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ABSTRACT

Identifying arbitrary topologies of power networks is a com-
putationally hard problem due to the number of hypotheses
that grows exponentially with the network size. A new vari-
ational inference approach is developed for efficient marginal
inference of every line status in the network. Optimizing the
variational model is transformed to and solved as a discrim-
inative learning problem. A major advantage of the devel-
oped learning based approach is that the labeled data used
for learning can be generated in an arbitrarily large amount
at very little cost. As a result, the power of offline training is
fully exploited to offer effective real-time topology identifica-
tion. The proposed methods are evaluated in the IEEE 30-bus
system. With relatively simple variational models and only
an undercomplete measurement set, the proposed method al-
ready achieves very good performance in identifying arbitrary
power network topologies.

Index Terms— Power grid topology identification, line
outage detection, machine learning, variational inference

1. INTRODUCTION

Understanding the network status in abnormal system condi-
tions is crucial for preventing blackouts in power networks.
Network component failures (e.g. line outages), if unat-
tended, can quickly escalate to cascading failures that grow
out of control of the system operator. When line failures hap-
pen, the power network topology changes instantly, newly
stressed areas can unexpectedly emerge, and subsequent
failures may be triggered. Real time network topology iden-
tification is thus essential to all network control decisions for
mitigating failures.

Topology identification is however a very challenging
problem, especially when unknown line statuses in the
network accumulate as in scenarios that cause large-scale
blackouts [1]. The number of possible topologies grows
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exponentially with the number of unknown line statuses,
making topology identification fundamentally hard. In prac-
tice, time pressure and incomplete information can make this
problem even harder. Prior works on line outage detection
have primarily focused on scenarios with a small number of
line failures. Exhaustive search methods have been devel-
oped in [2], [3], [4] and [5] based on hypothesis testing, and
in [6] and [7] based on logistic regression. To overcome the
prohibitive computational complexity of exhaustive search
methods, [8] has exploited the sparsity of outage patterns
with overcomplete observations to identify sparse multi-line
outages. Recently, a graphical model based approach has
been developed for identifying arbitrary network topologies
without assuming sparsity of line outages [9]. However,
ensuring robustness of message passing algorithms for large-
scale networks remains a challenging task.

In this paper, we develop a new “learning-to-infer” ap-
proach for identifying arbitrary topologies of power networks.
We start with a probabilistic model in which the variables in
power networks are modeled in a Bayesian framework. We
observe that exhaustively expressing the mapping between
the physical quantities in power networks (e.g. nodal power
injections and voltages) and the network topology is com-
putationally hard due to the exponentially large number of
possible topologies. To overcome this hardness, we develop
a variational inference framework, in which we approximate
this mapping using models that allow computationally easy
marginal inference of line statuses. Furthermore, with a
Monte Carlo approach, optimizing the variational model is
transformed to a discriminative learning problem. In par-
ticular, data samples of network topology, power injections,
and measurements in the network can be easily generated
according to a generative model of these quantities. With
these data, discriminative models for predicting the network
topology based on the available measurements and the power
injections are trained and tested.

A major strength of the proposed approach is that the la-
beled data set for training the variational model can be gen-
erated in an arbitrarily large amount, at very little cost. As



such, we can fully exploit the benefit of offline model train-
ing in order to get accurate online topology identification per-
formance. The proposed approach is also not restricted to
specific learning methods, but can exploit any powerful mod-
els such as deep neural networks. The developed learning-to-
infer method is evaluated in the IEEE 30-bus network [10] for
identifying topologies with an arbitrary number of line out-
ages using only undercomplete measurements. It is demon-
strated that, even with relatively simple variational models,
the performance is surprisingly good for this very challeng-
ing task.

2. SYSTEM MODEL

We consider a power network with N buses, and a baseline
topology with L lines. We denote the incidence matrix of the
baseline topology by M ∈ {−1, 0, 1}N×L. We use a binary
variable sl to denote the status of a line l, with sl = 1 for
a connected line l, and 0 otherwise. The actual topology of
the network can then be represented by s = [s1, . . . , sL]T . In
this paper, we employ the DC power flow model for brevity
[11]. We note that the developed methodology can be directly
extended to the AC power flow model. We denote the power
injections and voltage phase angles at all the buses by P ∈
RN and θ ∈ RN , respectively. Based on the DC power flow
model, we have

P = MSΓMTθ, (1)

where S = diag(s1, . . . , sL), Γ = diag( 1
x1
, . . . , 1

xL
), and xl

is the reactance of line l.
We focus on identifying the network topology s based on

real time measurements of θ provided by phasor measure-
ment units (PMUs) located at a subset of the buses M, as
well as knowledge of P . We model the PMU measurements
as

y = θM + v, (2)

where θM is formed by entries of θ from buses in M, and
v ∼ N(0, σ2I) contains the measurement noise.

We formulate the topology identification problem as a
probabilistic inference problem. First, we model s,P and y
with a joint probability distribution that can be expressed as
p(s,P ,y) = p(s,P )p(y|s,P ). Note that p(y|s,P ) is fully
determined by the power flow model (1) and the observa-
tion model (2). We further assume that the power injections
are in static or quasi-steady state, so that P is known when
performing topology identification. Our objective is to infer
the topology of the power grid, characterized by s, given the
observed y and the prior knowledge P . This can be achieved
by finding the posterior probability p(s|y,P ). However, as
there are in total 2L possibilities for s, computing, or even
expressing the probability p(s|y,P ) has an exponential com-
plexity. As a result, it is in general hard to perform inference

tasks such as finding the line status marginals p(sl|y,P ),
or finding the topology s with the maximum a-posteriori
probability.

3. A LEARNING-TO-INFER VARIATIONAL
INFERENCE FRAMEWORK

Due to the aforementioned challenges in the exact compu-
tation of the posterior p(s|y,P ), we proceed to develop
an approximate inference method for the marginal posterior
p(sl|y,P ), l = 1, . . . , L, by a variational method. We seek
to find a variational distribution q(s|y,P ) to approximate
the original p(s|y,P ) as much as possible by minimizing
the Kullback-Leibler divergence D(p‖q), i.e., finding the M-
projection [12] of p. We require this variational distribution
q(s|y,P ) to satisfy the following:

• It has sufficient expressive power to represent compli-
cated functions so that our approximation to p(sl|y,P )
can be made sufficiently precise.

• It is easy to compute q(sl|y,P ), and we can use it to
infer sl based on the observed y and P with low com-
putation complexity.

In practice, we restrict q(s|y,P ) to have special paramet-
ric forms, qβ(s|y,P ), that are easy to compute, where β is
a vector of model parameters. Minimizing D(p‖q) is then
equivalent to finding the qβ(s|y,P ) that solves the following
optimization problem:

max
β

Ep[log qβ(s|y,P )], (3)

where the expectation is taken with respect to the true dis-
tribution p. Furthermore, as Ep[log qβ(s|y,P )] can be hard
to compute, we can approximate it by the empirical mean of
log qβ(s|y,P ) over a large number of Monte Carlo samples
generated according to the joint probability p(s,P ,y), de-
noted by {st,P t,yt, t = 1, . . . , T}. This yields,

max
β

1

T

T∑
t=1

log qβ(st|yt,P t)]. (4)

With the generated data set {st,P t,yt}, (4) can be efficiently
solved, and the optimal model parameters β approaches those
for the desired M-projection as T →∞.

In fact, the problem (4) can be viewed as an empirical
risk minimization problem in machine learning [13], which
trains a discriminative model qβ(s|y,P )] with a data set
{st,P t,yt} generated from a generative model p(s,P ,y).
As such, the inference problem of topology identification is
cast as a learning problem, as we train a model qβ(s|y,P )
so that it can predict the line status s given any newly ob-
served measurements y and knowledge of P . In particular,
we would like to compute the line status marginals q(sl|y,P )



and, eventually, identify whether each line l is connected or
not. Thus, we can employ multi-label classifiers where each
binary line status corresponds to one label.

One great advantage of this learning-to-infer approach is
that we can generate labeled data very efficiently. Specif-
ically, we can efficiently sample from the generative model
p(s,P ,y) = p(s,P )p(y|s,P ) as long as we have some
prior p(s,P ) that is easy to sample from. While historical
data and expert knowledge would surely help in forming such
priors, using simple uninformative priors can already suffice
as will be shown later in the numerical examples. As a result,
we can obtain an arbitrarily large set of data with very little
cost to train the discriminative model. This is quite different
from the typical situations encountered in machine learning
problems, where obtaining a large amount of labeled data is
usually expensive as it requires extensive human annotation
effort.

Another advantage of our proposed method is that, once
the approximate posterior probability q is learned, it can be
deployed to infer the power grid topology in real-time as the
computation complexity of q(sl|y,P ) is very low. This is
especially important in monitoring large-scale power grids in
real time, because, although training q could take a reasonably
amount of time, the inference speed is very fast. Therefore,
the learned predictor q can be used in real-time with low-cost
hardware.

4. NUMERICAL EVALUATION

We evaluate the proposed learning-to-infer approach for
topology identification with the IEEE 30 bus system as the
baseline topology (cf. Figure 1). There are 41 lines in to-
tal. As opposed to considering only sparse line outages as
in existing works, we allow any number of line outages, and
investigate whether the learned discriminative classifiers can
successfully recover the topologies.

4.1. Data Set Generation

To generate a data set {st,P t,yt}, we assume the prior
p(s,P ) factors as p(s)p(P ). We generate the line sta-
tuses {sl} using independent and identically distributed (IID)
Bernoulli random variables with p(sl = 1) = 0.6. We do
not consider disconnected networks in this study, and exclude
the line status samples if they lead to disconnected networks.
As a result, there are three lines (9-11, 12-13, 25-26) that are
always connected in these topologies, and the dimension of
the vector s reduces to 38.

We would like our predictor to be able to identify the
topology for generic values of power injections as opposed
to fixed ones. Accordingly, we generate P using the follow-
ing procedure: We first generate bus voltage phase angles θ
as IID uniform random variables in [0, 0.2π], and then com-
pute P according to (1) under the baseline topology. Lastly,

Fig. 1. IEEE 30-bus system, and the PMU locations.

with each pair of generated st and P t, we generate IID phase
angle measurement noise with a standard deviation of 0.01
degree, the state-of-the-art PMU accuracy [14].

In this study, we generate a total of 300K data samples
for training and testing procedures. In comparison, the total
number of connected topologies of the IEEE 30 bus system is
on the order of 238 = 2.75 × 1011. We note that over 99%
of the generated 300K connected topologies are distinct from
each other. The average number of disconnected lines relative
to the baseline topology is 7.8, which is significantly higher
than those typically assumed in sparse line outage studies.

Finally, we choose 19 among the 30 bus voltage phase an-
gles as the measurement set, as depicted in Figure 1. We note
that, while the selected measurement locations will be shown
to lead to very good identification performance, optimizing
these locations more systematically is left as an interesting
topic for future work. We will show that even with such a
severely undercomplete set of measurements, we can already
identify very well the network topology among an exponen-
tially large number of hypotheses.

4.2. Identifying s with Multi-Label Classifiers

We employ a binary relevance method (i.e., independently
training one classifier for each label sl). For identifying s
given y and P , we train and compare three classifiers with
C4.5 decision trees [15], multilayer perceptrons [16] and lo-
gistic regression, respectively. In particular, with the multi-
layer perceptron, we employ one hidden layer with 24 hid-



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

line

AU
C

 

 DT
MLP
LR

20 22 24 26 28 30 32 34 36 38
0

0.5

1

line

AU
C

 

 DT
MLP
LR

Fig. 2. Areas under the ROC for line status identification using a C4.5 Decision Tree (DT), a Multilayer Perceptron (MLP), and
Logistic Regression (LR).

den units. We use the MEKA open source toolkit for imple-
menting these learning methods [17]. Among the 300K data
points, we use 2

3 of them as the training data, and 1
3 as the

testing data.

4.3. Evaluation Results

For identifying each line status, we obtained the receiver op-
erating characteristic (ROC) with each of the three classifiers,
and computed the area under the curve (AUC). All the AUCs
are plotted in Figure 2. The average AUC for the 38 lines is
0.792 with C4.5 decision trees, 0.969 with multilayer percep-
trons, and 0.5 with logistic regression.

We observe that the multilayer perceptron achieves sur-
prisingly good performance in identifying the network topol-
ogy, which has been a hard open problem not known to be
tractable in the literature. Moreover, this is achieved using
only 19 (out of 30) voltage phase angle measurements. On
a laptop with an Intel Core i7 3.1-GHz CPU and 8 GB of
RAM, with 200K data points, it takes about 16 hours to train
the multilayer perceptron model, one hour to train the deci-
sion tree model, and 12 minutes to train the logistic regression
model. Moreover, it takes about only 38 seconds to test the
identification performance on 100K data samples (which is
0.38 milliseconds per sample) with the multilayer perceptron,
and 18 seconds with the two other models. The extremely
fast testing speed demonstrates that the proposed approach
applies very well to real time tasks, such as failure identifi-
cation during cascading failures. In comparison to the mul-
tilayer perceptron, we observe that a) using a C4.5 decision
tree provides a lower but reasonably good performance with
a shorter training time, and b) a classifier trained by logis-
tic regression provides essentially no predictive power (AUC
= 0.5) for topology identification.

We would like to further emphasize that the topologies
and the power injections used to train the predictor q are dif-
ferent from the ones in the test set. This is of particular in-

terest because it means that our learned predictor q is able to
generalize well on the unseen test topologies and power injec-
tions based on its knowledge learned from the training data.

It is also worth noting that we have generated the training
and testing data set with uniformly random voltage phase
angles, and hence considerably variable power injections.
In practice, there is often more informative prior knowledge
about the power injections based on historical data and load
forecasts. With such information, the model can be trained
with much less variable samples of power injections, and the
identification performance can be further improved signifi-
cantly. For example, if we fix the power injections to a set
of typical values (i.e., fixing the prior p(P ) to be determinis-
tic), the average AUC increases to above 0.97 even with the
simpler C4.5 decision tree classfier.

5. CONCLUSION

We have developed new learning-to-infer variational infer-
ence methods for topology identification of power grids.
The computational complexity due to the exponentially large
number of hypotheses is overcome by efficient marginal
inference with the variational model. Optimization of the
variational model is transformed to and solved as a discrim-
inative learning problem. The developed methods have the
major advantage that the labeled data set can be generated in
an arbitrarily large amount with very little cost. As a result,
the variational model can always be trained with sufficient
data, so that excellent online topology identification perfor-
mance can be achieved. We have evaluated the proposed
methods with the IEEE 30-bus system employing C4.5 de-
cision trees, multilayer perceptrons, and logistic regression
in discriminative learning. With the multilayer perceptron,
it has been demonstrated that arbitrary network topologies
can be identified with very good performance using only 19
(among 30) voltage phase angle measurements.



6. REFERENCES

[1] US-Canada Power System Outage Task Force, Final Re-
port on the August 14, 2003 Blackout in the United
States and Canada, 2004.

[2] J. E. Tate and T. J. Overbye, “Line outage detection
using phasor angle measurements,” IEEE Transactions
on Power Systems, vol. 23, no. 4, pp. 1644 – 1652, Nov.
2008.

[3] J. E. Tate and T. J. Overbye, “Double line outage detec-
tion using phasor angle measurements,” in Proc. IEEE
Power and Energy Society General Meeting, July 2009.

[4] Y. Zhao, J. Chen, A. Goldsmith, and H. V. Poor, “Iden-
tification of outages in power systems with uncertain
states and optimal sensor locations,” IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 6, pp.
1140–1153, Dec. 2014.

[5] Y. Zhao, A. Goldsmith, and H. V. Poor, “On PMU lo-
cation selection for line outage detection in wide-area
transmission networks,” in Proc. IEEE Power and En-
ergy Society General Meeting, July 2012, pp. 1–8.

[6] T. Kim and S. J. Wright, “PMU placement for line
outage identification via multiclass logistic regression,”
arXiv preprint arXiv:1409.3832, 2014.

[7] M. Garcia, T. Catanach, S.V. Wiel, R. Bent, and
E. Lawrence, “Line outage localization using phasor
measurement data in transient state,” IEEE Transactions
on Power Systems, to appear.

[8] H. Zhu and G. B. Giannakis, “Sparse overcomplete rep-
resentations for efficient identification of power line out-
ages,” IEEE Transactions on Power Systems, vol. 27, no.
4, pp. 2215–2224, Nov. 2012.

[9] J. Chen, Y. Zhao, A. Goldsmith, and H. V. Poor, “Line
outage detection in power transmission networks via
message passing algorithms,” in Proc. 48th Asilomar
Conference on Signals, Systems and Computers, 2014,
pp. 350–354.

[10] Power Systems Test Case Archive, University of Wash-
ington Electrical Engineering.

[11] J. D. Glover, M. Sarma, and T. Overbye, Power System
Analysis & Design, Cengage Learning, 2011.

[12] D. Koller and N. Friedman, Probabilistic Graphical
Models: Principles and Techniques, MIT press, 2009.

[13] V. Vapnik, Statistical Learning Theory, Wiley, New
York, 1998.

[14] A. von Meier, D. Culler, A. McEachern, and R. Arghan-
deh, “Micro-synchrophasors for distribution systems,”
in Proc. IEEE Innovative Smart Grid Technologies
(ISGT), 2013.

[15] J. R. Quinlan, C4. 5: Programs for Machine Learning,
Elsevier, 2014.

[16] S. Haykin, Neural Networks: A Comprehensive Foun-
dation, MacMillan Publishing Company, 1994.

[17] MEKA: A Multi-label Extension to WEKA.


