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Abstract— Cyber-physical security of power systems under
power injection attacks that alter generation and loads is
studied. The system operator employs Phasor Measurement
Units (PMUs) for detecting such attacks, while attackers devise
attacks that are unobservable by such PMU networks. For
the NP-hard problem of finding the sparsest unobservable
attacks, it is shown that the solution has a simple form with
probability one, namely, min

(

κ(GM),M
)

+ 1, where κ(GM)
is the vertex connectivity of an augmented graph, and M

is the number of PMUs. The constructive proof allows one
to find the entire set of the sparsest unobservable attacks in
polynomial time. Furthermore, the geometric interpretation of
unobservable attacks leads to a natural characterization of
their potential impacts. With optimized PMU deployment, the
sparsest unobservable attacks and their potential impact as
functions of the number of PMUs are evaluated numerically for
IEEE 30, 57, 118, 300-bus systems and Polish 2383, 2737, 3012-
bus systems. It is observed that, as more PMUs are added, the
maximum potential impact among all the sparsest unobservable
attacks drops quickly until it reaches the minimum sparsity.

I. INTRODUCTION

Modern power networks are increasingly dependent on

information technology in order to achieve higher efficiency,

flexibility and adaptability. The development of more ad-

vanced sensing, communications and control capabilities for

power grids enables better situational awareness and smarter

control. However, security issues also arise as more complex

information systems become prominent targets of cyber-

physical attacks: not only can there be data attacks on

measurements that disrupt situation awareness [1], but also

control signals of many power grid components including

generation and loads can be hijacked, directly leading to

physical misbehavior of power systems [2]. Therefore, to

achieve reliable and secure operation of a smart power grid,

it is essential for the system operator to minimize (if not

eliminate) the feasibility and impact of such cyber-physical

attacks.

Recently, there has been considerable research concerning

data injection attacks on sensor measurements, particularly

from supervisory control and data acquisition (SCADA)

systems. A common and important goal among these works
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is to pursue the integrity of network state estimation, that

is, to successfully detect the injected data attack and recover

the correct system states. The feasibility of constructing false

data injection attacks to pass bad data detection schemes and

alter estimated system states was first shown in [1]. There, a

natural question arises as to how to find the sparsest unob-

servable data injection attack, as sparsity is used to model the

complexity of an attack, as well as the resources needed for

an attacker to implement it. However, finding such an optimal

attack requires solving an NP-hard l0 minimization problem.

While efficiently finding the sparsest unobservable attacks in

general remains an open problem, many interesting solutions

under special problem settings have been developed (see, e.g.

[3] and [4]). Furthermore, as PMUs become increasingly

deployed in power systems, network situational awareness

for grid operators is significantly improved compared to

using legacy SCADA systems only. However, the high instal-

lation costs of PMUs still prohibit large-scale deployment.

Thus, the problem of how to economically deploy PMUs

to best facilitate the state estimator to detect data injection

attacks becomes an interesting problem that many studies

have addressed (see, e.g. [5] and [6] among others.)

Compared to data attacks that target state estimators,

cyber-physical attacks that directly disrupt power network

physical processes can have a much faster (and often

stronger) impact on power grids. In addition to physical

attacks implemented by hacking control signals or directly

intruding upon grid components, several types of load alter-

ing attacks have been shown to be practically implementable

via Internet-based message attacks [2]. Topological attacks

are another type of physical attack which have been consid-

ered in [7]. Furthermore, there have been studies of dynamic

power injection attacks [8], [9].

In this paper, we investigate a general type of cyber-

physical attacks in power systems, namely, power injection

attacks that alter generation and loads in the network. We

consider a grid operator that employs PMUs to (partially)

monitor the network for detecting power injection attacks.

Since power injection attacks disrupt the power system states

immediately, the timeliness of PMU measurement feedback

is essential. We study the open l0 minimization problem

of finding the sparsest unobservable attacks given any set

of PMU locations. We prove that this in general NP-hard

problem has a simple solution with probability one, namely,

the sparsity of the optimal solution is min
(

κ(GM),M
)

+1,

where κ(GM) is the vertex connectivity of an augmented

graph of the original power network, and M is the number

of PMUs. Furthermore, the geometric interpretation of these

sparsest unobservable attacks leads to a natural characteri-



zation of their potential impact. Accordingly, among all the

sparsest unobservable attacks, an attacker can easily find the

one with the greatest potential impact. Finally, for all possible

numbers of PMUs with optimized placement, we evaluate the

sparsest unobservable attacks in terms of their sparsity and

potential impact in IEEE 30, 57, 118, 300-bus and Polish

2383, 2737, 3012-bus systems.

The remainder of the paper is organized as follows. In

Section II, models of the power network, power injection

attacks and PMUs are established. We then formulate the

minimum sparsity problem of unobservable attacks. In Sec-

tion III, we prove that the minimum sparsity of unobservable

attacks can be found in polynomial time with probability

one. The potential impact of unobservable attacks is charac-

terized based on a geometric interpretation. In Section IV,

numerical evaluation of the sparsest unobservable attacks in

IEEE benchmark test cases and Polish power systems are

provided. Conclusions are drawn in Section V. Due to space

limitations, proof details (except for Theorem 2) are omitted

here, and can be found in [10].

II. PROBLEM FORMULATION

A. Power network model

We consider a power network with N buses, and denote

the set of buses and the set of transmission lines by N =
{1, . . . , N} and L = {1, . . . , L} respectively. For a line l ∈
L that connects buses n and m, denote its reactance by xl as

well as xnm, and define its incidence vector ml as follows:

ml(i) =







1, if i = n,

−1, if i = m,

0, otherwise.

Based on the power network topology and line reactances, we

construct a weighted graph G = {N ,L,w} where the edge

weight wl ,
1
xl

, ∀l = 1, . . . , L. We employ the DC power

flow model in this paper, and the real power injections P ∈
R

N and the voltage phase angles θ ∈ R
N satisfy P = Bθ,

where B =
∑L

l=1
1
xl

mlm
T

l
∈ R

N×N is the Laplacian of

the weighted graph G. Furthermore, the power flow on line

l from bus n to bus m equals Pnm = 1
xnm

(θn − θm).

We consider attackers inflicting power injection attacks

that alter the generation and loads in the power network. We

denote the power injections under normal conditions by P ,

and denote a power injection attack by ∆P ∈ R
N . Thus the

post-attack power injections are P +∆P .

B. Sensor model and unobservable attacks

We consider the use of PMUs by the system operator

for monitoring the power network in order to detect power

injection attacks. With PMUs installed at the buses, we

consider the following two different sensor models:

1) A PMU securely measures the voltage phasor of the

bus at which it is installed.

2) A PMU securely measures the voltage phasor of the

bus at which it is installed, as well as the current

phasors on all the lines connected to this bus1.

We denote the set of buses with PMUs by M (⊆ N ), and let

M , |M| be the total number of PMUs, where | · | denotes

the cardinality of a set. We say that a power injection attack

∆P is unobservable if it leads to zero changes in all the

quantities measured by the PMUs. With the first PMU model

described above, we have the following definition:

Definition 1 (unobservability condition): An attack ∆P

is unobservable if and only if

∃∆θ, such that ∆P = B∆θ and ∆θM = 0, (1)

where ∆θM denotes the M × 1 sub-vector of ∆θ obtained

by keeping its M entries whose indices are in M.

With the second PMU model described above, for any

bus n ∈ N , it is immediate to verify that the following three

conditions are equivalent:

1) There are no changes of the voltage phasor at n and

of the current phasors on all the lines connected to n.

2) There are no changes of the voltage phasor at n and

of the power flows on all the lines connected to n.

3) ∀n′ ∈ N [n], there is no change of the voltage phasor at

n′, where N [n] is the closed neighborhood of n which

includes n and its neighboring buses N(n).

Thus, for forming unobservable attacks, the following two

situations are equivalent to the attacker:

• The system operator monitors the set of buses M with

the second PMU model;

• The system operator monitors the set of buses N [M]
with the first PMU model,

where N [M] is the closed neighborhood of M which

includes all the buses in M and their neighboring buses

N(M). Thus, the unobservability condition with the second

PMU model is obtained by replacing M with N [M] in (1).

Without loss of generality (WLOG), we employ the first

PMU model in the following analysis, and all the results

can be directly translated to the second PMU model.

C. Sparsest unobservable attacks

In forming an unobservable attack, an attacker generally

has two objectives: minimize execution complexity and max-

imize its impact on the grid. Note that these two objec-

tives can be competing interests that are not simultaneously

achievable. For an attack vector ∆P , we use its zero norm

‖∆P ‖0 to model its complexity. For minimizing attack

complexity, an attacker is interested in finding the sparsest

attacks that satisfy the unobservability condition (1):

min
∆θ

‖∆P ‖0 (2)

s.t. ∆P = B∆θ, ∆θM = 0, ∆θ 6= 0.

Equivalently, a more compact form of (2) is as follows:

(2) ⇔ min
∆θMc 6=0

‖BNMc∆θMc‖0, (3)

1In practice, the second PMU measurement model is achieved by in-
stalling PMUs on all the lines connected to a bus.



Because of the non-convexity of the l0 norm, problem (3) is

in general NP-hard. Instead of applying existing heuristics

(e.g., l1 relaxation), in Section III, we will solve (3) by

analyzing the network topology and the structure of the

Laplacian matrix B. We will then characterize the potential

impact associated with unobservable attacks.

III. SOLVING FOR THE SPARSEST UNOBSERVABLE

ATTACKS

In this section, we study the problem of finding the spars-

est unobservable attacks given any set of PMUs M (cf. (3)).

We first show an important role of the vertex connectivity

of the grid in lower bounding the optimum of (3). We

then derive an upper bound of (3). By further exploiting

the geometric insights behind the upper bound, we close

the gap between the lower and upper bounds, and provide

a complete solution to the minimum sparsity problem (3).

Finally, we characterize the potential impact of unobservable

attacks based on their geometric interpretations.

A. The role of vertex connectivity in lower bounding the

sparsity of unobservable attacks

We first make the following definitions:

Definition 2 (Vertex cut): A vertex cut of a connected

graph G is a set of vertices whose removal renders G
disconnected.

Definition 3 (Vertex connectivity): The vertex connectiv-

ity of a graph G, denoted by κ(G), is the size of the minimum

vertex cut of G, i.e., it is the minimum number of vertices

that need to be removed to disconnect the remaining graph.

We now state the following theorem.

Theorem 1: For a connected power grid G = {N ,L,w},

assume that the line reactances xl (l ∈ L) are independent

continuous random variables strictly bounded away from

zero from below. ∀M ≤ κ(G), for any set of buses M ⊂
N , |M| = M , in order to have ∆θM = 0, one of the

following must be true with probability one:

• There is no power injection attack at any bus in the grid,

i.e., ∆P = 0; or

• There must be at least M+1 buses with non-zero power

injections from an attack, i.e., ‖∆P ‖0 ≥ M + 1.

Theorem 1 provides a lower bound on the optimum of (3)

which holds with probability one, i.e., no matter which set

of M buses’ phase angles are monitored by PMUs,

• if M ≤ κ(G), there must be at least M + 1 power

injections in any non-zero unobservable attack;

• if M > κ(G), there must be at least κ(G) + 1 power

injections in any non-zero unobservable attack.

In sum, the minimum sparsity of unobservable attacks is

lower bounded almost surely by min (κ(G),M)+1. We will

see in the following that while this lower bound is not always

tight, a modification of it will render the optimum of (3).

B. An upper bound on the minimum sparsity of unobservable

attacks

To derive an upper bound on the minimum sparsity of

unobservable attacks, we exploit the fact that solving (3) is

equivalent to finding the sparsest non-zero vector in the range

space of BNMc . We have the following theorem:

Theorem 2: For a connected grid, the optimum of (3) is

upper bounded by |N(Mc)|+1(≤ M+1), ∀1 ≤ M ≤ N−1.

Proof: By re-indexing the buses, WLOG, i) let Mc =
{1, 2, . . . , N − M}, and ii) let BNMc have the following

partition as depicted in Figure 1(a):

1) The top submatrix BMcMc is an (N−M)×(N−M)
full-rank matrix.

2) The middle submatrix (which will be shown to be

BN(Mc)Mc ) consists of all the remaining rows each

of which has at least one non-zero entry.

3) The bottom submatrix is an all-zero matrix.

In particular, from the definition of the Laplacian, the

middle submatrix of BNMc as described above is exactly

BN(Mc)Mc as its row indices correspond to those buses not

in Mc but connected to at least one bus in Mc. Note that

the middle and the bottom sub-matrices can be degenerate.

Now, we let

∆θMc = B
−1
McMce1, (4)

where e1 ∈ R
(N−M)×1 is the natural basis [1, 0, . . . , 0]T .

Then, we construct an attack vector ∆P = BNMc∆θMc :

it has a 1 at its index 1, and some possibly non-zero values

at the indices that correspond to N(Mc), but has zero values

at all other indices. Thus,

‖∆P ‖0 ≤ |N(Mc)|+ 1 ≤ M + 1. (5)

From Theorem 1 and 2, we have closed the gap between

the lower and upper bounds on the optimum of (3) for the

case of M ≤ κ(G), and proved that the optimum in this case

equals M + 1. To further solve the case of M > κ(G), we

would like to improve the upper bound |N(Mc)|+ 1.

We observe that, by selecting a subset of the columns

of BNMc to form a new submatrix BNS ,S ⊂ Mc, and

partitioning BNS into three submatrices in the same way

as BNMc is partitioned in Figure 1(a), it is possible that

the resulting middle submatrix BN(S)S has fewer rows than

BN(Mc)Mc , leading to even sparser unobservable attacks

with sparsity |N(S)| + 1. By further developing this idea

based on the geometric insights behind the proof of Theorem

2, we provide a complete solution of (3) next.

C. Closing the gap between lower and upper bounds on the

minimum sparsity of unobservable attacks

We start by providing a geometric interpretation of The-

orem 2. As shown in Figure 1(a), if M\N(Mc) 6= ∅, all

the buses can be partitioned into three subsets Mc, N(Mc)
and M\N(Mc), corresponding to the row indices of the

top, middle and bottom submatrices of BNMc respectively.

Moreover, N(Mc) is a vertex cut of G that separates Mc

from M\N(Mc). The |N(Mc)|+ 1-sparse attack ∆P (cf.

(5)) is formed by injecting power at one of the buses among

Mc (i.e., bus 1), and extracting power at and only at the

buses in the vertex cut N(Mc), such that the phase angle

changes at M are all zero.





.

««

« «

«
«

««

«

«

V1A

V1B

V2A

V2B

V2c

1
[ ]N S

2
[ ]N S

1
( )N S

2
( )N S

Fig. 2. An illustration of two minimum vertex cuts with the same size but
different potential impacts.

always cancel out the effects of anything that happens within

S on the measurements by the set of PMUs M (⊆ N\S).
From Corollary 1, by taking control of the buses in a cut

N(S), an attacker is able to hide from the system operator

a power injection attack with a zero norm as large as

|N [S]| = |N(S)|+ |S| (≫ |N(S)|+ 1). (6)

Accordingly, we define the potential impact of unobservable

attacks as follows:

Definition 5: For any vertex cut N(S) for some S ⊆ Mc,

the potential impact of unobservable attacks by controlling

power injections at N(S) is |N [S]|.
Employing Definition 5, we can differentiate the potential

impacts of multiple sparsest unobservable attacks with the

same sparsity. In particular, multiple minimum vertex cuts

can exist for the same augmented graph GM. Then, each of

these cuts leads to a different sparsest unobservable attack

of the same size (constructed by controlling the buses in this

cut as well as one other bus disconnected from M by it).

However, different cuts may disconnect different portions of

the network from M, leading to vastly different potential

impacts of unobservable attacks. An illustration is depicted

in Figure 2. In this example, two vertex cuts both of size two,

N(S1) = {V1A, V1B} and N(S2) = {V2A, V2B}, are noted

as enclosed by solid ovals. Accordingly, both cuts enable 3-

sparse unobservable attacks. However, their potential impacts

are significantly different. Cut N(S2) only disconnects one

other bus, namely S2 = {V2C} from the set of PMUs M, and

hence its potential impact equals |N [S2]| = 3; in comparison,

cut N(S1) disconnects all the vertices above N(S1) from

M, and hence its potential impact equals |N [S1]| ≫ 3. With

this definition of potential impact, it is then natural for an

attacker to seek the sparsest unobservable attack with the

greatest potential impact.

Finally, we conclude this section by noting the following

fact: the minimum sparsity and the potential impacts of
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Fig. 3. Minimum sparsity of unobservable attacks and maximum potential
impact of 2, 3, 4, 5-sparse attacks as functions of M ; IEEE 30-bus system.

unobservable attacks are fully determined with probability

one by the network topology and the locations of the PMUs.

IV. NUMERICAL EVALUATION

In this section, we evaluate the sparsest unobservable

attacks and their potential impacts when the system operator

deploys PMUs at optimized locations. We have seen in

Section III that the minimum sparsity and potential impacts

of unobservable attacks are determined fully by the network

topology and the PMU placement. Unlike network states and

network parameters which can vary over short and medium

time scales, the transmission network topology (or the set of

possible topologies) typically stays the same over long time

scales. The above motivates the system operator to optimize

the PMU placement according to the network topology. For

the best performance in countering power injection attacks,

the system operator wants to raise the minimum sparsity

of unobservable attacks, as well as mitigate the maximum

potential impact of unobservable attacks. The geometric

interpretations of the sparsest unobservable attacks and their

potential impacts allow us to develop an efficient PMU

placement algorithm for the system operator to pursue both

objectives. The details of the algorithm are omitted here due

to space limitations, and can be found in [10].

We evaluate our results in IEEE 30-bus, IEEE 57-bus,

IEEE 118-bus, IEEE 300-bus, Polish 2383-bus, Polish 2737-

bus, and Polish 3012-bus systems. The evaluation is per-

formed based on the software toolbox MATPOWER [11]. In

each of these systems, we generate a set of PMUs based

on the developed placement algorithm, with the number

of PMUs increasing from one until all attacks become

observable. For all numbers of PMUs, the minimum sparsity

of unobservable attacks as well as the maximum potential

impact among the sparsest unobservable attacks are found.

Specifically, the minimum sparsity of unobservable attacks

and the maximum potential impact among these sparsest at-

tacks both as functions of the number of PMUs M are plotted
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Fig. 4. Minimum sparsity of unobservable attacks and the maximum
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for the IEEE 30-bus power system and the Polish 3012-bus

system in Figure 3 and 4 respectively. In addition, for the

IEEE 30-bus system, the maximum potential impacts among

all 2-sparse, 3-sparse, 4-sparse and 5-sparse unobservable

attacks for the entire range of M are plotted. (Note that the

minimum sparsity of unobservable attacks does not exceed

3 for all M .)

We make the following observations which appear in all

seven of the evaluated systems:

• In all seven systems, all the attacks become observable

with less than a third of the buses installed with

PMUs (assuming the second PMU model). The average

percentage of the number of PMUs needed to have

full network observability equals 31.1%. This number

resembles a well-known estimate of such percentage to

be one third [12].

• The topologies of the tested power systems tend to

allow sparse power injection attacks. In other words,

the vertex connectivity of these power networks is

often small. Furthermore, there are often many ties

when finding unobservable attacks with the minimum

sparsity: this is why even after adding a lot more PMUs

into the network, with each addition eliminating the

previous sparsest attack, the minimum sparsity can still

remain the same.

• While there are many ties of unobservable attacks with

the same sparsity, the potential impacts among them can

vary significantly. Moreover, as more PMUs are added,

the maximum potential impact among all the sparsest

unobservable attacks drops quickly until it reaches the

minimum sparsity.

V. CONCLUSION

We have studied cyber-physical attacks that alter power

generation and loads in power networks while remaining

unobservable under the surveillance of system operators

using PMUs. We have provided an explicit solution to the

open problem of finding the sparsest unobservable attacks;

the minimum sparsity among all unobservable attacks equals

min
(

κ(GM),M
)

+ 1. In deriving this minimum sparsity, a

lower bound on it based on the vertex connectivity of the

network was shown to hold with probability one. We have

then provided a constructive upper bound that successfully

closes the gap to the lower bound. This constructive upper

bound enables us to find all the sparsest unobservable attacks

in polynomial time by finding the minimum vertex cuts of

an augmented graph GM. As a result, min
(

κ(GM),M
)

+1
is a fundamental limit of this minimum sparsity that is not

only explicitly attainable, but also unbeatable by all possi-

ble unobservable attacks. We have further shown that the

geometric interpretation of the unobservable attacks allows

a natural characterization of their potential impacts. With

optimized PMU deployment, we have evaluated the sparsest

unobservable attacks and their potential impacts in IEEE 30,

57, 118, 300-bus systems and Polish 2383, 2737, 3012-bus

systems. Finally, while this work has studied a static system

model and power injection attacks, extension to dynamic

systems, measurements and power injection attacks remains

an interesting future direction, for which we expect that

similar insights on fundamental limits will apply.
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