analytical bases for opti-
mally selecting sensor locations. It will be shown in the next
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Fig. 2. Comparison of the proposed metrics, with each of which the sensor
locations are optimized and the actual probabilities of error are evaluated via
Monte Carlo simulations.

subsection that the sensor locations optimized accordingly in-
deed provide great performance gain in outage identification.
For the rest of this section, we will demonstrate simulations
using the Sum-Max metric.

C. Impact of Detectors and Sensor Locations

The optimal detector (cf. (12) and (11)) takes full account
of the uncertainty of states. In comparison, a simpler detector
assumes that the knowledge of states is accurate, and takes
prior conditional means as the actual states by substituting (26)
into (10), (11) and (12). For sensor location optimization, we
compare three different strategies: uniformly random locations,
greedily selected locations (cf. Algorithm 1), and globally
optimal sensor locations via exhaustive search. With each
strategy, we sweep the number of sensors from 2 to 13 and
obtain sensor locations. For each greedily or optimally selected
set of sensor locations, we evaluate the actual probability of
error using the Monte Carlo method, and run sets of real-
izations of the random outages, power injections and noises.
For the random location strategy, we randomly draw a set of
sensor locations in each Monte Carlo run. For each realization
of all the random quantities, we apply the optimal detector and
the above simple detector for comparison.
In Fig. 3, for the three strategies of sensor location selec-

tion, the achieved with the optimal detector are plotted in
solid lines, and that with the simple detector in dash-dotted
curves. With all three strategies, we observe significant re-
duction, exhibited by the optimal detector over the simple de-
tector: The optimal detector can achieve as much as 7 times
lower probability of error. These results demonstrate that the
uncertainty of states cannot be simply neglected. We also ob-
serve that optimizing sensor locations makes a huge difference
in terms of performance, as random sensor locations perform
much worse than either greedily or optimally selected loca-
tions. For example, with 8 sensors, optimally located sensors
can achieve as much as 3 times lower probability of error than
randomly located ones. Interestingly, we observe that the per-
formance gap between greedy and optimal sensor locations is
quite small, and greedy solutions of sensor locations perform
optimally for .

Fig. 3. Performance comparison between the optimal detector and simple de-
tector, and between the optimal sensor locations, greedy locations and random
locations.

TABLE I
NUMBER OF ITERATIONS TO REACH THE GLOBAL OPTIMUM, IEEE 14 BUS

Finally, we evaluate the case when there is indeed no un-
certainty about the states, namely, we know the ground truth
of the states exactly when doing outage identification. In this
case, the simplified performance metric with (28) applies, and
the globally optimal sensor locations can now be found via the
proposed branch and bound algorithm (Algorithm 2). We again
evaluate the probability of error with Monte Carlo runs. In
this case, the simple detector is indeed optimal, as the states are
known exactly. The simulated curve shows that much lower
can be achieved in this case. A more detailed study of the ef-
fect of the accuracy of the prior knowledge is described later in
Section VI-E.

D. Performance of the Branch and Bound Algorithm

To examine the effectiveness of the proposed branch and
bound algorithm, we define to be the number of iter-
ations used by Algorithm 2 to achieve the globally optimal
solution, and the number of iterations used to prove its
global optimality. In other words, it takes iterations for
the upper bound to reach the global optimum, while it takes

iterations for both the upper and lower bounds to reach
the global optimum. We summarize in Table I the actual
and used to find the globally optimal sensor locations
when we know the states accurately.
Interestingly, since for all , the greedily se-

lected sensor locations by Algorithm 1 are globally optimal in
this case of exact state knowledge. (We note that, the phenom-
enon that falls from 10 to 1 when increases from 10
to 11 is a quantization effect due to a stopping rule of
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Fig. 4. The instant upper and lower bounds on the optimal achievable
Sum-Max metric as Algorithm 2 iterates; .

Fig. 5. Detection performance as the accuracy of the prior information on the
states varies.

.) An illustration of the convergence of the lower bound is
plotted in Fig. 4 for the case of , for which 23 iterations
are needed.

E. Effect of the Accuracy of Prior

We now examine the effect of the accuracy of prior charac-
terized by , i.e., the ratio between the prior standard deviation
and the prior mean of power injections. We vary from 1%
to 20%, and evaluate the probabilities of error with the glob-
ally optimal sensor locations obtained in Section VI-C, for the
cases of and . We evaluate both the optimal de-
tector (12) and the simple detector which assumes perfect priors
(26). Again, Monte Carlo runs are used. The average per-
formance is computed and plotted in Fig. 5. We see that with
as low as 1%, the optimal detector and the simple detector

perform almost the same. As increases, increases steadily,
and the performance gap between the two detectors increases
significantly.

VII. CONCLUSION

We have studied the problem of outage identification in power
systems with uncertain states, formulated as a joint detection
and estimation problem. The joint posterior of the outage hy-
potheses and the network states have been derived in closed-
form and have been used to develop the minimum probability
of error detector. To capture how the observation matrices affect
the optimal detection performance, we have developed three
performance metrics by first deriving a Chernoff bound on the
pairwise error probability, and then applying three heuristics to
combine the pairwise error bounds to capture the actual prob-
ability of error. Based on the three metrics, a greedy strategy
has been developed to optimize the sensor locations. Moreover,
assuming perfect prior knowledge on the network states and a
uniform prior on the outage events, a branch and bound algo-
rithm based on relaxation of a mixed integer convex program-
ming has been developed to find the globally optimal sensor
locations.
The developed optimal detector and sensor location optimiza-

tion algorithms have been tested via simulation in the IEEE 14
bus system. It has been shown that, under state uncertainty, the
optimal detector significantly outperforms the simple detector
that does not consider state uncertainty: The optimal detector
can achieve as much as 7 times lower probability of error. Fur-
thermore, optimizing the sensor locations has also been shown
to be critical for improving the detection performance, as op-
timally located sensors can achieve as much as 3 times lower
probability of error than randomly located ones. Interestingly,
the proposed greedy algorithm for sensor location optimization
has been shown to have near-optimal performance, suggesting
that it is an effective algorithm with low complexity.

APPENDIX A
PROOF OF LEMMA 2

Noting that the optimal detector has a form of

(43)

we now evaluate the log-posterior-ratio on the right hand side.
By (11), we have

(44)

where and are defined in (15) and (16), respectively.
Substituting (44) into (43), we complete our proof.
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APPENDIX B
PROOF OF THEOREM 1

To evaluate , we first evaluate
the exponential moment :

(45)

Substituting the expression (15) for into the right-hand
side of (45), we can express the exponent in (45) as

(46)

Substituting (46) into (45), we observe that, as long as the ma-
trix is not positive definite, the integral
in (45) will diverge to infinity, which means that
will go to infinity so that the exponential moment

also goes to infinity. Then, over this partic-
ular range of , the Chernoff bound would become infinity and
is thus not tight. Next, we focus on the case in which satisfies
that is positive definite. Later, we will
provide a condition on that guarantees such positive definite-
ness. We introduce the following quantities

(47)

(48)

(49)

With the above definitions, expression (46) can be written as

(50)

where in the last step we completed the square. Substituting (50)
into (45), we obtain

(51)

Since is positive definite, the expression inside the integral
of (51) is a Gaussian PDF with mean and covariance

, which means that the integral of it over the entire domain
is one. Therefore, we obtain

Finally, we derive a condition on that guarantees

(52)

which is equivalent to requiring that

(53)

Solving the above inequality for , we obtain

(54)

Since the above inequality (54) is required to be hold for all
, it is equivalent to requiring

(55)

Note that the ratio on the right-hand side of (55) is a generalized
Rayleigh quotient. The maximum of a generalized Rayleigh
quotient for positive definite matrix and sym-
metric matrix is equal to the largest generalized eigenvalue
of the corresponding matrix pair:

(56)

where denotes the largest generalized eigenvalue
of the matrix pair , i.e., there exists such that

(57)

For this reason, we have
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so that inequality (55) is equivalent to

(58)

If on the right-hand side of (58) is negative or zero, then (58)
holds automatically for so that the condition for
is

(59)

Otherwise, if , then the condition for becomes

(60)

Summarizing all the above cases, we can conclude our proof of
Theorem 1.

APPENDIX C
PROOF OF COROLLARY 1

With a perfect prior, i.e., , we have
according to (10), and

(61)

(62)

(63)

(64)

(65)

according to (20)–(23). Substituting the above expressions into
(19), we obtain

(66)

Note that the above expression is a quadratic function of and
is convex. Therefore, optimizing the above expression with re-
spect to over , we obtain the optimal as

Substituting the above into (66), we obtain the minimum
value for (66) as

(67)

Substituting the above expression into the right-hand side of
(18), we conclude our proof.
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