
A Polynomial-Time Method to Find the Sparsest Unobservable Attacks
in Power Networks

Yue Zhao, Andrea Goldsmith, and H. Vincent Poor

Abstract— Power injection attacks that alter generation and
loads at buses in power networks are studied. The system
operator employs Phasor Measurement Units (PMUs) to detect
such physical attacks, while attackers devise attacks that are
unobservable by such PMU networks. “Unalterable buses”,
whose power injections cannot be changed, are also considered
in our model. It is shown that, given the PMU locations, the
minimum sparsity of unobservable attacks has a simple form
with probability one, namely, κ̄(GM) + 1, where κ̄(GM) is
defined as the vulnerable vertex connectivity of an augmented
graph. The constructive proof allows one to find the entire set
of the sparsest unobservable attacks in polynomial time.

I. INTRODUCTION

The power grid is a critical infrastructure whose security
is of paramount importance to national security. While appli-
cation of information technology is increasingly being used
to make the power grid more robust, flexible and dynamic,
this change also makes the grid more vulnerable to cyber
attacks. Data injection attacks that alter power system mea-
surements can disrupt a power system operator’s situational
awareness [1]. Control signals of power grid components,
including generation and loads, can also be hacked, leading
to instability and failures of power systems [2].

The feasibility of constructing unobservable data injection
attacks that can alter the system operator’s state estimates
and pass any bad data detection mechanisms in place was
first shown in [1]. A central issue that arises for such attacks
is characterizing the sparsest unobservable data injection at-
tack, as attackers often have limited resources and would like
to achieve the minimum attack implementation complexity
while maintaining unobservability. However, this problem
requires solving an NP-hard l0 minimization problem. While
efficiently finding the set of sparsest unobservable attacks
in general remains an open problem, exact solutions under
some special problem settings have been developed [3] [4]
[5]. Another important aspect of data injection attacks is their
impact on the power system. As state estimates are used to
guide system and market operation of the grid, several studies
have investigated the impact of data attacks on optimal power
flow recommendations [6] and locational marginal prices in
a deregulated power market [7] [8].
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On the other hand, physical attacks that directly alter
the power network’s physical processes also pose significant
threats to our power system. Power injection attacks that
change generation and loads can be implemented via hacking
control signals of generators as well as Internet-based mes-
sage attacks [2]. Topological attacks have been considered in
[9], representing another type of physical attack. In addition,
dynamic power injection attacks have been analyzed in
several studies. For example, in [10], conditions for the
existence of undetectable and unidentifiable attacks were
provided, and the sizes of the sets of such attacks were shown
to be bounded by graph-theoretic quantities. Alternatively, in
[11] and [12], state estimation is considered in the presence
of both data injection attacks and power injection attacks.

In this paper, we investigate power injection attacks that
alter generation and loads in power networks. Furthermore,
our model allows for the power injections at some buses
to be “unalterable”. This captures the cases of “zero in-
jection buses” with no generation or load, and buses that
are protected by the system operator. As such, this paper
generalizes our prior work [13] that assumes all buses are
alterable. We consider a grid operator that employs PMUs
to monitor the network. We study the open l0 minimization
problem of finding the sparsest unobservable attacks given
any sets of PMU locations and alterable buses.

We first study the condition under which unobervable
attacks are feasible. We prove that, with generic grid pa-
rameters, the existence of an unobservable power injection
attack restricted to any set of buses can be determined with
probability one by computing a quantity called the structural
rank. Next, we prove that, with generic grid parameters,
the NP-hard problem of finding the minimum sparsity of
unobservable attacks can be solved in polynomial time with
probability one. Specifically, the sparsity of the optimal so-
lution is κ̄(GM)+1, where κ̄(GM) is the “vulnerable vertex
connectivity” that we define for an augmented graph of the
original power network. Thus we show that the entire set of
globally optimal solutions to the sparsest unobservable attack
problem can be found in polynomial time, with probability
one.

The remainder of the paper is organized as follows. In
Section II, models of the power network, power injection
attacks, PMUs and unalterable buses are established. In
addition, the minimum sparsity problem of unobservable
attacks is formulated. In Section III we provide the feasibility
condition for unobservable attacks restricted to any subset of
the buses. In Section IV we prove that the minimum sparsity
of unobservable attacks has a simple form with probability



one, which can be computed in polynomial time. Conclusions
are drawn in Section V.

II. PROBLEM FORMULATION

A. Power network model

We consider a power network with N buses, and denote
the set of buses and the set of transmission lines by N =
{1, 2, . . . , N} and L = {1, 2, . . . , L} respectively. For a line
l ∈ L that connects buses n and m, denote its reactance by
xl as well as xnm, and define its incidence vector ml ∈ RN

as follows:

ml(i) =

 1, if i = n,
−1, if i = m,
0, otherwise.

Based on the power network topology and line reactances,
we construct a weighted graph G = {N ,L,w} where the
edge weight wl , 1

xl
,∀l = 1, . . . , L. Under a DC power

flow model, the real power injections P ∈ RN and the
voltage phase angles θ ∈ RN satisfy P = Bθ, where
B =

∑L
l=1

1
xl
mlm

T
l ∈ RN×N is the Laplacian of the

weighted graph G. We consider attackers inflicting power
injection attacks that alter the generation and loads in the
power network. We denote the power injections under normal
conditions by P , and denote a power injection attack by
∆P ∈ RN . Thus the post-attack power injections are
P + ∆P .

Furthermore, we generalize our model to allow a subset
of buses to be “unalterable buses”, meaning that their nodal
power injection cannot be changed by attackers. This allows
us to model the following scenarios:
• A “zero injection” bus that simply connects multiple

lines without nodal generation or load, and hence its
power injection is always zero and cannot be changed.

• A bus “protected” by the system operator, so that its
power injection is not accessible by the attacker.

We denote the set of unalterable buses by U . The other buses
Uc are termed “alterable” buses.

B. Sensor model and unobservable attacks

We consider the use of PMUs by the system operator
for monitoring the power network in order to detect power
injection attacks. With PMUs installed at the buses, we
consider the following two different sensor models:

1) A PMU securely measures the voltage phasor of the
bus at which it is installed.

2) A PMU securely measures the voltage phasor of the
bus at which it is installed, as well as the current
phasors on all the lines connected to this bus1.

We denote the set of buses with PMUs by M (⊆ N ), and
let M , |M| be the total number of PMUs, where | · |
denotes the cardinality of a set. Without loss of generality
(WLOG), we choose one of the buses in M to be the angle
reference bus. We say that a power injection attack ∆P is
unobservable if it leads to zero changes in all the quantities

1In practice, the second PMU measurement model is achieved by in-
stalling PMUs on all the lines connected to a bus.

measured by the PMUs. With the first PMU model described
above, we have the following definition:

Definition 1 (Unobservability condition). An attack ∆P is
unobservable if and only if

∃∆θ, such that ∆P = B∆θ and ∆θM = 0, (1)

where ∆θM denotes the M × 1 sub-vector of ∆θ obtained
by keeping its M entries that have indices in M.

With the second PMU model described above, for any
bus n ∈ N , it is immediate to verify that the following three
conditions are equivalent:

1) There are no changes of the voltage phasor at n and
of the current phasors on all the lines connected to n.

2) There are no changes of the voltage phasor at n and
of the power flows on all the lines connected to n.

3) ∀n′ ∈ N [n], there is no change of the voltage phasor at
n′, where N [n] is the closed neighborhood of n which
includes n and its neighboring buses N(n).

Thus, for forming unobservable attacks, the following two
situations are equivalent to the attacker:
• The system operator monitors the set of buses M with

the second PMU model;
• The system operator monitors the set of buses N [M]

with the first PMU model,
where N [M] is the closed neighborhood of M which
includes all the buses in M and their neighboring buses
N(M). Thus, the unobservability condition with the second
PMU model is obtained by replacing M with N [M] in (1).
WLOG, we employ the first PMU model in the following
analysis, and based on the discussion above all the results
can be directly translated to the second PMU model.

C. Sparsest unobservable attacks

Since attackers are typically resource-constrained, they can
choose only a limited number of buses to implement attacks.
Thus, for an attack vector ∆P , we use its cardinality ‖∆P ‖0
to model its execution complexity. For minimizing attack
complexity, an attacker is interested in finding the set of
sparsest attacks that satisfy the unobservability condition (1):

min
∆θ
‖∆P ‖0 (2)

s.t. ∆P = B∆θ, ∆θM = 0, ∆PU = 0, ∆θ 6= 0.

Since ∆θM = 0, ∆θ 6= 0 ⇒ B∆θ =
BNMc∆θMc , ∆θMc 6= 0, a more compact form of (2)
is as follows:

(2) ⇔ min
∆θMc 6=0,

(BNMc∆θMc )U=0

‖BNMc∆θMc‖0, (3)

where Mc = N\M denotes the complement of M , and
BNMc is the submatrix of B formed by choosing all its
rows and a set of columns Mc.

We now note that problem (3) is NP-hard: Specifically,
as a special case of the cospark problem of a matrix [14],
problem (3) resembles the security index problem discussed
in [5], which has been proven to be NP-hard. For data



injection attacks, problems of this type have been shown to
be solvable exactly in polynomial time under some special
problem settings [3] [4] [5]. In general, low complexity
heuristics have been developed for solving l0 minimization
problems (e.g., l1 relaxation).

D. Graph augmentation
Given the locations of the sensors M, we now introduce

an augmentation of the graph G that will prove key to
developing the main results later. In particular, we will show
that a vertex cut of the augmented graph can never disconnect
those buses with PMUs from each other.

Definition 2. Given a set of buses M⊆ N , GM is defined
to be the following augmented graph based on G:

1) GM includes all the buses in G, and has one additional
unalterable dummy bus.

2) Define an augmented set M̄ that contains M and the
unalterable dummy bus.

3) GM includes all the edges of G, and an edge is added
between every pair of buses in M̄. The weight for each
of these added edges can be chosen arbitrarily as any
positive number.

We note that the dummy bus is only connected to the set
of sensors M. We observe the following key facts. First,
an unobservable attack in the original graph G leads to zero
changes in all the voltage phase angles inM. Thus, any line
between a pair of buses in M would see a zero change of
the power flow on it. It is then clear that the added dummy
bus and the added lines in GM do not lead to any power
flow changes in the network under any unobservable attack.
We thus have the following lemma:

Lemma 1. An attack is unobservable byM in G if and only
if it is unobservable by M in GM.

This allows us to work with the augmented graph GM
instead of G. It is clear that the weights of the added edges
in GM do not matter for Lemma 1 to hold.

III. FEASIBILITY CONDITION OF UNOBSERVABLE
ATTACKS

In this section, we address the following question whose
solutions will be useful in solving the minimum sparsity
problem (3): Assuming that the attacker can only alter the
power injections at a subset of the buses, denoted byA ⊆ Uc,
does there exist an attack that is unobservable by a set of
PMUs M? For any given A, a feasible non-zero attack
∆P (6= 0) must satisfy ∆PAc = 0. In other words, it must
not alter the power injections at the buses in Ac.

From (1), there exists an unobservable non-zero attack if
and only if

∃∆P ,∆θ 6= 0, s.t.

∆P = B∆θ, ∆PAc = 0, ∆θM = 0. (4)

Since
{

∆θM = 0
∆θ 6= 0

⇒ ∆θMc 6= 0,∆P 6= 0, we have that

(4) is equivalent to

∃∆θMc 6= 0, s.t. (∆PAc =) BAcMc∆θMc = 0, (5)

c

0

0

0

0

P
0 0 0 0 0

Tθ

B

Fig. 1. An illustration of (5) where the submatrix formed by the shaded
blocks represents BAcMc .

where BAcMc is the submatrix of B formed by its rows
Ac and columns Mc. An illustration of (5) is depicted in
Figure 1, where the submatrix formed by the shaded blocks
represents BAcMc . From (5), we have the following lemma
on the feasibility condition of unobservable attacks.

Lemma 2. Given A and M, there exists an unobservable
non-zero attack if and only if BAcMc is column rank
deficient.

To analyze when this column rank deficiency condition,
rank (BAcMc) < |Mc|, is satisfied, we start with the
following observations based on the fact that B is the
Laplacian of the weighted graph G.

1) The signs (+1, −1, or 0) of the entries of B are fully
determined by the network topology:

Bij > 0, if i = j,

Bij < 0, if node (bus) i and node j (i 6= j)

are connected by an edge (transmission line),
Bij = 0, if node (bus) i and node j (i 6= j) are

not connected.

2) The values of the non-zero entries of B are determined
by the line reactances {xij}:

Bii =
∑
j 6=i

wij =
∑
j 6=i

1

xij
,

Bij = −wij = − 1

xij
, if i 6= j and Bij 6= 0.

When all the line reactances in the power network are
known, so are the entries of the submatrix BAcMc , and it
is immediate to compute whether rank (BAcMc) < |Mc|.
Without knowing the exact values of any line reactances,
we will show that it can be determined almost surely if
rank (BAcMc) < |Mc| by computing the structural rank
of BAcMc , defined as follows [15].

Definition 3 (Set of independent entries). A set of indepen-
dent entries of a matrix H is a set of nonzero entries, no
two of which lie on the same line (row or column).



Definition 4 (Structural rank). The structural rank of a
matrix H , denoted by sprank(H), is the maximum number
of elements contained in at least one set of independent
entries.

A basic relation between the structural rank and the rank
of a matrix is the following [15]:

sprank(BAcMc) ≥ rank(BAcMc). (6)

In the literature, structural rank is also termed “generic rank”
[16].

Returning to the problem of unobservable attacks, we
assume that we have generic power grid parameters, i.e.,
we assume that the line reactances xl (l = 1, 2, . . . , L) are
independent, but not necessarily identical, random variables
drawn from continuous probability distributions. We assume
that the reactances are bounded away from zero from below
(as lines do not have zero reactances in practice). Accord-
ingly, the analysis in this work has a similar flavor to that
of structural properties as in [15] and [16], and we will
develop results that hold with probability one. We believe the
independence (but not identically distributed) assumption is
sufficiently general in practice. In particular, there are uncer-
tainties in factors that influence the reactance of a line (e.g.
the distance that a line travels, the degradation of a line over
time). These uncertainties can be modeled as independent
(but not identically distributed) random variables, leading to
the model employed in this paper.

Clearly, BAcMc is always column rank deficient when
|Ac| < |Mc|. We next discuss the case of |Ac| ≥ |Mc|. We
begin with the special case A =M for which we have the
following lemma, whose proof is provided in [17]:

Lemma 3. Let B ∈ RN×N be the Laplacian of a connected
graph G with strictly positive edge weights. For any set
of node indices I ⊂ {1, 2, . . . , N}, denote by BII the
submatrix of B formed by B’s components that have row
and column indices in I. Then ∀I, |I| ≤ N − 1, BII is of
full rank.

Note that Lemma 3 holds deterministically without as-
suming generic edge weights of the graph. For the case of
A = M, we let I = Ac = Mc, and Lemma 3 proves that
rank (BAcMc) = |Mc|. This implies the intuitive fact that
there exists no attack restricted to A that is unobservable by
a set of PMUs M = A.

Now, we address the general case of arbitrary A and
M. We have the following theorem demonstrating that
having sprank(BAcMc) = |Mc| almost surely guarantees
rank(BAcMc) = |Mc|. The proof is provided in [17].

Theorem 1. For a connected weighted graph G =
{N ,L,w}, assume that the edge weights are indepen-
dent continuous random variables strictly bounded away
from zero from below, and denote the Laplacian of G by
B ∈ RN×N . Then, any N ′ × N ′′ submatrix of B, with
min(N ′, N ′′) ≤ N − 1, has a rank of min(N ′, N ′′) with
probability one if it has a structural rank of min(N ′, N ′′).

From Theorem 1, with |Ac| ≥ |Mc|, if

sprank(BAcMc) = |Mc| ≤ N − 1, we have with
probability one that rank(BAcMc) = |Mc|, and there exists
no attack restricted to A that is unobservable by a set of
PMUs M. On the other hand, if sprank(BAcMc) < |Mc|,
from (6), rank(BAcMc) < |Mc| as well, and there exists
at least one unobservable attack.

Remark 1. It has been previously known in the literature
(see e.g., [15]) that a full structural rank of a matrix leads
to a full rank matrix with probability one, as long as the
nonzero entries in the matrix are drawn independently from
continuous probability distributions. However, it is worth
noting that this is not sufficient for proving Theorem 1. This
is because, in Theorem 1, we are interested in matrices that
are submatrices of a graph Laplacian: even with the edge
weights of the graph drawn independently, the entries in
these submatrices are correlated due to the special structure
of a graph Laplacian.

We note that the structural rank of a matrix can be
computed in polynomial time via finding the maximum
bipartite matching in a graph [15]. Since whether an entry
of B is non-zero is solely determined by the topology of the
network, we have the following corollary.

Corollary 1. Given A and M, whether a non-zero unob-
servable attack exists can be determined with probability one
based solely on the knowledge of the grid topology.

IV. SOLVING THE SPARSEST UNOBSERVABLE ATTACKS

In this section, we study the problem of finding the set
of sparsest unobservable attacks given any set of PMUs M
(cf. (3)). As remarked in Section II-C, the general problem
of l0 minimization such as (3) is NP-hard. However, due to
the particular structure of our problem, we will show that
the minimum sparsity of unobservable attacks can in fact
be found in polynomial time with probability one. We first
introduce a key concept — a vulnerable vertex cut. We then
state our main theorem that yields an explicit solution for (3),
the minimum sparsity of unobservable attacks. We prove that
this solution both upper and lower bounds the minimization
problem of (3), hence proving the theorem.

A. Vulnerable vertex cut and vulnerable vertex connectivity

We start with the following basic definitions:

Definition 5 (Vertex cut). A vertex cut of a connected graph
G is a set of vertices whose removal renders G disconnected.

Definition 6 (Vertex connectivity). The vertex connectivity of
a graph G, denoted by κ(G), is the size of the minimum vertex
cut of G, i.e., it is the minimum number of vertices that need
to be removed to make the remaining graph disconnected.

From the definition of the augmented graph GM in Section
II-D, since all the buses in M̄ (containingM and the dummy
bus) are pair-wise connected, we have the following lemma:

Lemma 4. For any vertex cut of the augmented graph GM,
there is no pair of the buses in M̄ that are disconnected by
this cut.



Accordingly, we introduce the following notations which
will be used later on:

Notation 1. Given a vertex cut of GM, we denote the set of
buses disconnected from M̄ after removing the cut set by S.
The cut set itself is thus N(S).

With the vertex cut N(S), GM is partitioned into three
subgraphs:

1) S, which does not contain any bus in M̄, i.e., S ⊆ M̄c.
2) N(S), which is the vertex cut set itself, and may

contain buses in M̄.
3) N\N [S], which contains (not necessarily exclusively)

all the remaining buses in M̄ after removing the cut
set.

An illustrative example with a cut N(S) of size 2 is
depicted in Figure 2(b) in Section IV-C.

Leveraging the above notation, we now introduce a key
type of vertex cut on GM.

Definition 7 (Vulnerable vertex cut). A vulnerable vertex cut
of a connected augmented graph GM is a vertex cut N(S)
for which |Uc ∩N [S]| ≥ |N(S)|+ 1.

In other words, the number of alterable buses in N [S] is
no less than the cut size plus one. The reason for calling
such a vertex cut “vulnerable” will be made exact later in
Section IV-C however the basic intuition is the following. In
order to have ∆θM = 0 (unobservability), we must have the
phase angle changes on the cut N(S) be zero, with power
injection changes (which can only happen on the alterable
buses) restricted in N [S]. As will be shown later, this can be
achieved if a cut N(S) is “vulnerable” as defined above. We
note that it is possible that no vulnerable vertex cut exists
(e.g., in the extreme case that all buses are unalterable).

Accordingly, we define the following variation on the
vertex connectivity.

Definition 8 (Vulnerable vertex connectivity). The vulnera-
ble vertex connectivity of an augmented graph GM, denoted
by κ̄(GM), is the size of the minimum vulnerable vertex cut
of GM. If no vulnerable vertex cut exists, κ̄(GM) is defined
to be infinity.

We note that the concepts of vulnerable vertex cut and
vulnerable vertex connectivity do not apply to the original
graph G. We immediately have the following lemma:

Lemma 5. If a vulnerable vertex cut exists, then κ̄(GM) ≤
M = |M|.

Proof. Suppose a vulnerable vertex cut exists, and κ̄(GM) ≥
M +1. Denote the minimum vulnerable vertex cut by N(S)
(cf. Notation 1). Now consider the set M: it is a vertex
cut of GM that separates the dummy bus and M̄c. Because
there are at least κ̄(GM) + 1 ≥ M + 2 alterable buses in
N [S] ⊆ N [M̄ c], M is also a vulnerable vertex cut. This
contradicts the minimum vulnerable vertex cut having size
at least M + 1.

B. Main result

We now state the following theorem which gives an
explicit solution to (3), the minimum sparsity of unobserv-
able attacks, in terms of the vulnerable vertex connectivity
κ̄(GM).

Theorem 2. For a connected grid G = {N ,L,w}, assume
that the line reactances xl (l ∈ L) are independent con-
tinuous random variables strictly bounded away from zero
from below. Given any M and U , the minimum sparsity of
unobservable attacks, i.e., the global optimum of (3), equals
κ̄(GM) + 1 with probability one.

We note that finding the vulnerable vertex connectivity
of a graph is computationally efficient. For polynomial time
algorithms we refer the reader to [18]. We now prove this
theorem by upper and lower bounding the minimum sparsity
of unobservable attacks in the following two subsections.

C. Upper bounding the minimum sparsity of unobservable
attacks

We show that any vulnerable vertex cut N(S) provides an
upper bound on the optimum of (3) as follows.

Theorem 3. For a connected grid G and a set of PMUsM,
for any vulnerable vertex cut of GM denoted by N(S) (cf.
Notation 1), there exists an unobservable attack of sparsity
no higher than |N(S)|+ 1.

Proof. A vulnerable vertex cut N(S) partitions GM into
S, N(S) and N\N [S], with S ⊆ Mc. Similarly to the
range space interpretation of the problem defined by (3), it
is sufficient to show that there exists a non-zero vector in
the range space of BNS such that i) it has a sparsity no
higher than |N(S)| + 1, and ii) non-zero power injections
occur only at the alterable buses.

By re-indexing the buses, WLOG, i) let S =
{1, 2, . . . , |S|}, and ii) let BNS have the following partition
as depicted in Figure 2(a):

1) The top submatrix BSS is an |S| × |S| matrix.
2) The middle submatrix (which will be shown to be
BN(S)S ) consists of all the remaining rows, each of
which has at least one non-zero entry.

3) The bottom submatrix is an all-zero matrix.
In particular, from the definition of the Laplacian, the middle
submatrix of BNS , as described above, is exactly BN(S)S
because its row indices correspond to those buses not in S
but connected to at least one bus in S .

From the definition of the vulnerable vertex cut, |Uc ∩
N [S]| ≥ |N(S)| + 1. Now, pick any set of |N(S)| + 1
alterable buses in Uc ∩ N [S], denote this set by A, and
denote the other buses in N [S] by Ũ , N [S]\A. Clearly,
|Ũ | = |S| − 1. Therefore, BŨS (which is a submatrix of
BN [S]S ) has |S| columns but only |S|−1 rows, and is hence
column rank deficient.

Now let ∆θS be a non-zero vector in the null space of
BŨS :

BŨS∆θS = 0. (7)
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Fig. 2. Sparse attacks with voltage phase angle changes restricted to buses
1, 2, . . . |S|.

Then, we can construct an attack vector ∆P = BNS∆θS
that has some possibly non-zero values at the indices that
correspond to A, and has zero values at all other indices.
Thus,

‖∆P ‖0 ≤ |A| = |N(S)|+ 1. (8)

Theorem 3 explains our terminology of a “vulnerable
vertex cut” since, if a vertex cut is vulnerable, it leads to
an unobservable attack. If a vulnerable vertex cut of GM
exists, applying Theorem 3 to the minimum one, we have
that the optimum of (3) is upper bounded by κ̄(GM) + 1. If
no vulnerable vertex cut exists, κ̄(GM) + 1 =∞ is a trivial
upper bound.

We now provide a graph-theoretic interpretation of The-
orem 3. As shown in Figure 2(a) and 2(b), all the buses
can be partitioned into three subsets S, N(S) and N\N [S],
corresponding to the row indices of the top, middle and bot-
tom submatrices of BNS , respectively. N(S) is a vulnerable
vertex cut of GM that separates S from N\N [S]. The sparse
attack ∆P (cf. (8)) is formed by injecting/extracting power
at |N(S)| + 1 alterable buses in N [S], such that the phase
angle changes at N\S are all zero. Note that (N\S) ⊇M.
The example with |N(S)| = 2 in Figure 2(b) illustrates a
3-sparse attack with power injection/extractions at (assumed

alterable) buses 1, 3 and |S| + 1, such that the phase angle
changes at N\S are all zero.

D. Lower bounding the sparsity of unobservable attacks

We first define the following property of a matrix H ∈
RN×N , which will be shown to be equivalent to having
sprank(H) = N .

Property 1 (An equivalent condition for having a full
structural rank).

∀n = 1, 2, . . . , N, and for any n×N submatrix of H,

the submatrix has at least n columns each with at least
one non-zero entry.

We have the following lemma whose proof is provided in
[17]:

Lemma 6. Property 1 is equivalent to sprank(H) = N .

We now prove the lower bounding part of Theorem 2,
namely, with probability one, all unobservable power injec-
tion attacks ∆P must have ‖∆P ‖0 ≥ κ̄(GM) + 1. The key
idea is in showing that the equivalence between Property 1
and a full structural rank (cf. Lemma 6) implies a connection
between the vulnerable vertex connectivity and the feasibility
condition of unobservable attacks (cf. Lemma 2).

Proof of ‖∆P ‖0 ≥ κ̄(GM) + 1 for unobservable ∆P , w.p.1.
We focus on GM and consider its corresponding Laplacian
B. Suppose there exists a power injection attack ∆P 6= 0
such that

∆θM = 0 and ‖∆P ‖0 ≤ κ̄(GM). (9)

Denote the buses with non-zero power injection changes
by A ⊆ Uc, and hence ∆PAc = 0. From (9), |A| ≤
κ̄(GM),∆θMc 6= 0, and 0 = ∆PAc = BAcMc∆θMc ,
implying that BAcMc is column rank deficient. We first
consider the case that a vulnerable vertex cut exists, i.e.,
κ̄(GM) <∞. The proof for the case of κ̄(GM) =∞ follows
similarly. For notational simplicity, we will use κ̄ instead of
κ̄(GM) in the remainder of the proof.

a) If a vulnerable vertex cut exists, i.e., κ̄ <∞:
We will prove that, for all A ⊆ Uc with |A| ≤ κ̄, BAcMc

is of full column rank with probability one, i.e., (9) can only
happen with probability zero. From Lemma 5, κ̄ ≤ M . It
is then sufficient to prove for the “worst cases” with |A| =
κ̄ = M , i.e., |Ac| = |Mc| = N − κ̄ and BAcMc is a
square matrix. From Theorem 1 and Lemma 6, it is sufficient
to show that BAcMc satisfies Property 1, and hence is of
full rank with probability one. Recall from the definition
of the Laplacian B that, for any column (or row) of B,
bi, i = 1, . . . , N , its non-zero entries correspond to bus i
and those buses that are connected to bus i. With this, we
now prove that BAcMc satisfies Property 1.

Consider any set of n (≤ N − κ̄) buses in Ac, denoted by
Ñ .

i) If Ñ ⊆ Mc: Based on the definition of the Laplacian
B, the n columns of BÑMc that correspond to the buses
Ñ themselves each has at least one non-zero entry.



ii) If Ñ ∩M 6= ∅: We prove that N(Ñ ) must contain at
least κ̄ buses. This is because, otherwise, |N(Ñ )| ≤ κ̄− 1,
contradicting that κ̄ is the minimum size of vulnerable vertex
cuts for the following reasons:

1) A ⊆ Ñ c, and thus Ñ c has at least |A| = κ̄ alterable
buses.

2) |N(Ñ )| ≤ κ̄−1 implies that Ñ c\N(Ñ ) 6= ∅, and thus
N(Ñ ) is a vertex cut that separates Ñ and Ñ c\N(Ñ ).

3) Because Ñ ∩M 6= ∅ and M are pairwise connected
in GM, M ⊆ N [Ñ ]. Thus, Ñ c\N(Ñ ) and M are
disjoint.

From 1), 3), and the fact that |N(Ñ )| ≤ κ̄ − 1, we
observe that N(Ñ ) is a vulnerable vertex cut of size κ̄− 1,
contradicting κ̄ being the vulnerable vertex connectivity.

Now, based on the definition of the LaplacianB, the n×N
submatrix BÑN must have at least n + κ̄ columns each
of which has at least one non-zero entry for the following
reasons:
• The n columns of BÑN that correspond to the buses
Ñ themselves each has at least one non-zero entry.

• As Ñ are connected to at least κ̄ other buses, each one
of these κ̄ neighbors of Ñ corresponds to one column
of BÑN that has at least one non-zero entry.

Accordingly, the n× (N − κ̄) submatrix BÑMc has at least
n columns each of which has at least one non-zero entry.

Summarizing i) and ii), BAcMc satisfies Property 1, and
is thus of full column rank with probability one. Therefore,
(9) can only happen with probability zero.

b) If no vulnerable vertex cut exists, i.e., κ̄ = ∞: If
M = N , i.e., all buses have PMUs, no unobservable attack
exists. If M ≤ N − 1. Suppose |A| ≥ M + 1. Consider
the set M̄ containing M and the dummy bus. ∆θM = 0
(cf. (9)) implies that A ⊆ N [M̄c], and thus N [M̄c] has at
least |A| ≥ M + 1 alterable buses. Since M (= N(M̄c))
separates the dummy node and N\M, M is a vulnerable
vertex cut. This contradicts the nonexistence of a vulnerable
vertex cut. Therefore, |A| ≤M . In this case, the same proof
as in the above case i) when a vulnerable vertex cut exists
applies, and (9) can only happen with probability zero.

With the proofs of these upper and lower bounds, we have
now proved Theorem 2. In addition, from the proof of Theo-
rem 3, we have a constructive solution of the set of sparsest
unobservable attack in polynomial time. We highlight the
following fact similar to that in Section III: the minimum
sparsity of unobservable attacks is fully determined with
probability one by the network topology, the locations of
the alterable buses, and the locations of the PMUs. Further
studies on the impact of sparsest unobservable attacks and
countermeasures by system operators can be found in [17].

V. CONCLUSION

We have studied power injection attacks that alter power
generation and loads in power networks while remaining
unobservable by PMUs of the system operator. Given the
PMU locations, we have first shown that the existence of
an unobservable attack restricted to any subset of the buses

can be determined with probability one by computing the
structural rank of a submatrix of the network Laplacian B.
Next, we have provided an explicit solution to the open
problem of finding the set of sparsest unobservable at-
tacks: the minimum sparsity among all unobservable attacks
equals κ̄(GM) + 1 with probability one, where κ̄(GM) is
the vulnerable vertex connectivity of an augmented graph.
The constructive solution allows us to find all the sparsest
unobservable attacks in polynomial time.
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