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Abstract— Optimal precoder design for weighted sum-rate and is also computationally light. An alternative approach
maximization in multiple-input multiple-output interfer ence  for maximizing the weighted sum-rate in MIMO interference
networks is studied. For this well known non-convex opti-  channels is to use interference pricing [17]. However, it

mization problem, convex approximations based on interfeznce h b h that interf e h
alignment are developed, for both single-beam and multi-bem as been shown thal interierence pricing approaches are

cases. Precoder design methods that consist of two phases, a outperformed by interference alignment algorithms in the
interference alignment phase and a post-alignment optimiation ~ high SNR regime [14].

phase, are proposed. The interference alignment solutionsi With a weighted sum-rate objective, when the weights
taken as the input to the post-alignment optimization phaseFor among the users vary, the optimal solutions can vary sig-

post-alignment weighted sum-rate maximization, novel iteative ificantly. Whil tinterf i t algorith i
distributed algorithms are proposed based on the developed NMcantly. lle most interierence alignment algoritnmg

convex approximations. Simulation results show that the pp- {0 maximize sum degrees of freedom or sum-rate [8]-
posed algorithms achieve promising weighted sum-rate gain [13], several works have taken different priorities among

over existing interference alignment algorithms. Interesingly,  the users into account via convex optimization approaches.
for the multi-beam case, significant gain is achieved at allSRs, |, [3], semidefinite programming (SDP) approximations are
including the high SNR regime. exploited. However, it is unclear whether this approach
I, INTRODUCTION arrives at solutions that have good interference alignment
) ) ) properties. Hence it is unclear whether this approach has
We investigate the problem of precoder design for maxsomparable performance at hi§NRs relative to other iter-
imizing the weighted sum-rate in multiple-input multiple- gtjve interference alignment algorithms. In [14], a weéght
output (MIMO) interference channels with arbitrary cométa yinimum mean square error (MMSE) beamforming ap-
channel coefficients. We assume that each user treatseinterfproach is developed for single-beam cases where each user
ence from other users as noise. It is well known that, due {gijizes exactly one signalling dimension. For this tecjus,
interference coupling, the problem is a non-convex opeMIZ jt was shown that, while the weighted MMSE algorithms
tion and is hard to solve [1]. In the higiNR regime, there o tperform interference alignment algorithms in weighted
has been recent progress on maximizing div& degrees of  sym-rate at low and intermediafRs, their performance
freedom, exploiting the idea of interference alignment [2]. It 5 highSNRs is very close. The weighted MMSE approach
has been shown that maximizing the sum degrees of freedqag generalized to multi-beam cases in [15] and [16].
is still an NP hard problem [3]. A closely related problem |, this paper, we consider both single-beam and multi-
is the feasibility of interference alignment, namely, whethern,agm cases, and address the different user priorities by
a given set of desired degrees of freedom is achievable fBérforming weighted sum-rate maximization. The optimiza-
all the users [4]. There have been several recent thedreti¢gn variables are the precoding matrices of all the users,
!oreakthroughs_on deter_mining_ the conditions under whichng we assume that the number of signalling dimensions
|r1_t¢rference allgnment is feasible [4], [5], [6], [7]. In a‘_j of each user is given. To maintain a first order optimality,
dition, many algorithms have been developed for finding,e ensure that through interference alignment the develope
numerical solutions in any given channel realization thafq|tions always achieve the expected numbers of degrees
successfully achieve interference alignment and the @@siryf freedom for all the users. Then, based on the particular
degrees of freedom [3], [8], [9], [10], [11], [12], [13], [}4 properties of the interference alignment solutions, we enak
[15], [16]. All this algorithmic work is based on iterative conyex approximations in maximizing the weighted sum-rate
and distributed optimization of linear precoders and neei gpjective. We propose iterative algorithms that optimize t
filters. In particular, the max-SINR (signal-to-interfac@-  precoding matrices and the receive filters based on disidbu
plus-noise ratio) algorithm developed in the seminal wdrk oygpvex optimization. We show that, at &INRs, (including
[8] has a very favorableum-rate performance at albNRs,  ihe high SNR regime,) the proposed algorithms achieve

. . significant improvement over the max-SINR algorithm [8]
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CNS-09-05086. multi-beam case.



While convergence of the proposed algorithms is observesl the covariance matrix of the received interference plus
in all the simulated cases, the theoretical proof of this-comoise at receivek. We now formulate theveighted sum-
vergence remains open. The main challenge lies in analyzingte maximization problem as follows:

the distributed nature of the algorithms in which, at each %
iteration, different users approximate the global objecti max Zkak, (5)
differently. Viesh=1,.... K £~

The remainder of the paper is organized as follows. The st. r (Vi) < Pok=1,..., K,

system model is established in Section II. In Section llI

we develop distributed convex approximations of weightewhere Py, is userk’s power constraint.

sum-rate maximization based on the properties of interfer- An alternative decoding assumption is to decode each
ence alignment. lterative distributed algorithms thafrojge ~ Stream by treating all other streams as noise, even if the
precoders and receive filters are proposed in Section V. pther streams are from the same desired user. Interestingly
Section V, the performance of the proposed algorithms agdthough treating all other streams as noise is suboptimal
evaluated and compared with existing interference alignmecompared to jointly decoding all the streams of the desired

algorithms. We end with a brief conclusion in Section VI. user, this technique has been widely adopted in iterative
interference alignment algorithms. The main reason is that
Il. SYSTEM MODEL it is helpful in finding solutions that achieve interference
We consider MIMO K-user interference channels. Fora.l“gnmer.‘t' (albeit not r_1_ecessar|Iy opt_lmlzed fpr rate obje
. .- tives). Finally, an additional constraint that is commonly
userk, we denote byl and N, the numbers of its transmit . . . ) . .
and receive antennas. respectivelv. We denot c applied in the literature is to restrict the precoding ncasi
’ P Y- eEDy to be orthogonal matrices, particularly when the objecisve

RN:xM; the constant real channel matrix from transmitter .. .. . . : . o
. . : inimizing leakage interference instead of maximizingsat
j to receiverk. (We note that complex channel gains ant{xl

. . . : e note that while adding this constraint does not restrict
signalling can be equivalently transformed into real ones, .. . "~ . . | . ) X
At receiverk optimality in minimizing leakage interference, it can resgt

optimality in maximizing rates.

K
yilt] = ZH’Wmﬂ' (1] + z[t], 1) B. Linear Receive Filters
j=1 Solving (5) by directly optimizing the precoding matrices
Mol Nox1 ) is hard because the rate function (3) is non-concave in
wherex;[t] € R, y,[i] € RY+ are the transmitted ry, 4 — 1 k1. Instead, we introduce linear receiver

and the received signal vectors of uskr and zx[t] ~ fiiters asauxiliary optimization variables: By first applying
N(0,n.Iy) is the noise vector with as the noise variance a linear receive filter, € RM:*dx at receiverk and

at each receive antenna of uskr We focus on Iingar then jointly decoding the symbols is, from UTy;, the
precoding schemes: For uskr let V,, € RMx*dx be its achievable rate of usdr becomes
precoding matrix, an'k,

X [t] = Visg[t], (2 7
_1 T “1ygT T £4T
whered;, is the number of independent information streams 2 logdet (I + (Uy BiUs) ™' U Hi ViV’ HiUk) -

of userk, ands;[t] € R4>*! is the information vector of (6)
userk whosed;, elements each independently encodes ongcan be immediately seen that there is no capacity loss, i.e
of the dj, streams of usek. We assume that each elemeni3) — (6), as long as the followingptimal linear receive

of si[t] is drawn from an independently generated Gaussidiker is applied:
codebook with unit power. For notational simplicity, we émi

the time indext from now on.

1
Ry = logdet (I+V'HLU(U!B.U) 'Ul Hi Vi)

Ui, = B, 'H}, V. (7)

The introduction of the receive filters enables a series of
approximations of the rate function (6), based on which we
We assume that each user treats signals from all the othdevelop efficient algorithms for approximately solving {%)
users as noise. For usk’s own d;. streams, we assume thatthe following sections.
they arejointly decoded at receivér. This gives rise to the
following achievable rate of usér [18]:

A. Decoding Assumptions

IIl. DISTRIBUTED CONVEX OPTIMIZATION BASED ON
INTERFERENCEALIGNMENT

Ry = llogdet (I + WTHngilﬂkak) , (3) In_this sgctiqn, we fo_cus on optimizing the pre_coding
2 matrices with fixed receive filters. We approach this non-

where convex optimization using distributed convex approxiroiati
motivated by the properties of interference alignment so-

By =Y HyV;V HL +niI (4)  Iutions. This provides the building blocks for the iterativ

J#k algorithms that we will develop in Section IV.



A. The Single-beam Case interference solely from usér, while NV; is the leakage inter-

We first consider the single-beam case in which each ustgrence from all the othek’ —2 interferers (1,.... K}\j\k)
transmits only one stream, i.el, = 1, V. In this case, the plus noise. Now, we analyze the consequence of successful

precoding matrices and the receive filtéf,, U, } become interference alignment as follows:

vectors, and we denote them bywy, up, k = 1,...,K}. « If near perfect interference alignment is achieved, the
Accordingly, (6) is equivalent to total leakage interference will be less than or compara-
ble to the noise level.
Ry = llog |ul Hypvpl? ®8) o Even if the Ieakage interferen(_:e significantly. exceeds
> jen 1wk Higog | + nyug|? the noise level, with sufficient interference alignment,
the interference from usér shall be aligned to mostly
Given{v;}, the optimal{u, } are computed by (7). We now lie in the subspace spanned by the interference from
investigate the optimization dfv;} with a given{u;}. We users{1,..., K}\j\k.

first make a high5INR approximation for (8):

Thus, with sufficient interference alignment? v |2 /N
DefineVk, j, hy; = Hluy, then g N vsl” /N

will be relatively small. This motivates us to make the

1 IhT vy |? following approximation:
Ry log(1 + 5) T .12 T . |2
T2 > itk |hi;v2 4 nilul k| A vk
' 5 log| 1+ — ~ ) (12)
1 BT, v N; N;
RS ST R
gk 1TV V1™ 7 Tk [ Uk Accordingly, (11) is approximated as
We note that the approximation gap is at m)zfmit, provided |hE vy
ich is typi ith | 2wy log [l vr| — > w;——— 13
that SINR > 0 dB which is typically true with interference |vglﬁ<xpk wy, log |y, k| ij N, (13)
alignment. - i#k !
For solving (5), instead of jointly optimizing:,...,vk, Finally, it is straightforward to see that restricting (1i®)

we considerdistributed algorithms in which each user op- the halfspace ok}, v, > 0 gives the same optimal value as
timizes its own precoding vector while treating other usersestricting (13) to the other halfspadg, vi, < 0. Therefore,
precoding vectors as fixed. However, we let each user ke¢p3) is equivalent to the followingonvex optimization which
aglobal perspective by keeping the weighted sum-rate as itscan be solved efficiently [19]:
objective function. Specifically, for any usér it optimizes

its precoding vectowy, as follows: max 2wy, log (hi,vr) — ij
\vk\ngk,thvk>O

|hJTk”k|2

N;

1 & (R v, |2 7 (14)
max — w; lo
[orP<Pe 2 72:; e <Z#7 [hjivil? + n3|uj|2> B. The Multi-beam Case
o o We now generalize the above single-beam results to the
= \vkaaX wy, log Ry vl —Z wj log (|hjkvk| + Nj) > multi-beam case, in which each user can transmit any given
i#k number of streams. GivedV;}, the optimal {Uy} are
(10) computed by (7). We now investigate the optimization of
where N; £ Z |h il %+ njlug P {]Eﬁz})with a given{U}}. With a highSINR approximation
i itk of (6),

is theaggregate of noise and |leakage interference at receiver p, ~ 1 log det (U Hy, Vi, Vil HLUy) —log det (UF By Uy,)
j(# k) from usersother than user k£, and the notation 2 (15)
< denotes equivalence. By solving (10), ugetakes into
account both its own desired signal and its interference imilarly to the single-beam case, we consider distributed
the otherK — 1 users. algorithms in which each user optimizes its own precoding

Problem (10) remains a non-convex optimization which ignatrix while treating the other users’ precoding matrices a
hard to solve. To develop an accurate convex approximatiofixed, with the weighted sum-rate as the objective function.
we exploit the intuition frominterference alignment. Firstly, Userk thus optimizesV;, as follows:

|h vk|2 max Zw &
(10)@\2?&){ 2uwylog |hivp|— ij log 1+TJ wV<h o J
J#k 2 -
ma wy, log det(H [, Vi, Vi H
—ij log(N;). (11) tr(VkaT}gng v log det(Hyp ViV Hic)
i#k =" w;logdet(H Vi ViF Hjy, + N)
Note that|hJTkvk|2 + N; constitutes the total leakage in- i#k

terference plus noise at receivjar|h§r,€vk|2 is the leakage (16)



where Hj;, £ H}U;, and N; £ dy, and thus usek will not benefit form utilizing more than
Z#J_#k HﬁW‘QTHﬁ 4 njUJTUj is the aggregate dk dlmenS|oqs. In otherwords, even without a rank constraint
of noise and leakage interference at receiye# k) from (18), the optimalW;, will most likely be rankdy.
usersother than userk. We note that (16) is a non-convex
optimization, and is thus hard to solve.

Next, we develop a convex approximation of (16) which In this section, we develop iterative distributed algarith

generalizes the one that we developed for the single-bedh@t alternatingly optimize the precoding matrices and the
case. We defindV,, £ V. VI, and rewrite (16) as receive filters. We have shown that the approximations made

for obtaining the convex optimization (14) and (20) are ldase
~ ~ on the achievement of interference alignment. Accordingly
,Jmax (wk log det(H W, Hy,) we employ two phases in our algorithms: amterference
WieS . tr(Wy) <Py alignment phase, and apost-alignment optimization phase.
The purpose of the interference alignment phase is to aghiev
an interference alignment solution, not necessarily astiing

IV. I TERATIVE DISTRIBUTED ALGORITHMS

— ij log det(I + Nj_llrIkakafjk)

7k the weighted sum-rate objective. The output solution of the
— " w;logdet(N;), (17)  alignment phase then serves as the starting point for thte pos
J#k alignment weighted sum-rate maximization phase.
s.t. rank(Wy,) = d, (18) For the interference alignment phase, we apply the max-

SINR algorithm [8] with multiple random initializationst |
has been noted that the solution to which the max-SINR
i / , algorithm converges is much dependent on its initializatio
ence solely from usek, w_hlle Nj is the leakage interference step [11]. To address this issue, we randomly generate a
fro_m all t_he_ other — 2_|nte_r_1‘erers {L... ’_K}\j\k) plus sufficiently large number of initialization steps. We penfo
NOISE. S|m|lz_;\r_ to Fhe Intuition n the sm_gle-be_am Ca5€he max-SINR algorithm with all these initial points, and
!) when sufficient |nterferencg al!gnment is achieved, th elect the solution that achieves the best sum-rate as the ou
mterferlence from usekr mostly lies in the §ubspac_¢ SPanNeq, ;t of the interference alignment phase. In our simulations
by the interference from usefs, ..., K'}\j\k, and ii) when the selected solution from this first phase always achieves

_the achieved !nterference IS hear perfept, the total Iwk‘?“\;hterference alignment, and hence satisfies the preconditi
interference will be comparable to the noise level. Thu#h wi for the convex approximations developed in Section Ill

sufficient interference alignment, the largest singuldne®f
N;lHJTkaij will be relatively small, and we have the
following approximation [19]:

where S is the positive semidefinite cone.
At receiverj(# k), ILIJT,CW,CHJ»,C is the leakage interfer-

We note that multiple random initializations have also been
used in many other algorithms [11], [12], [15], [16] in order
to obtain a robust performance. There is clearly a trade-off
log det (I i NflgTICWkgjk) ~ tr (N'_II:Iz;ngIjIjk) ~ between the number of initializations used and the robgstne

! ’ ' ! ’ '19 and optimality of the algorithms. In real-time application
(19) using a large number of random initializations may not
Then, by dropping the rank constraint (18), we arrive at thee desirable as computation time is a major concern. To
following convex relaxation which can be solved efficiently simply avoid highly sub-optimal solutions, a fewer number

[19]: of random initializations may be sufficient to provide a
. . faster solution with adequate performance. Another way of
,max (wk log det(H Wi Hy) reducing the computation time is to just try a few iterations
WieS ™, tr(Wy) <P while testing different initializations, and proceed toaagler

—ijtr (Njflﬁﬂwkﬁjk) ) (20) number of iterations only after the best_initialization is
i select_ed. Mor_eover, there_ may be alterna_tlve methods (e.qg.
! _ S ) genetic algorithms and simulated annealing) that are able
From a relaxed solutio®V, we find its singular value {5 jmprove solutions’ optimality faster than using random
decompositionW,, = PXP?, and obtain a ranks ap- jnjtializations. These alternative methods are not adgs
proximation by keeping the largedt singular values while j this paper and are left for future work.
zeroing the rest. Finally, we recov&f, by For the post-alignment optimization phase, we develop
1) algorithms in the following that a_ltern_atingly opti_mizeeth
precoding matrices and the receive filters, for single-beam
whereo; is thei*" largest singular value of}, andp; is cases and multi-beam cases, respectively (cf. Table ).
its associated singular vector. In our numerical simutetjo  In Stage 2 of each iteration, given the current receive
we observed that the above relaxation does not seem filbers, each user optimizes its own precoding matrix in a
be restrictive as the relaxation always returns a solutiodistributed manner assuming the others’ precoding matrice
W, with the desired ranki,. The intuition is that,after are fixed. Clearly, in a single Stage 2, such distributed
interference alignment is achieved for all the users, the optimization can be applied for multiple rounds in which the
number of interference-free dimensions at recelvequals users update each other on the newly computed precoding

11 1
Vi = [plpg .. .pdk} diag(af,of,...,ajk),



TABLE |
PROPOSED ALGORITHMS FOR POST ALIGNMENT WEIGHTED SUNRATE
MAXIMIZATION .

Algorithm 1: Iterative Distributed Convex Optimization,
the Single-Beam Case

Initialize {v;} from the interference alignment phase.
Repeat
Stage 1: For eachuy, k ., K, optimize it by

solving (7) given the currerftv;,j = 1,..., K}.
Stage 2: Foreachy, k = 1,..., K, optimize it by solving
(14) given the curren{u;,5 = 1,..., K} and

{'Uj,j #k}'

Until approximate convergence.

Algorithm 2: Iterative Distributed Convex Optimization,
the Multi-Beam Case

Initialize {V}} from the interference alignment phase.
Repeat
Stage 1: For eaclUy, k ., K, optimize it by

solving (7) given the currertV;,j = 1,..., K}.
Stage 2: For eacly,,k = 1,..., K, first solve W}, from
(20) given the curren{U;,j = 1,...,K} and

{V},j # k}, and then recoveV;, by (21).
Until approximate convergence.

matrices after each round. However, we observed ohat
round of distributed optimization in Stage 2 of each itenati

is sufficient in practice, as the rate gain from performing

more rounds is negligible.

52

S S B a1
S [ 3 o
T T T

Weighted sum-rate achieved (bits)

I
N

40 i i i
0 15 20 25
Number of iterations

i i
5 10 30

Fig. 1. Convergence behavior of Algorithm 2 fok@x 6, 2)° interference
channelw; = wy = 0.1, w3 = wq = 1,ws = 10, SNR = 5 dB.

We generate all the channel matrices with independent
and identically distributedV'(0,1) entries. For each set of
channel realizations, we sweep tBBIR range from0 dB
to 40 dB, and evaluate the achieved weighted sum-rate. For
both cases, performance is averaged over 50 sets of random
channel realizations.

We perform the interference alignment phase as follows:

1) Randomly generate 100 feasible solutiofig,, k =
1,..., K} as different initialization steps.

2) With each initialization step, run the max-SINR algo-
rithm [8] for 500 iterations.

3) From the 100 final solutions, select the one that
achieves the highest sum-rate as the initial point of

There have been a few challenges in proving the conver-
gence of Algorithm 1 and 2 and the proof remains open.
The main issue is that, while each user tries to maximize

the post-alignment optimization phase.
For the post-alignment optimization phase, we run Algo-

the weighted sum-rate of all the users (cf. (10), (16)), i
makes an approximation (cf. (12), (19)) that dferent

from other users. A common objective that is optimize
by every user after each step is yet to be characterized

this distributed optimization. However, from our simudati

results, convergence of the proposed algorithms is obderv
in all the simulated cases, as demonstrated in Figure 1 in t

following section.

V. SIMULATION RESULTS

We evaluate the performance of the proposed algorithms in

5-user interference channels. We set the weights tebe
wy = 0.1,ws = wy = 1,ws = 10 to represent different
priorities of the users. We examine Algorithm 1(ihx 3,1)°
interference channels, i.e/k, M, = N, = 3,d, = 1, and
examine Algorithm 2 in(6 x 6,2)° interference channels,

i.e.,Vk, M, = N;, = 6,d;,, = 2. We note that, in both cases,

the following inequality whose satisfaction is necessargt a
sufficient for the existence of feasible interference atignt
solutions is satisfied with equality [20]:

M+ N

d< .
- K+1

fithm 1 and Algorithm 2 for the single-beam and multi-beam
cases respectively, each with 30 iterations. The convergen

&)ehawor is illustrated in Figure 1 for(@&x 6, 2)° interference

(frqannel withSNR = 5 dB.

We plot the simulation results on the achieved weighted
um-rate as a function &NR for the above two cases in
égure 2 and Figure 3 respectively. The performance of the
proposed algorithms is compared with that of the max-SINR

algorithm appliednith 100 random initializations.

We make the following observations:

o In the single-beam case, Algorithm 1 provides gains
in the weighted sum-rate over the max-SINR algorithm
applied with 100 random initializations, particularly at
low and intermediaté NRs. The gain decreases S8R
increases.

« Inthe multi-beam case, Algorithm 2 provides significant
gains in the weighted sum-rate over the max-SINR
algorithm applied with 100 random initializations at all
SNRs.

In particular, we note from Figure 3 that significant

weighted sum-rate improvement can be made over the max-

SINR algorithm with 100 random initializations even in the

high SNR regime.
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Fig. 2. Performance of Algorithm 1 i3 x 3,1)> interference channels:

w1 = w2 = 0.1,wz = wqg = 1,ws = 10.

180

both single-beam and multi-beam cases. Our precoder design
methods consisted of two phases: an interference align-
ment phase and a post-alignment optimization phase. For
the interference alignment phase, we employed the max-
SINR algorithm with a sufficiently large number of random
initializations to optimize the initial stage. The solutiof

the interference alignment phase then achieved interderen
alignment with high probability, and satisfied the precon-
ditions for the proposed convex approximations. For the
post-alignment optimization phase, taking the solution of
the interference alignment phase as the input, we proposed
novel iterative distributed algorithms based on the convex
approximations. Simulation results showed that the pregos
algorithms achieve promising weighted sum-rate gains over
the max-SINR algorithm applied with a large number of
random initializations. In the single-beam case, the aee
gain decreases &NR increases. In the multi-beam case,
however, the achieved gain is significant at&lIRs, includ-

ing the highSNR regime. Convergence and approximation
analysis of the proposed algorithms are topics of intemast f

—8&— Algorithm 2
| —©&— max-SINR

160
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Fig. 3. Performance of Algorithm 2 i6 x 6,2)° interference channels:

w1 = w2 = 0.1,wz = wqg = 1,ws = 10.

(5]

Note that while the max-SINR algorithm with a single
random initialization may not have robust performancehwit [g]
a sufficiently large number of random initializations, itsha
been demonstrated to provide a very favorable sum-rat
performance that represents the state of the art of interfer
ence alignment algorithms [11]. For the single beam case,
weighted sum-rate gains similar to ours over the max-SINR
algorithm were also demonstrated in [14], with the gainspg
decreasing in the highNR regime. For the multi-beam case,
however, compared to the max-SINR algorithm with a large
number of random initializations, the significant weighted g,
sum-rate gains achieved by Algorithm 2 at 8NRs have
not been observed in existing algorithms reported in thig0l
literature.

[11]
VI. CONCLUSIONS

We have studied the problem of optimal precoder design
for weighted sum-rate maximization in MIMO interferencel12]
channels. Exploiting interference alignment, we develbpe
convex approximations of this non-convex optimizatiorr, fo

future work.
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