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Abstract— Optimal precoder design for weighted sum-rate
maximization in multiple-input multiple-output interfer ence
networks is studied. For this well known non-convex opti-
mization problem, convex approximations based on interference
alignment are developed, for both single-beam and multi-beam
cases. Precoder design methods that consist of two phases, an
interference alignment phase and a post-alignment optimization
phase, are proposed. The interference alignment solution is
taken as the input to the post-alignment optimization phase. For
post-alignment weighted sum-rate maximization, novel iterative
distributed algorithms are proposed based on the developed
convex approximations. Simulation results show that the pro-
posed algorithms achieve promising weighted sum-rate gains
over existing interference alignment algorithms. Interestingly,
for the multi-beam case, significant gain is achieved at all SNRs,
including the high SNR regime.

I. I NTRODUCTION

We investigate the problem of precoder design for max-
imizing the weighted sum-rate in multiple-input multiple-
output (MIMO) interference channels with arbitrary constant
channel coefficients. We assume that each user treats interfer-
ence from other users as noise. It is well known that, due to
interference coupling, the problem is a non-convex optimiza-
tion and is hard to solve [1]. In the highSNR regime, there
has been recent progress on maximizing thesum degrees of
freedom, exploiting the idea of interference alignment [2]. It
has been shown that maximizing the sum degrees of freedom
is still an NP hard problem [3]. A closely related problem
is the feasibility of interference alignment, namely, whether
a given set of desired degrees of freedom is achievable for
all the users [4]. There have been several recent theoretical
breakthroughs on determining the conditions under which
interference alignment is feasible [4], [5], [6], [7]. In ad-
dition, many algorithms have been developed for finding
numerical solutions in any given channel realization that
successfully achieve interference alignment and the desired
degrees of freedom [3], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. All this algorithmic work is based on iterative
and distributed optimization of linear precoders and receive
filters. In particular, the max-SINR (signal-to-interference-
plus-noise ratio) algorithm developed in the seminal work of
[8] has a very favorablesum-rate performance at allSNRs,
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and is also computationally light. An alternative approach
for maximizing the weighted sum-rate in MIMO interference
channels is to use interference pricing [17]. However, it
has been shown that interference pricing approaches are
outperformed by interference alignment algorithms in the
high SNR regime [14].

With a weighted sum-rate objective, when the weights
among the users vary, the optimal solutions can vary sig-
nificantly. While most interference alignment algorithms try
to maximize sum degrees of freedom or sum-rate [8]–
[13], several works have taken different priorities among
the users into account via convex optimization approaches.
In [3], semidefinite programming (SDP) approximations are
exploited. However, it is unclear whether this approach
arrives at solutions that have good interference alignment
properties. Hence it is unclear whether this approach has
comparable performance at highSNRs relative to other iter-
ative interference alignment algorithms. In [14], a weighted
minimum mean square error (MMSE) beamforming ap-
proach is developed for single-beam cases where each user
utilizes exactly one signalling dimension. For this technique,
it was shown that, while the weighted MMSE algorithms
outperform interference alignment algorithms in weighted
sum-rate at low and intermediateSNRs, their performance
at highSNRs is very close. The weighted MMSE approach
was generalized to multi-beam cases in [15] and [16].

In this paper, we consider both single-beam and multi-
beam cases, and address the different user priorities by
performing weighted sum-rate maximization. The optimiza-
tion variables are the precoding matrices of all the users,
and we assume that the number of signalling dimensions
of each user is given. To maintain a first order optimality,
we ensure that through interference alignment the developed
solutions always achieve the expected numbers of degrees
of freedom for all the users. Then, based on the particular
properties of the interference alignment solutions, we make
convex approximations in maximizing the weighted sum-rate
objective. We propose iterative algorithms that optimize the
precoding matrices and the receive filters based on distributed
convex optimization. We show that, at allSNRs, (including
the high SNR regime,) the proposed algorithms achieve
significant improvement over the max-SINR algorithm [8]
applied with a large number of random initializations in the
multi-beam case.



While convergence of the proposed algorithms is observed
in all the simulated cases, the theoretical proof of this con-
vergence remains open. The main challenge lies in analyzing
the distributed nature of the algorithms in which, at each
iteration, different users approximate the global objective
differently.

The remainder of the paper is organized as follows. The
system model is established in Section II. In Section III
we develop distributed convex approximations of weighted
sum-rate maximization based on the properties of interfer-
ence alignment. Iterative distributed algorithms that optimize
precoders and receive filters are proposed in Section IV. In
Section V, the performance of the proposed algorithms are
evaluated and compared with existing interference alignment
algorithms. We end with a brief conclusion in Section VI.

II. SYSTEM MODEL

We consider MIMOK-user interference channels. For
userk, we denote byMk andNk the numbers of its transmit
and receive antennas, respectively. We denote byHkj ∈
R

Nk×Mj the constant real channel matrix from transmitter
j to receiverk. (We note that complex channel gains and
signalling can be equivalently transformed into real ones.)
At receiverk,

yk[t] =

K
∑

j=1

Hkjxj [t] + zk[t], (1)

wherexj [t] ∈ R
Mj×1,yk[t] ∈ R

Nk×1 are the transmitted
and the received signal vectors of userk, and zk[t] ∼
N (0, nkIk) is the noise vector withnk as the noise variance
at each receive antenna of userk. We focus on linear
precoding schemes: For userk, let Vk ∈ R

Mk×dk be its
precoding matrix, and∀k,

xk[t] = Vksk[t], (2)

wheredk is the number of independent information streams
of userk, and sk[t] ∈ R

dk×1 is the information vector of
userk whosedk elements each independently encodes one
of the dk streams of userk. We assume that each element
of sk[t] is drawn from an independently generated Gaussian
codebook with unit power. For notational simplicity, we omit
the time indext from now on.

A. Decoding Assumptions

We assume that each user treats signals from all the other
users as noise. For userk’s own dk streams, we assume that
they arejointly decoded at receiverk. This gives rise to the
following achievable rate of userk [18]:

Rk =
1

2
log det

(

I + V T
k HT

kkB
−1
k HkkVk

)

, (3)

where

Bk =
∑

j 6=k

HkjVjV
T
j HT

kj + nkI (4)

is the covariance matrix of the received interference plus
noise at receiverk. We now formulate theweighted sum-
rate maximization problem as follows:

max
Vk,k=1,...,K

K
∑

k=1

wkRk, (5)

s.t. tr(VkV
T
k ) ≤ Pk, k = 1, . . . ,K,

wherePk is userk’s power constraint.
An alternative decoding assumption is to decode each

stream by treating all other streams as noise, even if the
other streams are from the same desired user. Interestingly,
although treating all other streams as noise is suboptimal
compared to jointly decoding all the streams of the desired
user, this technique has been widely adopted in iterative
interference alignment algorithms. The main reason is that
it is helpful in finding solutions that achieve interference
alignment, (albeit not necessarily optimized for rate objec-
tives). Finally, an additional constraint that is commonly
applied in the literature is to restrict the precoding matrices
to be orthogonal matrices, particularly when the objectiveis
minimizing leakage interference instead of maximizing rates.
We note that while adding this constraint does not restrict
optimality in minimizing leakage interference, it can restrict
optimality in maximizing rates.

B. Linear Receive Filters

Solving (5) by directly optimizing the precoding matrices
is hard because the rate function (3) is non-concave in
{Vk, k = 1, . . . ,K}. Instead, we introduce linear receiver
filters asauxiliary optimization variables: By first applying
a linear receive filterUk ∈ R

Nk×dk at receiverk and
then jointly decoding the symbols insk from UT

k yk, the
achievable rate of userk becomes

Rk =
1

2
log det

(

I + V T
k HT

kkUk(U
T
k BkUk)

−1UT
k HkkVk

)

=
1

2
log det

(

I + (UT
k BkUk)

−1UT
k HkkVkV

T
k HT

kkUk

)

.

(6)

It can be immediately seen that there is no capacity loss, i.e.,
(3) = (6), as long as the followingoptimal linear receive
filter is applied:

Uk = B−1
k HkkVk. (7)

The introduction of the receive filters enables a series of
approximations of the rate function (6), based on which we
develop efficient algorithms for approximately solving (5)in
the following sections.

III. D ISTRIBUTED CONVEX OPTIMIZATION BASED ON

INTERFERENCEALIGNMENT

In this section, we focus on optimizing the precoding
matrices with fixed receive filters. We approach this non-
convex optimization using distributed convex approximation
motivated by the properties of interference alignment so-
lutions. This provides the building blocks for the iterative
algorithms that we will develop in Section IV.



A. The Single-beam Case

We first consider the single-beam case in which each user
transmits only one stream, i.e.,dk = 1, ∀k. In this case, the
precoding matrices and the receive filters{Vk,Uk} become
vectors, and we denote them by{vk,uk, k = 1, . . . ,K}.
Accordingly, (6) is equivalent to

Rk =
1

2
log

(

1 +
|uT

kHkkvk|2
∑

j 6=k |u
T
kHkjvj |2 + nk|uk|2

)

. (8)

Given{vk}, the optimal{uk} are computed by (7). We now
investigate the optimization of{vk} with a given{uk}. We
first make a highSINR approximation for (8):
Define∀k, j,hkj , HT

kjuk, then

Rk =
1

2
log(1 +

|hT
kkvk|2

∑

j 6=k |h
T
kjvj |2 + nk|uk|2

)

≈
1

2
log(

|hT
kkvk|2

∑

j 6=k |h
T
kjvj |2 + nk|uk|2

), (9)

We note that the approximation gap is at most1
2 bit, provided

that SINR ≥ 0 dB which is typically true with interference
alignment.

For solving (5), instead of jointly optimizingv1, . . . ,vK ,
we considerdistributed algorithms in which each user op-
timizes its own precoding vector while treating other users’
precoding vectors as fixed. However, we let each user keep
a global perspective by keeping the weighted sum-rate as its
objective function. Specifically, for any userk, it optimizes
its precoding vectorvk as follows:

max
|vk|2≤Pk

1

2

K
∑

j=1

wj log

(

|hT
jjvj |2

∑

i6=j |h
T
jivi|2 + nj |uj |2

)

⇔ max
|vk|2≤Pk



wk log |h
T
kkvk|

2−
∑

j 6=k

wj log
(

|hT
jkvk|

2 +Nj

)



,

(10)

where Nj ,
∑

i6=j,i6=k

|hT
jivi|

2 + nj |uj |
2

is theaggregate of noise and leakage interference at receiver
j(6= k) from usersother than user k, and the notation
⇔ denotes equivalence. By solving (10), userk takes into
account both its own desired signal and its interference to
the otherK − 1 users.

Problem (10) remains a non-convex optimization which is
hard to solve. To develop an accurate convex approximation,
we exploit the intuition frominterference alignment. Firstly,

(10)⇔ max
|vk|2≤Pk



2wklog |h
T
kkvk|−

∑

j 6=k

wj log

(

1+
|hT

jkvk|2

Nj

)





−
∑

j 6=k

wj log(Nj). (11)

Note that |hT
jkvk|2 + Nj constitutes the total leakage in-

terference plus noise at receiverj: |hT
jkvk|2 is the leakage

interference solely from userk, whileNj is the leakage inter-
ference from all the otherK−2 interferers ({1, . . . ,K}\j\k)
plus noise. Now, we analyze the consequence of successful
interference alignment as follows:

• If near perfect interference alignment is achieved, the
total leakage interference will be less than or compara-
ble to the noise level.

• Even if the leakage interference significantly exceeds
the noise level, with sufficient interference alignment,
the interference from userk shall be aligned to mostly
lie in the subspace spanned by the interference from
users{1, . . . ,K}\j\k.

Thus, with sufficient interference alignment,|hT
jkvk|2/Nj

will be relatively small. This motivates us to make the
following approximation:

log

(

1 +
|hT

jkvk|2

Nj

)

≈
|hT

jkvk|2

Nj

. (12)

Accordingly, (11) is approximated as

max
|vk|2≤Pk

2wk log |h
T
kkvk| −

∑

j 6=k

wj

|hT
jkvk|2

Nj

. (13)

Finally, it is straightforward to see that restricting (13)to
the halfspace ofhT

kkvk > 0 gives the same optimal value as
restricting (13) to the other halfspacehT

kkvk < 0. Therefore,
(13) is equivalent to the followingconvex optimization which
can be solved efficiently [19]:

max
|vk|2≤Pk,h

T
kk

vk>0
2wk log

(

hT
kkvk

)

−
∑

j 6=k

wj

|hT
jkvk|2

Nj

.

(14)

B. The Multi-beam Case

We now generalize the above single-beam results to the
multi-beam case, in which each user can transmit any given
number of streams. Given{Vk}, the optimal {Uk} are
computed by (7). We now investigate the optimization of
{Vk} with a given{Uk}. With a highSINR approximation
of (6),

Rk≈
1

2
log det

(

UT
k HkkVkV

T
k HT

kkUk

)

−log det
(

UT
k BkUk

)

(15)

Similarly to the single-beam case, we consider distributed
algorithms in which each user optimizes its own precoding
matrix while treating the other users’ precoding matrices as
fixed, with the weighted sum-rate as the objective function.
Userk thus optimizesVk as follows:

max
tr(VkV

T
k

)≤Pk

K
∑

j=1

wjRj ⇔

max
tr(VkV

T
k

)≤Pk

wk log det(H̃
T
kkVkV

T
k H̃kk)

−
∑

j 6=k

wj log det(H̃
T
jkVkV

T
k H̃jk +Nj)

(16)



where H̃jk , HT
jkUj , and Nj ,

∑

i6=j,i6=k H̃
T
jiViV

T
i H̃ji + njU

T
j Uj is the aggregate

of noise and leakage interference at receiverj(6= k) from
usersother than userk. We note that (16) is a non-convex
optimization, and is thus hard to solve.

Next, we develop a convex approximation of (16) which
generalizes the one that we developed for the single-beam
case. We defineWk , VkV

T
k , and rewrite (16) as

max
Wk∈S

Mk
+

, tr(Wk)≤Pk

(

wk log det(H̃
T
kkWkH̃kk)

−
∑

j 6=k

wj log det(I +N−1
j H̃T

jkWkH̃jk)

)

−
∑

j 6=k

wj log det(Nj), (17)

s.t. rank(Wk) = dk, (18)

whereSMk

+ is the positive semidefinite cone.
At receiverj(6= k), H̃T

jkWkH̃jk is the leakage interfer-
ence solely from userk, whileNj is the leakage interference
from all the otherK − 2 interferers ({1, . . . ,K}\j\k) plus
noise. Similar to the intuition in the single-beam case,
i) when sufficient interference alignment is achieved, the
interference from userk mostly lies in the subspace spanned
by the interference from users{1, . . . ,K}\j\k, and ii) when
the achieved interference is near perfect, the total leakage
interference will be comparable to the noise level. Thus, with
sufficient interference alignment, the largest singular value of
N−1

j H̃T
jkWkH̃jk will be relatively small, and we have the

following approximation [19]:

log det
(

I +N−1
j H̃T

jkWkH̃jk

)

≈ tr
(

N−1
j H̃T

jkWkH̃jk

)

.

(19)

Then, by dropping the rank constraint (18), we arrive at the
following convex relaxation which can be solved efficiently
[19]:

max
Wk∈S

Mk
+

, tr(Wk)≤Pk

(

wk log det(H̃
T
kkWkH̃kk)

−
∑

j 6=k

wjtr
(

N−1
j H̃T

jkWkH̃jk

)

)

. (20)

From a relaxed solutionWk, we find its singular value
decompositionWk = PΣP T , and obtain a rank-dk ap-
proximation by keeping the largestdk singular values while
zeroing the rest. Finally, we recoverVk by

Vk =
[

p1p2 . . .pdk

]

diag(σ
1
2

1 , σ
1
2

2 , . . . , σ
1
2

dk
), (21)

whereσi is the ith largest singular value ofWk, andpi is
its associated singular vector. In our numerical simulations,
we observed that the above relaxation does not seem to
be restrictive as the relaxation always returns a solution
Wk with the desired rankdk. The intuition is that,after
interference alignment is achieved for all the users, the
number of interference-free dimensions at receiverk equals

dk, and thus userk will not benefit form utilizing more than
dk dimensions. In other words, even without a rank constraint
(18), the optimalWk will most likely be rankdk.

IV. I TERATIVE DISTRIBUTED ALGORITHMS

In this section, we develop iterative distributed algorithms
that alternatingly optimize the precoding matrices and the
receive filters. We have shown that the approximations made
for obtaining the convex optimization (14) and (20) are based
on the achievement of interference alignment. Accordingly,
we employ two phases in our algorithms: aninterference
alignment phase, and apost-alignment optimization phase.
The purpose of the interference alignment phase is to achieve
an interference alignment solution, not necessarily addressing
the weighted sum-rate objective. The output solution of the
alignment phase then serves as the starting point for the post-
alignment weighted sum-rate maximization phase.

For the interference alignment phase, we apply the max-
SINR algorithm [8] with multiple random initializations. It
has been noted that the solution to which the max-SINR
algorithm converges is much dependent on its initialization
step [11]. To address this issue, we randomly generate a
sufficiently large number of initialization steps. We perform
the max-SINR algorithm with all these initial points, and
select the solution that achieves the best sum-rate as the out-
put of the interference alignment phase. In our simulations,
the selected solution from this first phase always achieves
interference alignment, and hence satisfies the preconditions
for the convex approximations developed in Section III.

We note that multiple random initializations have also been
used in many other algorithms [11], [12], [15], [16] in order
to obtain a robust performance. There is clearly a trade-off
between the number of initializations used and the robustness
and optimality of the algorithms. In real-time applications,
using a large number of random initializations may not
be desirable as computation time is a major concern. To
simply avoid highly sub-optimal solutions, a fewer number
of random initializations may be sufficient to provide a
faster solution with adequate performance. Another way of
reducing the computation time is to just try a few iterations
while testing different initializations, and proceed to a larger
number of iterations only after the best initialization is
selected. Moreover, there may be alternative methods (e.g.
genetic algorithms and simulated annealing) that are able
to improve solutions’ optimality faster than using random
initializations. These alternative methods are not addressed
in this paper and are left for future work.

For the post-alignment optimization phase, we develop
algorithms in the following that alternatingly optimize the
precoding matrices and the receive filters, for single-beam
cases and multi-beam cases, respectively (cf. Table I).

In Stage 2 of each iteration, given the current receive
filters, each user optimizes its own precoding matrix in a
distributed manner assuming the others’ precoding matrices
are fixed. Clearly, in a single Stage 2, such distributed
optimization can be applied for multiple rounds in which the
users update each other on the newly computed precoding



TABLE I

PROPOSED ALGORITHMS FOR POST ALIGNMENT WEIGHTED SUM-RATE

MAXIMIZATION .

Algorithm 1: Iterative Distributed Convex Optimization,
the Single-Beam Case

Initialize {vk} from the interference alignment phase.
Repeat
Stage 1: For eachuk, k = 1, . . . ,K, optimize it by

solving (7) given the current{vj , j = 1, . . . ,K}.
Stage 2: For eachvk, k = 1, . . . ,K, optimize it by solving

(14) given the current{uj, j = 1, . . . ,K} and
{vj , j 6= k},

Until approximate convergence.

Algorithm 2: Iterative Distributed Convex Optimization,
the Multi-Beam Case

Initialize {Vk} from the interference alignment phase.
Repeat
Stage 1: For eachUk, k = 1, . . . ,K, optimize it by

solving (7) given the current{Vj , j = 1, . . . ,K}.
Stage 2: For eachVk, k = 1, . . . ,K, first solveWk from

(20) given the current{Uj , j = 1, . . . ,K} and
{Vj , j 6= k}, and then recoverVk by (21).

Until approximate convergence.

matrices after each round. However, we observed thatone
round of distributed optimization in Stage 2 of each iteration
is sufficient in practice, as the rate gain from performing
more rounds is negligible.

There have been a few challenges in proving the conver-
gence of Algorithm 1 and 2 and the proof remains open.
The main issue is that, while each user tries to maximize
the weighted sum-rate of all the users (cf. (10), (16)), it
makes an approximation (cf. (12), (19)) that isdifferent
from other users. A common objective that is optimized
by every user after each step is yet to be characterized in
this distributed optimization. However, from our simulation
results, convergence of the proposed algorithms is observed
in all the simulated cases, as demonstrated in Figure 1 in the
following section.

V. SIMULATION RESULTS

We evaluate the performance of the proposed algorithms in
5-user interference channels. We set the weights to bew1 =
w2 = 0.1, w3 = w4 = 1, w5 = 10 to represent different
priorities of the users. We examine Algorithm 1 in(3×3, 1)5

interference channels, i.e.,∀k,Mk = Nk = 3, dk = 1, and
examine Algorithm 2 in(6 × 6, 2)5 interference channels,
i.e., ∀k,Mk = Nk = 6, dk = 2. We note that, in both cases,
the following inequality whose satisfaction is necessary and
sufficient for the existence of feasible interference alignment
solutions is satisfied with equality [20]:

d ≤
M +N

K + 1
.
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Fig. 1. Convergence behavior of Algorithm 2 for a(6×6, 2)5 interference
channel,w1 = w2 = 0.1, w3 = w4 = 1, w5 = 10, SNR = 5 dB.

We generate all the channel matrices with independent
and identically distributedN (0, 1) entries. For each set of
channel realizations, we sweep theSNR range from0 dB
to 40 dB, and evaluate the achieved weighted sum-rate. For
both cases, performance is averaged over 50 sets of random
channel realizations.

We perform the interference alignment phase as follows:
1) Randomly generate 100 feasible solutions{Vk, k =

1, . . . ,K} as different initialization steps.
2) With each initialization step, run the max-SINR algo-

rithm [8] for 500 iterations.
3) From the 100 final solutions, select the one that

achieves the highest sum-rate as the initial point of
the post-alignment optimization phase.

For the post-alignment optimization phase, we run Algo-
rithm 1 and Algorithm 2 for the single-beam and multi-beam
cases respectively, each with 30 iterations. The convergence
behavior is illustrated in Figure 1 for a(6×6, 2)5 interference
channel withSNR = 5 dB.

We plot the simulation results on the achieved weighted
sum-rate as a function ofSNR for the above two cases in
Figure 2 and Figure 3 respectively. The performance of the
proposed algorithms is compared with that of the max-SINR
algorithm appliedwith 100 random initializations.

We make the following observations:
• In the single-beam case, Algorithm 1 provides gains

in the weighted sum-rate over the max-SINR algorithm
applied with 100 random initializations, particularly at
low and intermediateSNRs. The gain decreases asSNR

increases.
• In the multi-beam case, Algorithm 2 provides significant

gains in the weighted sum-rate over the max-SINR
algorithm applied with 100 random initializations at all
SNRs.

In particular, we note from Figure 3 that significant
weighted sum-rate improvement can be made over the max-
SINR algorithm with 100 random initializations even in the
high SNR regime.
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Fig. 2. Performance of Algorithm 1 in(3× 3, 1)5 interference channels:
w1 = w2 = 0.1, w3 = w4 = 1, w5 = 10.
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Fig. 3. Performance of Algorithm 2 in(6× 6, 2)5 interference channels:
w1 = w2 = 0.1, w3 = w4 = 1, w5 = 10.

Note that while the max-SINR algorithm with a single
random initialization may not have robust performance, with
a sufficiently large number of random initializations, it has
been demonstrated to provide a very favorable sum-rate
performance that represents the state of the art of interfer-
ence alignment algorithms [11]. For the single beam case,
weighted sum-rate gains similar to ours over the max-SINR
algorithm were also demonstrated in [14], with the gains
decreasing in the highSNR regime. For the multi-beam case,
however, compared to the max-SINR algorithm with a large
number of random initializations, the significant weighted
sum-rate gains achieved by Algorithm 2 at allSNRs have
not been observed in existing algorithms reported in the
literature.

VI. CONCLUSIONS

We have studied the problem of optimal precoder design
for weighted sum-rate maximization in MIMO interference
channels. Exploiting interference alignment, we developed
convex approximations of this non-convex optimization, for

both single-beam and multi-beam cases. Our precoder design
methods consisted of two phases: an interference align-
ment phase and a post-alignment optimization phase. For
the interference alignment phase, we employed the max-
SINR algorithm with a sufficiently large number of random
initializations to optimize the initial stage. The solution of
the interference alignment phase then achieved interference
alignment with high probability, and satisfied the precon-
ditions for the proposed convex approximations. For the
post-alignment optimization phase, taking the solution of
the interference alignment phase as the input, we proposed
novel iterative distributed algorithms based on the convex
approximations. Simulation results showed that the proposed
algorithms achieve promising weighted sum-rate gains over
the max-SINR algorithm applied with a large number of
random initializations. In the single-beam case, the achieved
gain decreases asSNR increases. In the multi-beam case,
however, the achieved gain is significant at allSNRs, includ-
ing the highSNR regime. Convergence and approximation
analysis of the proposed algorithms are topics of interest for
future work.
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