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ABSTRACT

Identifying arbitrary power grid topologies in real time based
on measurements in the grid is studied. A learning based ap-
proach is developed: binary classifiers are trained to approx-
imate the maximum a-posteriori probability (MAP) detectors
that each identifies the status of a distinct line. An efficient
neural network architecture in which features are shared for
inferences of all line statuses is developed. This architecture
enjoys a significant computational complexity advantage in
the training and testing processes. The developed classifiers
based on neural networks are evaluated in the IEEE 30-bus
system. It is demonstrated that, using the proposed feature
sharing neural network architecture, a) the training and test-
ing times are drastically reduced compared with training a
separate neural network for each line status inference, and b)
a small amount of training data is sufficient for achieving a
very good real-time topology identification performance.

Index Terms— Online power grid topology identifica-
tion, line outage detection, machine learning, neural net-
works, cascading failures

1. INTRODUCTION

Lack of situational awareness in abnormal system conditions
is a major cause of blackouts in power networks [1]. Cascad-
ing failures can quickly develop if earlier failures are not iden-
tified and contained in real time, and can lead to increasingly
complex network topology changes. Protective control meth-
ods without knowledge of network topology changes may fur-
ther aggravate the failure scenarios [2]. It is thus essential to
identify power network topologies and failure scenarios be-
fore effective failure response mechanisms can be applied.
Identifying power grid topologies in real time under com-
plex failure scenarios is however very challenging: The num-
ber of possible topologies grows exponentially with the num-
ber of unknown line statuses, which can be relatively large as
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in what has happened in major blackouts [1]. Other limita-
tions in practice such as behaviors of human operators under
time pressure, missing and contradicting information, and pri-
vacy concerns over data sharing can make this problem even
harder. Assuming a small number of line failure scenarios, ex-
haustive search methods have been developed in [3], [4], [S]
and [6] based on hypothesis testing, and in [7] and [8] based
on logistic regression. To overcome the computational limit
of these exhaustive search methods, assuming sparsity of si-
multaneous line outages, [9] has developed sparsity exploit-
ing outage identification methods with overcomplete obser-
vations. Without assuming sparsity of line outages, a graphi-
cal model based approach has been developed for identifying
arbitrary grid topologies using message passing algorithms
[10]. Furthermore, a learning-to-infer methodology has re-
cently been developed that effectively overcomes the issue
of the exponential complexity of identifying arbitrary grid
topologies in real time [11]. Related works on non-real-time
topology identification include [12] and [13] among others.

Extending the learning-to-infer approach, in this paper,
we develop learning methods based on neural networks to
identify arbitrary power grid topologies in real time. For each
line in the grid, a binary classifier is trained whose decision
boundary approximates that of the maximum a-posteriori
probability (MAP) detector of this line’s status. The train-
ing and testing data can be generated in an arbitrarily large
amount using Monte Carlo simulations. Thus neural network
models can be trained without worrying about overfitting.

Two neural network architectures are developed: a) a sep-
arate neural network is trained for each line status inference,
and b) a single joint neural network is trained whose features
computed by its hidden layers are shared for classifying all
line statuses. The two neural network architectures are evalu-
ated in the IEEE 30-bus network [14] for identifying topolo-
gies with an arbitrary number of simultaneous line outages.
It is demonstrated that, while both architectures offer very
good line outage identification performance, compared with
the separate training architecture, the feature sharing archi-
tecture greatly reduces the training and testing times.



2. PROBLEM FORMULATION

We consider a power network with N buses, and a baseline
topology with L lines. We denote the incidence matrix of the
baseline topology by M € {—1,0,1}V*£. We use a binary
variable s; to denote the status of a line [, with s; = 1 for
a connected line /, and O otherwise. The actual topology of
the network can then be represented by s = [sq,...,sz]7.
In this paper, we employ the DC power flow model for the
sake of simplicity [15]. However, we note that the developed
methodology can be directly extended to the AC power flow
model. We denote the power injections and voltage phase
angles at all the buses by P € RY and 6 € R, respectively.
Based on the DC power flow model, we have

P=MSTM7e, )]

where S = diag(sy, ...
is the reactance of line /.

We focus on identifying the network topology s based on
real time measurements of @ provided by phasor measure-
ment units (PMUs) located at a subset of the buses M, as
well as knowledge of P. We model the PMU measurements
as

,80), ' = diaug;(m—l17 el i), and x;
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where 0, is formed by entries of 6 from buses in M, and
v ~ N(0,021) contains the measurement noise.

As the observations y are made under the true under-
lying topology s among many possibilities, identifying the
network topology s can be formulated as a hypothesis test-
ing problem: Given y and P, we would like to identify the
topology s that best “fits” the relations (1) and (2). Under
a Bayesian inference framework, a MAP detector would pick
argmax, p(s|y, P) as the identification decision, which min-
imizes the identification error probability. However, as the
number of hypotheses grows exponentially with the number
of unknown line statuses, performing the hypothesis testing
based on an exhaustive search becomes computationally in-
tractable. In general, there are up to 2% topology hypotheses.

To solve the issue of exponential complexity, we approx-
imately decouple the hypothesis testing problem into L sep-
arate binary hypothesis testing problems: for each line [, the
MAP detector identifies argmax,, ¢ (0.1} P(si1|y, P). As are-
sult, instead of minimizing the identification error probability
of the vector s (i.e., “symbol” error probability), the binary
MAP detectors minimize the identification error probability
of each line status s; (i.e., “bit” error probability). The pos-
terior marginal p(s;|y, P), however, is very difficult to com-
pute. (Note that summing out all s,k # [ requires expo-
nential computational complexity.) As a result, even for the
binary MAP detector of sy, it is not tractable to analytically
compute its decision boundary, which can be very compli-
cated in the domain of y and P.

To find the unknown decision boundary of each binary
MAP detector, we employ a learning based approach ex-
ploiting the idea of the recently developed “learning-to-infer”
methodology [11]. The MAP detector for line [ can be viewed
as a binary classifier: For each tuple of y and P, this classifier
outputs either s; = 0 or s; = 1. To learn the decision bound-
ary of the classifier, we generate a sufficiently large number
of Monte Carlo samples of s,y and P as labeled data, and
then use supervised learning to obtain a classifier close to the
true MAP classifier. As will be shown in the remainder of the
paper, the MAP detector’s decision boundary can be learned
very well with a reasonably complex classifier model.

3. NEURAL NETWORK ARCHITECTURES FOR
LINE STATUS INFERENCE

We use classifiers based on neural networks to capture the
complex nonlinear decision boundary for the binary MAP in-
ference of each line status. As we have L lines, a straight-
forward design architecture is to train a separate classifier for
each single line [: the input layer of the neural network con-
sists of y and P, and the output layer consists of just one node
predicting either s; = 0 or 1. Thus, a total of L classifiers
need to be trained. For training and testing, we generate la-
beled data s, y and P randomly that satisfy (1) and (2), where
s = [s1,..., 1] consists of the L labels used by the L clas-
sifiers respectively. A diagram illustrating this neural network
architecture is depicted in Figure 1. The function of the neu-
ral network for classifying s; can be understood as follows:
The hidden layers of neurons compute a number of nonlinear
features of the input y and P, and the output layer applies a
binary linear classifier to these features and make a decision
on s;.

Next, we introduce a second architecture that allows clas-
sifiers for different lines to share features, which can lead to
more efficient learning of the classifiers. Specifically, instead
of training L separate neural networks each with one node
in its output layer, we train one neural network whose output
layer consists of L nodes each predicting a different line’s sta-
tus. An illustration of this architecture is depicted in Figure
2. As aresult, the features computed by the hidden layers can
all be used in classifying any line’s status. The idea of using
shared features is that certain common features may provide
good predictive power in inferring many different lines’ sta-
tuses in a power network.

Furthermore, using a single neural network with feature
sharing can drastically reduce the computational complexity
of both the training and the testing processes. Indeed, while
using separate neural networks requires training of L classi-
fiers, using a neural network that allows feature sharing in-
volves training of only a single classifier. Note that, with sim-
ilar sizes of neural networks, adding nodes in the output layer
incurs only a very small increase in the training time. As
a result, there is an O(L) reduction in computation time for



Fig. 1. L separately trained neural networks, (which could
have multiple hidden layers).

this architecture with shared features, which can be significant
savings for large power networks.

Evidently, compared with L separate neural networks, a
shared neural network of the same size would have a per-
formance degradation in classification due to a reduced ex-
pressive power of the model. However, such a performance
degradation can be erased by increasing the size of the shared
neural network. In fact, increasing the size of the shared neu-
ral network to be the sum of that of the separate neural net-
works leads to a classifier model that is strictly more general,
and hence offers a performance enhancement as opposed to
degradation. As will be shown later, it is sufficient to increase
the size of the shared neural network architecture by a much
smaller factor to achieve the same performance as the sepa-
rate neural network architecture does.

This learning based approach has a major advantage
in that labeled data can be generated in an arbitrarily large
amount using Monte Carlo simulations. As a result, whenever
overfitting is observed, it can in principle always be overcome
by generating more labeled data for training. Thus, as long
as the computation time allows, we can use neural network
models of whatever complexity for approximating the binary
MAP detectors, without worrying about overfitting.

Moreover, while the offline training process may take a
reasonably long time, after the classifiers are trained, using
them for online line status inference can be performed very
rapidly, and is hence suitable for real time applications.

4. NUMERICAL EXPERIMENT

We evaluate the proposed learning based method for identify-
ing power grid topologies with the IEEE 30 bus system as the
baseline topology. There are 41 lines in total. As opposed to

Fig. 2. A single jointly trained neural network (which could
have multiple hidden layers) whose features are shared for
inferring all L line statuses.

considering only a small number of line outages as in existing
works, we allow any number of line outages, and investigate
whether the learned classifiers can successfully recover the
topologies.

4.1. Data Set Generation

We generate the line statuses {s;} using independent and
identically distributed (IID) Bernoulli random variables with
p(s; = 1) = 0.6. We do not consider disconnected power
networks in this study, and exclude the line status samples
if they lead to disconnected networks. As a result, there are
three lines (9-11, 12-13, 25-26) that are always connected,
and the dimension of the vector s reduces to 38.

We would like our classifier to be able to identify the
topology for generic values of power injections as opposed
to fixed ones. Accordingly, we generate P using the follow-
ing procedure: We first generate bus voltage phase angles 6 as
IID uniform random variables in [0, 0.27], and then compute
P according to (1) under the baseline topology. Lastly, with
each pair of generated s and P, we generate IID phase angle
measurement noise with a standard deviation of 0.01 degree,
the state-of-the-art PMU accuracy [16].

In this study, we generate a total of 300K data samples,
and use 200K, 50K and 50K samples for training, validation,
and testing, respectively. In comparison, the total number of
connected topologies of the IEEE 30 bus system is on the
order of 23% = 2.75 x 10''. We note that over 99% of the
generated 300K connected topologies are distinct from each
other. The average number of disconnected lines relative to
the baseline topology is 7.8, which is significantly higher than
those typically assumed in sparse line outage studies. In this
experiment, we assume that all buses have PMUs that provide
voltage phase angle measurements.

4.2. Hyperparameters of Neural Networks

We employ two-layer (i.e., one hidden layer) fully connected
neural networks for both the separate training architecture and
the feature sharing architecture. Rectified Linear Units (Re-
LUs) are employed as the activation functions in the hidden
layer. In the output layer we employ support vector classifiers.
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Fig. 3. Progressions of training and validation accuracies.

In training the classifier, we use stochastic gradient descent
(SGD) with momentum update.

4.3. Evaluation Results

4.3.1. The Separate Training Architecture vs.
the Feature Sharing Architecture

We train the neural network classifiers and obtain the accu-
racy of identifying each line status. For separately training
a neural network for each line status inference, we employ
75 neurons in the hidden layer, whereas for training a single
neural network with feature sharing we employ 300 neurons.
The sizes of the models are chosen such that both the sepa-
rate training architecture and the feature sharing architecture
achieve the same average accuracy of 0.97. For all neural
networks, we run SGD for 1000 epochs in training. On a lap-
top with an Intel Core 17 3.1-GHz CPU and 8 GB of RAM,
with the 200K data points, it takes about 7.3 hours to sepa-
rately train 38 neural networks of size 75, but only 0.6 hour
to train the one neural network of size 300 with feature shar-
ing. We observe that the feature sharing architecture is about
12 times faster to train than the separate training architecture
while achieving the same performance. Such a speed advan-
tage of the feature sharing architecture will become even more
pronounced in larger power networks.

In Figure 3, we plot the achieved training and validation
accuracies for every epoch with the feature sharing architec-
ture. It is clear that the two curves stay very close to each
other, and thus no overfitting is observed. We would like to
further emphasize that the topologies and the power injections
used to train the classifier are different from the ones in the
validation and test sets. This is of particular interest because
it means that our learned classifier is able to generalize well
on the unseen test topologies and power injections based on
its knowledge learned from the training data.
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Fig. 4. Effect of model size and sample complexity.

4.3.2. Model Size and Sample Complexity

In the proposed learning based method, obtaining labeled data
is not an issue since data can be generated in an arbitrarily
large amount using Monte Carlo simulations. This leads to
two questions that are of particular interest: to learn a good
classifier, a) what size of a neural network is needed? and b)
how much data needs to be generated? To answer these ques-
tions, we vary the size of the neural network with shared fea-
tures from 100 neurons to 300 neurons, as well as the training
data size from 10K to 200K, and evaluate the learned classi-
fiers. We plot the testing results in Figure 4. We observe that
a) with only 10K training data, neural network models of size
200 and 300 are severely overfit, as they perform even worse
than a small size model of 100 neurons, and b) for these three
model sizes, it is sufficient to train the neural network model
with just 50K training data, and the achieved testing accuracy
is no worse than that achieved with 200K training data.

5. CONCLUSION

We have developed a learning based method using neural net-
works for identifying arbitrary topologies of power grids in
real time. The MAP detector of the entire topology is decou-
pled as a number of binary MAP detectors of line statuses. To
learn all these binary MAP detectors’ decision boundaries,
classifiers based on neural networks are trained. A neural
network architecture with feature sharing among all line sta-
tus inferences is introduced, which offers a significant speed
advantage in training and testing. Labeled data for training
the classifiers can be generated in an unlimited amount using
Monte Carlo simulations. We have evaluated the proposed
methods with the IEEE 30-bus system. It has been demon-
strated that the neural network architecture with feature shar-
ing offers excellent performance in identifying arbitrary net-
work topologies, and a small amount of data is sufficient for
training effective classifiers. An interesting future direction
is to investigate how different prior distributions for data set
generation affect the online topology inference performance.
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