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Abstract

Physical security of power networks under power injection attacks that alter generation and loads

is studied. The system operator employs Phasor Measurement Units (PMUs) for detecting such attacks,

while attackers devise attacks that are unobservable by such PMU networks. It is shown that, given

the PMU locations, the solution to finding the sparsest unobservable attacks has a simple form with

probability one, namely, κ(GM)+1, where κ(GM) is defined as the vulnerable vertex connectivity of an

augmented graph. The constructive proof allows one to find the entire set of the sparsest unobservable

attacks in polynomial time. Furthermore, a notion of the potential impact of unobservable attacks is

introduced. With optimized PMU deployment, the sparsest unobservable attacks and their potential

impact as functions of the number of PMUs are evaluated numerically for the IEEE 30, 57, 118 and

300-bus systems and the Polish 2383, 2737 and 3012-bus systems. It is observed that, as more PMUs

are added, the maximum potential impact among all the sparsest unobservable attacks drops quickly

until it reaches the minimum sparsity.

I. INTRODUCTION

Modern power networks are increasingly dependent on information technology in order to

achieve higher efficiency, flexibility and adaptability [1]. The development of more advanced
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sensing, communications and control capabilities for power grids enables better situational

awareness and smarter control. However, security issues also arise as more complex information

systems become prominent targets of cyber-physical attacks: not only can there be data attacks

on measurements that disrupt situation awareness [2], but also control signals of power grid

components including generation and loads can be hijacked, leading to immediate physical

misbehavior of power systems [3]. Furthermore, in addition to hacking control messages, a

powerful attacker can also implement physical attacks by directly intruding upon power grid

components. Therefore, to achieve reliable and secure operation of a smart power grid, it is

essential for the system operator to minimize (if not eliminate) the feasibility and impact of

physical attacks.

There are many closely related techniques that can help achieve secure power systems. Firstly,

coding and encryption can better secure control messages and communication links [4], and hence

raise the level of difficulty of cyber attacks. To prevent physical attacks, grid hardening is another

design choice [5]. However, grid hardening can be very costly, and hence may only apply to a

small fraction of the components in large power systems. Secondly, power systems are subject

to many kinds of faults and outages [6], [7], [8], which are in a sense unintentional physical

attacks. As such outages are not inflicted by attackers, they are typically modeled as random

events, and detecting outages is often modeled as a hypothesis testing problem [9]. However, this

event and detection model is not necessarily accurate for intentional physical attacks, which are

the focus of this paper. Indeed, an intelligent attacker would often like to strategically optimize

its attack, such that it is not only hard to detect, but also the most viable to implement (e.g.,

with low execution complexity as well as high impact).

Recently, there has been considerable research concerning data injection attacks on sensor

measurements from supervisory control and data acquisition (SCADA) systems. A common and

important goal among these works is to pursue the integrity of network state estimation, that

is, to successfully detect the injected data attack and recover the correct system states. The

feasibility of constructing data injection attacks to pass bad data detection schemes and alter

estimated system states was first shown in [2]. There, a natural question arises as to how to

find the sparsest unobservable data injection attack, as sparsity is used to model the complexity

of an attack, as well as the resources needed for an attacker to implement it. However, finding

such an optimal attack requires solving an NP-hard l0 minimization problem. While efficiently
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finding the sparsest unobservable attacks in general remains an open problem, interesting and

exact solutions under some special problem settings have been developed [10] [11] [12]. Another

important aspect of a data injection attack is its impact on the power system. As state estimates

are used to guide system and market operation of the grid, several interesting studies have

investigated the impact of data attacks on optimal power flow recommendation [13] and location

marginal prices in a deregulated power market [14] [15]. Furthermore, as Phasor Measurement

Units (PMUs) become increasingly deployed in power systems, network situational awareness

for grid operators is significantly improved compared to using legacy SCADA systems only.

However, while PMUs provide accurate and secure sampling of the system states, their high

installation costs prohibit ubiquitous deployment. Thus, the problem of how to economically

deploy PMUs such that the state estimator can best detect data injection attacks is an interesting

problem that many studies have addressed (see, e.g. [16], [17], [18] among others.)

Compared to data attacks that target state estimators, physical attacks that directly disrupt

power network physical processes can have a much faster impact on power grids. In addition to

physical attacks by hacking control signals or directly intruding upon grid components, several

types of load altering attacks have been shown to be practically implementable via Internet-based

message attacks [3]. Topological attacks are another type of physical attack which have been

considered in [19]. Dynamic power injection attacks have also been analyzed in several studies.

For example, in [20], conditions for the existence of undetectable and unidentifiable attacks were

provided, and the sizes of the sets of such attacks were shown to be bounded by graph-theoretic

quantities. Alternatively, in [21] and [22], state estimation is considered in the presence of both

power injection attacks and data attacks. Specifically, in these works, the maximum number of

attacked nodes that still results in correct estimation was characterized, and effective heuristics

for state recovery under sparse attacks were provided.

In this paper, we investigate a specific type of physical attack in power systems called power

injection attacks, that alter generation and loads in the network. A linearized power network

model - the DC power flow model - is employed for simplifying the analysis of the problem

and obtaining a simple solution that yields considerable insight. We consider a grid operator that

employs PMUs to (partially) monitor the network for detecting power injection attacks. Since

power injection attacks disrupt the power system states immediately, the timeliness of PMU

measurement feedback is essential. Furthermore, our model allows for the power injections
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at some buses to be “unalterable”. This captures the cases of “zero injection buses” with no

generation and load, and buses that are protected by the system operator. Under this model we

study the open l0 minimization problem of finding the sparsest unobservable attacks given any

set of PMU locations. We start with a feasibility problem for unobservable attacks. We prove

that the existence of an unobservable power injection attack restricted to any given set of buses

can be determined with probability one by computing a quantity called the structural rank. Next,

we prove that the NP-hard problem of finding the sparsest unobservable attacks has a simple

solution with probability one. Specifically, the sparsity of the optimal solution is κ(GM) + 1,

where κ(GM) is the “vulnerable vertex connectivity” that we define for an augmented graph

of the original power network. Meanwhile, the entire set of globally optimal solutions (there

can be many of them) is found in polynomial time. We further introduce a notion of potential

impacts of unobservable attacks. Accordingly, among all the sparsest unobservable attacks, an

attacker can easily find the one with the greatest potential impact. Finally, given optimized PMU

placement, we evaluate the sparsest unobservable attacks in terms of their sparsity and potential

impact in the IEEE 30, 57, 118 and 300-bus, and the Polish 2383, 2737 and 3012-bus systems.

The remainder of the paper is organized as follows. In Section II, models of power network,

power injection attacks, PMUs and unalterable buses are established. In addition, the minimum

sparsity problem of unobservable attacks is formulated. In Section III we provide the feasibility

condition for unobservable attacks restricted to any subset of the buses. In Section IV we

prove that the minimum sparsity of unobservable attacks can be found in polynomial time with

probability one. In Section V, a PMU placement algorithm for countering power injection attacks

is developed, and numerical evaluation of the sparsest unobservable attacks in IEEE benchmark

test cases and large-scale Polish power systems are provided. Conclusions are drawn in Section

VI.

II. PROBLEM FORMULATION

A. Power network model

We consider a power network with N buses, and denote the set of buses and the set of

transmission lines by N = {1, 2, . . . , N} and L = {1, 2, . . . , L} respectively. For a line l ∈ L

that connects buses n and m, denote its reactance by xl as well as xnm, and define its incidence
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vector ml as follows:

ml(i) =


1, if i = n,

−1, if i = m,

0, otherwise.

Based on the power network topology and line reactances, we construct a weighted graph G =

{N ,L,w} where the edge weight wl , 1
xl
,∀l = 1, . . . , L. The power system is generally

modeled by nonlinear AC power flow equations [23]. In this paper, a linearized model - the DC

power flow model - is employed as an approximation of the AC model, which allows us to find

a simple closed-form solution to the problem from which we glean significant insights. Under

the DC model, the real power injections P ∈ RN and the voltage phase angles θ ∈ RN satisfy

P = Bθ, where B =
∑L

l=1
1
xl
mlm

T
l ∈ RN×N is the Laplacian of the weighted graph G. We

assume that xl is positive which is typically true for transmission lines (cf. Chapter 4 of [23]).

Furthermore, the power flow on line l from bus n to bus m equals Pnm = 1
xnm

(θn − θm).

We consider attackers inflicting power injection attacks that alter the generation and loads in

the power network. We denote the power injections in normal conditions by P , and denote a

power injection attack by ∆P ∈ RN . Thus the post-attack power injections are P + ∆P .

B. Sensor model and unobservable attacks

We consider the use of PMUs by the system operator for monitoring the power network

in order to detect power injection attacks. With PMUs installed at the buses, we consider the

following two different sensor models:

1) A PMU securely measures the voltage phasor of the bus at which it is installed.

2) A PMU securely measures the voltage phasor of the bus at which it is installed, as well

as the current phasors on all the lines connected to this bus1.

We denote the set of buses with PMUs by M (⊆ N ), and let M , |M| be the total number of

PMUs, where | · | denotes the cardinality of a set. Without loss of generality (WLOG), we choose

one of the buses in M to be the angle reference bus. We say that a power injection attack ∆P

is unobservable if it leads to zero changes in all the quantities measured by the PMUs. With the

first PMU model described above, we have the following definition:

1In practice, the second PMU measurement model is achieved by installing PMUs on all the lines connected to a bus.
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Definition 1 (Unobservability condition). An attack ∆P is unobservable if and only if

∃∆θ, such that ∆P = B∆θ and ∆θM = 0, (1)

where ∆θM denotes the M × 1 sub-vector of ∆θ obtained by keeping its M entries whose

indices are in M.

With the second PMU model described above, for any bus n ∈ N , it is immediate to verify

that the following three conditions are equivalent:

1) There are no changes of the voltage phasor at n and of the current phasors on all the lines

connected to n.

2) There are no changes of the voltage phasor at n and of the power flows on all the lines

connected to n.

3) ∀n′ ∈ N [n], there is no change of the voltage phasor at n′, where N [n] is the closed

neighborhood of n which includes n and its neighboring buses N(n).

Thus, for forming unobservable attacks, the following two situations are equivalent to the attacker:

• The system operator monitors the set of buses M with the second PMU model;

• The system operator monitors the set of buses N [M] with the first PMU model,

where N [M] is the closed neighborhood of M which includes all the buses in M and their

neighboring buses N(M). Thus, the unobservability condition with the second PMU model is

obtained by replacing M with N [M] in (1). WLOG, we employ the first PMU model in the

following analysis, and based on the discussion above all the results can be directly translated

to the second PMU model.

C. Sparsest unobservable attacks

In forming an unobservable attack, an attacker generally has two objectives: minimize exe-

cution complexity and maximize its impact on the grid. Note that these two objectives can be

competing interests that are not simultaneously achievable. We will first focus on finding the

minimum execution complexity for an attack to be unobservable, which constitutes the main

part of this work. Among attacks with the minimum complexity, we then find the one with the

maximum impact.

For an attack vector ∆P , we use its zero norm ‖∆P ‖0 to model its execution complexity. This

is because attackers are typically resource-constrained, and can choose only a limited number
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of buses to implement attacks. For minimizing attack complexity, an attacker is interested in

finding the sparsest attacks that satisfy the unobservability condition (1):

min
∆θ
‖∆P ‖0 (2)

s.t. ∆P = B∆θ, ∆θM = 0, ∆θ 6= 0.

Since ∆θM = 0,∆θ 6= 0⇒ B∆θ = BNMc∆θMc ,∆θMc 6= 0, a more compact form of (2) is

as follows:

(2) ⇔ min
∆θMc 6=0

‖BNMc∆θMc‖0, (3)

where Mc = N\M denotes the complement of M , and BNMc is the submatrix of B formed

by choosing all its rows and a set of columns Mc.

We now note that problem (3) is NP-hard: Specifically, as a special case of the cospark

problem of a matrix [24] problem (3) resembles a security index problem discussed in [12],

which has been proven to be NP-hard. Under some special problem settings for data injection

attacks, problems of this type have been shown to be solvable exactly in polynomial time [10]

[11] [12]. In general, low complexity heuristics have been developed for solving l0 minimization

problems (e.g., l1 relaxation).

We now generalize our model to allow a subset of buses to be “unalterable buses”, meaning

that their nodal power injection cannot be changed by attackers. This allows us to model the

following scenarios:

• A “zero injection” bus that simply connects multiple lines without nodal generation or load,

and hence its power injection is always zero and cannot be changed.

• A “protected” bus by the system operator, and its power injection is not accessible by the

attacker.

We denote the set of unalterable buses by U . The other buses U c are termed “alterable” buses.

Generalizing (2), the sparsest unobservable attack problem is established as follows:

min
∆θ
‖∆P ‖0 (4)

s.t. ∆P = B∆θ, ∆θM = 0, ∆PU = 0, ∆θ 6= 0.

When U = ∅, (4) reduces to (2). Generalizing (3), Eq. (4) has the following equivalent form:

(4) ⇔ min
∆θMc 6=0,

(BNMc∆θMc )U=0

‖BNMc∆θMc‖0. (5)
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D. Graph augmentation

Given the locations of the sensors M, we now introduce a variation of the graph G that will

prove key to developing the main results later.

Definition 2. Given a set of busesM⊆ N , GM is defined to be the following augmented graph

based on G:

1) GM includes all the buses in G, and has one additional unalterable dummy bus.

2) Define an augmented set M̄ that contains M and the unalterable dummy bus.

3) GM includes all the edges of G, and an edge is added between every pair of buses in M̄,

and its weight can be chosen arbitrarily as any positive number.

We note that the dummy bus is only connected to the set of sensors M. We observe the

following key facts. First, an unobservable attack in the original graph G leads to zero changes

in all the voltage phase angles in M. Thus, any line between a pair of buses in M would see

a zero change of the power flow on it. It is then clear that the added dummy bus and lines in

GM do not lead to any power flow changes in the network under any unobservable attack. We

thus have the following lemma:

Lemma 1. An attack is unobservable byM in G if and only if it is unobservable byM in GM.

This allows us to work with the augmented graph GM instead of G. It is clear that the weights

of the added edges in GM do not matter for Lemma 1 to hold.

III. FEASIBILITY CONDITION OF UNOBSERVABLE ATTACKS

In this section, we address the following question whose solutions will be useful in solving the

minimum sparsity problem (5): Assuming that the attacker can only alter the power injections

at a subset of the buses, denoted by A ⊆ U c, does there exist an attack that is unobservable

by a set of PMUs M? For any given A, a feasible non-zero attack ∆P ( 6= 0) must satisfy

∆PAc = 0. In other words, it must not alter the power injections at the buses in Ac.

From (1), there exists an unobservable non-zero attack if and only if

∃∆P ,∆θ 6= 0, s.t. ∆P = B∆θ, ∆PAc = 0, ∆θM = 0. (6)
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B

Fig. 1. An illustration of (7) where the submatrix formed by the shaded blocks represents BAcMc .

Since

 ∆θM = 0

∆θ 6= 0
⇒ ∆θMc 6= 0,∆P 6= 0, we have that (6) is equivalent to

∃∆θMc 6= 0, s.t. (∆PAc =) BAcMc∆θMc = 0, (7)

where BAcMc is the submatrix of B formed by its rows Ac and columnsMc. An illustration of

(7) is depicted in Figure 1, where the submatrix formed by the shaded blocks represents BAcMc .

From (7), we have the following lemma on the feasibility condition of unobservable attacks.

Lemma 2. Given A and M, there exists an unobservable non-zero attack if and only if BAcMc

is column rank deficient.

To analyze when this column rank deficiency condition, rank (BAcMc) < |Mc|, is satisfied,

we start with the following observations based on the fact that B is the Laplacian of the weighted

graph G.

1) The signs (+1, −1, or 0) of the entries of B are fully determined by the network topology:

Bij > 0, if i = j,

Bij < 0, if node (bus) i and node j (i 6= j) are connected by an edge (transmission line),

Bij = 0, if node (bus) i and node j (i 6= j) are not connected.
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2) The values of the non-zero entries of B are determined by the line reactances {xij}:

Bii =
∑
j 6=i

wij =
∑
j 6=i

1

xij
,

Bij = −wij = − 1

xij
, if i 6= j and Bij 6= 0.

When all the line reactances in the power network are known, so are the entries of the submatrix

BAcMc , and it is immediate to compute whether rank (BAcMc) < |Mc|. Without knowing the

exact values of any line reactances, we will show that whether rank (BAcMc) < |Mc| can be

determined almost surely by computing the structural rank of BAcMc , defined as follows [25].

Definition 3 (Set of independent entries). A set of independent entries of a matrix H is a set

of nonzero entries, no two of which lie on the same line (row or column).

Definition 4 (Structural rank). The structural rank of a matrix H , denoted by sprank(H), is

the maximum number of elements contained in at least one set of independent entries.

A basic relation between the structural rank and the rank of a matrix is the following [25],

sprank(BAcMc) ≥ rank(BAcMc). (8)

In the literature, structural rank is also termed “generic rank” [26].

Specifically, we consider generic power grid parameters, i.e., we assume that the line reactances

xl (l = 1, 2, . . . , L) are independent, but not necessarily identical random variables drawn from

continuous probability distributions. We assume that the reactances are bounded away from zero

from below (as lines do not have zero reactances in practice). As such, the analysis in this work

is along the line of structural properties as in [25] and [26], and we will develop results that hold

with probability one. We believe the independence (but not identically distributed) assumption is

sufficiently general in practice. In particular, there are uncertainties in factors that influence the

reactance of a line (e.g. the distance that a line travels, the degradation of a line over time). These

uncertainties can be modeled as independent (but not identically distributed) random variables,

leading to the model employed in this paper.

Clearly, BAcMc is always column rank deficient when |Ac| < |Mc|. Next, we discuss the

case of |Ac| ≥ |Mc|. We begin with the special case A =M, for which we have the following

lemma whose proof is relegated to Appendix A:
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Lemma 3. Let B ∈ RN×N be the Laplacian of a connected graph G with strictly positive edge

weights. For any set of node indices I ⊂ {1, 2, . . . , N}, denote by BII the submatrix of B

formed by its rows I and columns I. Then ∀I, |I| ≤ N − 1, BII is of full rank.

Note that Lemma 3 holds deterministically without assuming generic edge weights of the

graph. For the case of A =M, we let I = Ac =Mc, and Lemma 3 proves that rank (BAcMc) =

|Mc|. This implies the intuitive fact that there exists no attack restricted to A that is unobservable

by a set of PMUs M = A.

Now, we address the general case of arbitrary A and M. We have the following theorem

demonstrating that having sprank(BAcMc) = |Mc| almost surely guarantees rank(BAcMc) =

|Mc|. The proof is relegated to Appendix B.

Theorem 1. For a connected weighted graph G = {N ,L,w}, assume that the edge weights

are independent continuous random variables strictly bounded away from zero from below,

and denote the Laplacian of G by B ∈ RN×N . Then, any N ′ × N ′′ submatrix of B, with

min(N ′, N ′′) ≤ N − 1, has a rank of min(N ′, N ′′) with probability one if it has a structural

rank of min(N ′, N ′′).

From Theorem 1, with |Ac| ≥ |Mc|, if sprank(BAcMc) = |Mc| ≤ N − 1, we have with

probability one that rank(BAcMc) = |Mc|, and there exists no attack restricted to A that is

unobservable by a set of PMUs M.

Remark 1. It has been known in the literature that (see e.g., [25]), a full structural rank of a

matrix leads to a full rank matrix with probability one, as long as the nonzero entries in the

matrix are drawn independently from continuous probability distributions. However, it is worth

noting that this is not sufficient for proving Theorem 1. This is because, as in Theorem 1, we

are interested in matrices that are submatrices of a graph Laplacian: even with the edge weights

of the graph drawn independently, the entries in these submatrices are correlated due to the

special structure of a graph Laplacian. Such correlation leads to technical difficulties for the

proof, which can be overcome as shown in Appendix B.

We note that the structural rank of a matrix can be computed in polynomial time via finding

the maximum bipartite matching in a graph [25]. Since whether an entry of B is non-zero is

solely determined by the topology of the network, we have the following corollary.
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Corollary 1. Given A andM, whether a non-zero unobservable attack exists can be determined

with probability one based solely on the knowledge of the grid topology.

IV. SOLVING THE SPARSEST UNOBSERVABLE ATTACKS

In this section, we study the problem of finding the sparsest unobservable attacks given any

set of PMUs M (cf. (5)). As remarked in Section II-C, l0 minimization such as (5) is NP-hard.

We will show that the sparsest unobservable attack can in fact be found in polynomial time with

probability one. We first introduce a key concept — a vulnerable vertex cut. We then state our

main theorem that yields an explicit solution for the sparsest unobservable attack problem (5).

We prove that this solution both upper and lower bounds the optimum of (5), hence proving the

theorem.

A. Vulnerable vertex cut and vulnerable vertex connectivity

We start with the following basic definitions:

Definition 5 (Vertex cut). A vertex cut of a connected graph G is a set of vertices whose removal

renders G disconnected.

Definition 6 (Vertex connectivity). The vertex connectivity of a graph G, denoted by κ(G), is

the size of the minimum vertex cut of G, i.e., it is the minimum number of vertices that need to

be removed to make the remaining graph disconnected.

From the definition of the augmented graph GM in Section II-D, since all the buses in M̄

(containing M and the dummy bus) are pair-wise connected, we have the following lemma:

Lemma 4. For any vertex cut of the augmented graph GM, there is no pair of the buses in M̄

that are disconnected by this cut.

Accordingly, we introduce the following notations which will be used later on:

Notation 1. Given a vertex cut of GM, we denote the set of buses disconnected from M̄ after

removing the cut set by S. The cut set itself is thus N(S).

With the vertex cut N(S), GM is partitioned into three subgraphs:

1) S, which does not contain any bus in M̄, i.e., S ⊆ M̄c.
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2) N(S), which is the vertex cut set itself, and may contain buses in M̄.

3) N\N [S], which contains (not necessarily exclusively) all the remaining buses in M̄ after

removing the cut set.

An illustrative example with a cut N(S) of size 2 is depicted in Figure 2(b) in Section IV-C.

Leveraging the above notation, we now introduce a key type of vertex cut on GM.

Definition 7 (Vulnerable vertex cut). A vulnerable vertex cut of a connected augmented graph

GM is a vertex cut N(S) for which |U c ∩N [S]| ≥ |N(S)|+ 1.

In other words, the number of alterable buses in N [S] is no less than the cut size plus one.

The reason for calling such a vertex cut “vulnerable” will be made exact later in Section IV-C.

The basic intuition is the following. In order to have ∆θM = 0 (unobservability), the key is to

have the phase angle changes on the cut N(S) be zero, with power injection changes (which

can only happen on the alterable buses) restricted in N [S]. As will be shown later, this can be

achieved if a cut N(S) is “vulnerable” as defined above. We note that it is possible that no

vulnerable vertex cut exists (e.g., in the extreme case that all buses are unalterable).

Accordingly, we define the following variation on the vertex connectivity.

Definition 8 (Vulnerable vertex connectivity). The vulnerable vertex connectivity of an aug-

mented graph GM, denoted by κ̄(GM), is the size of the minimum vulnerable vertex cut of GM.

If no vulnerable vertex cut exists, κ̄(GM) is defined to be ∞.

We note that the concepts of vulnerable vertex cut and vulnerable vertex connectivity do not

apply to the original graph G. We immediately have the following lemma:

Lemma 5. If a vulnerable vertex cut exists, then κ̄(GM) ≤M = |M|.

Proof: Suppose a vulnerable vertex cut exists, and κ̄(GM) ≥M + 1. Denote the minimum

vulnerable vertex cut by N(S) (cf. Notation 1). Now consider the setM: it is a vertex cut of GM

that separates the dummy bus and M̄c. Because there are at least κ̄(GM) + 1 ≥M + 2 alterable

buses in N [S] ⊆ N [M̄ c], M is also a vulnerable vertex cut. This contradicts the minimum

vulnerable vertex cut having size at least M + 1.
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B. Main result

We now state the following theorem that gives an explicit solution of the sparsest unobservable

attack problem in terms of the vulnerable vertex connectivity κ̄(GM).

Theorem 2. For a connected grid G = {N ,L,w}, assume that the line reactances xl (l ∈ L)

are independent continuous random variables strictly bounded away from zero from below. Given

any M and U , the minimum sparsity of unobservable attacks, i.e., the global optimum of (5),

equals κ̄(GM) + 1 with probability one.

We note that finding the minimum vulnerable vertex connectivity of a graph is computationally

efficient. For polynomial time algorithms we refer the readers to [27]. We now prove this theorem

by upper and lower bounding the minimum sparsity of unobservable attacks in the following

two subsections.

C. Upper bounding the minimum sparsity of unobservable attacks

We show that any vulnerable vertex cut N(S) provides an upper bound on the optimum of

(5) as follows.

Theorem 3. For a connected grid G and a set of PMUs M, for any vulnerable vertex cut of

GM denoted by N(S) (cf. Notation 1), there exists an unobservable attack of sparsity no higher

than |N(S)|+ 1.

Proof: A vulnerable vertex cut N(S) partitions GM into S, N(S) and N\N [S], with

S ⊆ Mc. Similarly to the range space interpretation of the sparsest unobservable attack (5), it

is sufficient to show that there exists a non-zero vector in the range space of BNS such that i)

it has a sparsity no higher than |N(S)|+ 1, and ii) non-zero power injections occur only at the

alterable buses.

By re-indexing the buses, WLOG, i) let S = {1, 2, . . . , |S|}, and ii) letBNS have the following

partition as depicted in Figure 2(a):

1) The top submatrix BSS is an |S| × |S| matrix.

2) The middle submatrix (which will be shown to be BN(S)S) consists of all the remaining

rows, each of which has at least one non-zero entry.

3) The bottom submatrix is an all-zero matrix.
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(b) A 3-sparse unobservable power injection attack.

Fig. 2. Sparse attacks with voltage phase angle changes restricted to buses 1, 2, . . . |S|.

In particular, from the definition of the Laplacian, the middle submatrix of BNS , as described

above, is exactlyBN(S)S because its row indices correspond to those buses not in S but connected

to at least one bus in S.

From the definition of the vulnerable vertex cut, |U c ∩ N [S]| ≥ |N(S)| + 1. Now, pick any

set of |N(S)|+ 1 alterable buses in U c∩N [S], denote this set by A, and denote the other buses

in N [S] by Ũ , N [S]\A. Clearly, |Ũ | = |S| − 1. Therefore, BŨS (which is a submatrix of

BN [S]S) has |S| columns but only |S| − 1 rows, and is hence column rank deficient.

Now, we let ∆θS be a non-zero vector in the null space of BŨS :

BŨS∆θS = 0. (9)

Then, we construct an attack vector ∆P = BNS∆θS : it has some possibly non-zero values at

the indices that correspond to A, and has zero values at all other indices. Thus,

‖∆P ‖0 ≤ |A| = |N(S)|+ 1. (10)

Theorem 3 explains our terminology of a “vulnerable vertex cut”, since if a vertex cut is

vulnerable, it leads to an unobservable attack. If a vulnerable vertex cut of GM exists, applying

Theorem 3 to the minimum one, we have that the optimum of (5) is upper bounded by κ̄(GM)+1.

If no vulnerable vertex cut exists, κ̄(GM) + 1 =∞ is a trivial upper bound.
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We now provide a graph-theoretic interpretation of Theorem 3. As shown in Figure 2(a) and

2(b), all the buses can be partitioned into three subsets S, N(S) and N\N [S], corresponding

to the row indices of the top, middle and bottom submatrices of BNS , respectively. N(S) is a

vulnerable vertex cut of GM that separates S from N\N [S]. The sparse attack ∆P (cf. (10)) is

formed by injecting/extracting power at |N(S)|+ 1 alterable buses in N [S], such that the phase

angle changes at N\S are all zero. Note that (N\S) ⊇ M. The example with |N(S)| = 2 in

Figure 2(b) illustrates a 3-sparse attack with power injection/extractions at (assumed alterable)

buses 1, 3 and |S|+ 1, such that the phase angle changes at N\S are all zero.

We end this subsection by introducing a notion of “potential impact” of unobservable attacks.

We make the following observation: As long as an attacker takes control of all the power

injections in a vulnerable vertex cut N(S) (assuming they are alterable), it can always cancel

out the effects of anything that happens within N [S] on the measurements taken inM (⊆ N\S).

Thus, by taking control of all the buses in N(S), an attacker can successfully hide from the

system operator a power injection attack with a zero norm as large as

|N [S]| = |N(S)|+ |S| (� |N(S)|+ 1). (11)

Accordingly, we introduce the following definition.

Definition 9. The potential impact of unobservable attacks associated with a vulnerable vertex

cut N(S) is defined as |N [S]|.

Remark 2. Definition 9 is one characterization of attack impact based solely on graph theoretic

properties. In practice, there are many different notions of attack impact depending on, e.g., the

interpretation of the attacks and the operating objective of the system.

Employing Definition 9, we can differentiate the potential impacts of multiple sparsest unob-

servable attacks with the same sparsity. An illustration is depicted in Figure 3. In this example,

two vulnerable vertex cuts both of size two, N(S1) = {V1A, V1B} and N(S2) = {V2A, V2B}, are

enclosed by solid ovals. Accordingly, both cuts enable 3-sparse unobservable attacks. However,

their potential impacts are significantly different. Cut N(S2) only disconnects one other bus,

namely S2 = {V2C} from the set of PMUsM, and hence its potential impact equals |N [S2]| = 3.

In comparison, cut N(S1) disconnects all the vertices above N(S1) from M, and hence its

potential impact equals |N [S1]| � 3. With this definition of potential impact, it is then natural
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Fig. 3. An illustration of two vulnerable vertex cuts with the same size but different potential impacts.

for an attacker to seek the sparsest unobservable attack with the greatest potential impact.

As an immediate byproduct of the analysis of potential impact, by letting S =Mc, we obtain

the maximum potential impact of all unobservable attacks in a power network:

Corollary 2. For a connected power grid G = {N ,L,w}, given any M denoting the PMU

locations, the maximum potential impact among all the unobservable attacks equals |N [Mc]|.

D. Lower bounding the sparsity of unobservable attacks

We first define the following property of a matrix H ∈ RN×N , which will be shown to be

equivalent to having sprank(H) = N .

Property 1 (An equivalent condition for having a full structural rank).

∀n = 1, 2, . . . , N, and for any n×N submatrix of H ,

the submatrix has at least n columns each with at least one non-zero entry.

We have the following lemma whose proof is relegated to Appendix C:

Lemma 6. Property 1 is equivalent to having sprank(H) = N .

We now prove the lower bounding part of Theorem 2, namely, with probability one, all
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unobservable power injection attacks ∆P must have ‖∆P ‖0 ≥ κ̄(GM) + 1. The key idea is

in showing that the equivalence between Property 1 and a full structural rank (cf. Lemma 6)

implies a connection between the vulnerable vertex connectivity and the feasibility condition of

unobservable attacks (cf. Lemma 2).

Proof of ‖∆P ‖0 ≥ κ̄(GM)+1 for unobservable ∆P , w.p.1: We focus on GM and consider

its corresponding Laplacian B. Suppose there exists a power injection attack ∆P 6= 0 such that

∆θM = 0 and ‖∆P ‖0 ≤ κ̄(GM). (12)

Denote the buses with non-zero power injection changes by A ⊆ U c, and hence ∆PAc = 0.

From (12), |A| ≤ κ̄(GM),∆θMc 6= 0, and 0 = ∆PAc = BAcMc∆θMc , implying that BAcMc

is column rank deficient. We first consider the case that a vulnerable vertex cut exists, i.e.,

κ̄(GM) <∞. The proof for the case of κ̄(GM) =∞ follows similarly. For notational simplicity,

we will use κ̄ instead of κ̄(GM) in the remainder of the proof.

a) If a vulnerable vertex cut exists, i.e., κ̄ <∞:

We will prove that, for all A ⊆ U c with |A| ≤ κ̄, BAcMc is of full column rank with

probability one, i.e., (12) can only happen with probability zero. From Lemma 5, κ̄ ≤M . It is

then sufficient to prove for the “worst cases” with |A| = κ̄ = M , i.e., |Ac| = |Mc| = N − κ̄ and

BAcMc is a square matrix. From Theorem 1 and Lemma 6, it is sufficient to show that BAcMc

satisfies Property 1, and hence is of full rank with probability one. Recall from the definition

of the Laplacian B that, for any column (or row) of B, bi, (i = 1, . . . , N), its non-zero entries

correspond to bus i and those buses that are connected to bus i. With this, we now prove that

BAcMc satisfies Property 1.

Consider any set of n (≤ N − κ̄) buses in Ac, denoted by Ñ .

i) If Ñ ⊆ Mc: Based on the definition of the Laplacian B, the n columns of BÑMc that

correspond to the buses Ñ themselves each has at least one non-zero entry.

ii) If Ñ ∩ M 6= ∅: We prove that N(Ñ ) must contain at least κ̄ buses. This is because,

otherwise, |N(Ñ )| ≤ κ̄− 1, contradicting that κ̄ is the minimum size of vulnerable vertex cuts

for the following reasons:

1) A ⊆ Ñ c, and thus Ñ c has at least |A| = κ̄ alterable buses.

2) |N(Ñ )| ≤ κ̄−1 implies that Ñ c\N(Ñ ) 6= ∅, and thus N(Ñ ) is a vertex cut that separates

Ñ and Ñ c\N(Ñ ).
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3) Because Ñ ∩M 6= ∅ andM are pairwise connected in GM,M⊆ N [Ñ ]. Thus, Ñ c\N(Ñ )

and M are disjoint.

From 1), 3), and the fact that |N(Ñ )| ≤ κ̄ − 1, we observe that N(Ñ ) is a vulnerable vertex

cut of size κ̄− 1, contradicting κ̄ being the vulnerable vertex connectivity.

Now, based on the definition of the Laplacian B, the n × N submatrix BÑN must have at

least n+ κ̄ columns each of which has at least one non-zero entry for the following reasons:

• The n columns of BÑN that correspond to the buses Ñ themselves each has at least one

non-zero entry.

• As Ñ are connected to at least κ̄ other buses, each one of these κ̄ neighbors of Ñ

corresponds to one column of BÑN that has at least one non-zero entry.

Accordingly, the n × (N − κ̄) submatrix BÑMc has at least n columns each of which has at

least one non-zero entry.

Summarizing i) and ii), BAcMc satisfies Property 1, and is thus of full column rank with

probability one. Therefore, (12) can only happen with probability zero.

b) If no vulnerable vertex cut exists, i.e., κ̄ =∞:

If M = N , i.e., all buses have PMUs, then clearly no unobservable attack exists. We now

focus on M ≤ N −1. Suppose |A| ≥M +1. Consider the set M̄ containingM and the dummy

bus. ∆θM = 0 (cf. (12)) implies that A ⊆ N [M̄c], and thus N [M̄c] has at least |A| ≥ M + 1

alterable buses. SinceM (= N(M̄c)) separates the dummy node and N\M,M is a vulnerable

vertex cut. This contradicts the nonexistence of a vulnerable vertex cut. Therefore, |A| ≤ M .

In this case, the same proof as in the above case i) when a vulnerable vertex cut exists applies,

and (12) can only happen with probability zero.

With the proofs of upper and lower bounds, we have now proved Theorem 2. In addition, from

the proof of Theorem 3, we have a constructive solution of the sparsest unobservable attack in

polynomial time. We conclude this section by noting the following fact similar to that in Section

III: the minimum sparsity of unobservable attacks is fully determined with probability one by

the network topology, the locations of the alterable buses, and the locations of the PMUs.

V. NUMERICAL EVALUATION

In this section, we evaluate the sparsest unobservable attacks and their potential impacts when

the system operator deploys PMUs at optimized locations. We first provide an efficient algo-

rithm for optimizing PMU placement by the system operator. Next, we provide comprehensive
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evaluation of our analysis and algorithms in multiple IEEE power system test cases as well as

large-scale Polish power systems. Our MATLAB codes are openly available for download2.

A. Optimization of PMU placement for attack detection

We have seen in Section IV that the minimum sparsity and potential impacts of unobservable

attacks are determined fully by the network topology, the locations of the alterable buses, and

the PMU placement. Note that, unlike network states and parameters which can vary over short

and medium time scales, the transmission network topology and the alterable buses typically

stay the same over relatively long time scales. This motivates the system operator to optimize

the PMU placement according to this information.

For the best performance in countering power injection attacks, the system operator wants to

raise the minimum sparsity of unobservable attacks, as well as mitigate the maximum potential

impact of unobservable attacks. Algorithm 1 (cf. Table I) is developed for the system operator

to greedily place PMUs to pursue both objectives. In this algorithm, we have assumed that the

second PMU model in Section II-B is employed, and the algorithm can be adapted to the first

PMU model by replacing N [M] with M.

Algorithm 1 is essentially a successive cut/attack elimination procedure. The purpose of Step

1 is to identify the sparsest unobservable attack with the greatest potential impact. Specifically,

Step 1 can be performed as follows:

1) Assign arbitrarily one of the buses in M as the source node;

2) For each of the buses in N\N [M], assign it as the destination node, and compute all the

minimum vulnerable vertex cuts that separate such a source-destination pair.

3) Among all the computed source-destination vertex cuts that have the same minimum size,

compute their corresponding potential impacts, and select the minimum vertex cut with

the greatest potential impact, denoted by C(GN [M]).

Since the computational complexity of finding a minimum source-destination vertex cut is no

greater than O(N3), the overall computational complexity of Step 1 is no greater than O(N4). In

our numerical evaluation using MATLAB on a laptop with Intel Core i7 3.1-GHz CPU and 8 GB

of RAM, it takes less than 0.2 seconds on average for every PMU placed for the IEEE 300 bus

2The codes can be found at http://www.princeton.edu/∼yuez/pubs.html

http://www.princeton.edu/~yuez/pubs.html
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TABLE I

ALGORITHM 1

Greedy algorithm for PMU placement for countering power injection attacks

Place the 1st PMU at bus 1.

Repeat

If no unobservable attack exists given the current set of PMUs M, stop.

Step 1: Find all the minimum vulnerable vertex cuts of GN [M];

among them, find the cut with the greatest potential impact,

denoted by C(GN [M]).

Step 2: Among all the buses disconnected from N [M] by C(GN [M])

as well as those in the cut set C(GN [M]), place the next PMU

at the one such that the resulting maximum potential impact

among all the remaining unobservable attacks is minimized.

systems. This per-PMU time increases to about 50 seconds for the Polish 3012 bus system. In

Step 2, our primary goal is to ensure that the cut set C(GN [M]) found in Step 1 does not remain

a legitimate vertex cut after placing the next PMU. This can be achieved by placing the next

PMU among the buses disconnected from N [M] by C(GN [M]) as well as those in C(GN [M]).

Among such candidate buses, we choose the one that renders the minimum maximum potential

impact among all the remaining unobservable attacks (cf. Corollary 2) had the next PMU been

placed at it.

B. Numerical evaluation of unobservable attacks vs. number of PMUs

We evaluate our results in the IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, IEEE 300-bus,

Polish 2383-bus, Polish 2737-bus, and Polish 3012-bus systems. The evaluation is performed

based on the software toolbox MATPOWER [28]. In each of these systems, we apply Algorithm

1 to generate a set of PMU locations greedily, with the number of PMUs M increasing from

one until all attacks become observable. Moreover, from Algorithm 1, for all M , the minimum

sparsity of unobservable attacks as well as the maximum potential impact among the sparsest

unobservable attacks are found (cf. Step 1 in Algorithm 1). We assume that all buses are alterable

in the test cases.
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Fig. 4. Minimum sparsity of unobservable attacks and maximum potential impacts of 2, 3, 4, 5-sparse attacks as functions of

M , IEEE 30-bus system.
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Fig. 5. Minimum sparsity of unobservable attacks and the maximum potential impacts of the sparsest attacks as functions of

M , IEEE 118-bus system.

In general, for a given set of PMUs, one can also search for the maximum potential impact

among all s-sparse unobservable attacks for any given sparsity s, (as opposed to evaluate that

among the sparsest attacks only as in Algorithm 1). However, this problem is NP-hard in s. In

light of this, we selectively focused on some level of sparsity of unobservable attacks that is not

minimally sparse, and evaluated their maximum potential impacts.
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Specifically, the minimum sparsity of unobservable attacks and the maximum potential impact

among these sparsest attacks both as functions of the number of PMUs M are plotted for the

IEEE 30 and 118-bus power systems and the Polish 3012-bus system, in Figures 4, 5 and 6

respectively. In addition,

• For the IEEE 30-bus system, the maximum potential impact among all 2-sparse, 3-sparse,

4-sparse and 5-sparse unobservable attacks for the entire range of M are plotted. (Note that

the minimum sparsity of unobservable attacks does not exceed 3 for all M ).

• For the IEEE 118-bus system, the maximum potential impact among all 3-sparse attacks

when M ≥ 7 is plotted. (Note that for M = 7 the minimum sparsity of unobservable attacks

is 2).

We make the following observations which appear in all seven of the evaluated systems:

• In all seven systems, all the attacks become observable with less than a third of the buses

installed with PMUs (assuming the second PMU model). The average percentage of the

number of PMUs needed to have full network observability equals 31.1%. While this number

resembles a well-known estimate of such percentage to be one third [29], it also demonstrates

the efficacy of Algorithm 1 in PMU placement.

• The topologies of the tested power systems tend to allow sparse power injection attacks. In
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other words, the vertex connectivity of these power networks is often small. Furthermore,

there are often many ties when finding unobservable attacks with the minimum sparsity: this

is why even after adding a lot more PMUs into the network, with each addition eliminating

the previous sparsest attack, the minimum sparsity can still remain the same.

• While there are many ties of unobservable attacks with the same sparsity, the potential

impacts among them can vary significantly. Moreover, as more PMUs are added, the

maximum potential impact among all the sparsest unobservable attacks drops quickly until

it reaches the minimum sparsity. Similar behavior is demonstrated for all the s-sparse

unobservable attacks (s = 2, 3, 4, 5) for the IEEE 30-bus system as shown in Figure 4.

VI. CONCLUSION

We have studied physical attacks that alter power generation and loads in power networks

while remaining unobservable under the surveillance of system operators using PMUs. Given a

set of PMUs, we have first shown that the existence of an unobservable attack that is restricted to

any given subset of the buses can be determined with probability one by computing the structural

rank of a submatrix of the network Laplacian B. Next, we have provided an explicit solution to

the open problem of finding the sparsest unobservable attacks: the minimum sparsity among all

unobservable attacks equals κ(GM) + 1 with probability one. The constructive solution allows

us to find all the sparsest unobservable attacks in polynomial time. As a result, κ(GM) + 1

is a fundamental limit of this minimum sparsity that is not only explicitly attainable, but also

unbeatable by all possible unobservable attacks. We have then introduced a notion of potential

impacts of unobservable attacks. For the system operator to raise the minimum sparsity while

simultaneously mitigating the maximum potential impact of all unobservable attacks, we have

devised an efficient algorithm of greedily placing the PMUs. With optimized PMU deployment,

we have evaluated the sparsest unobservable attacks and their potential impacts in the IEEE 30,

57, 118, 300-bus systems and the Polish 2383, 2737, 3012-bus systems. Finally, while this work

has studied a static system model and power injection attacks, extension to dynamic systems,

measurements and power injection attacks remains an interesting future direction, for which we

expect that similar insights will apply.
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APPENDIX A

PROOF OF LEMMA 3

Proof of Lemma 3: First, we denote the Laplacian of the induced subgraph G[I] by LI . Denote the number

of connected components of the induced subgraph G[I] by c. By properly re-indexing the nodes, we have

BII = LI +DI , (13)

where LI is a block-diagonal matrix whose each block LjI (1 ≤ j ≤ c) is positive semidefinite and corresponds to

one connected component of G[I],

LI =


L1
I

L2
I

· · ·

LcI

 , (14)

and DI is diagonal, which we write in a block diagonal form whose each block Dj
I (1 ≤ j ≤ c) is itself a diagonal

matrix with non-negative entries,

DI =


D1
I

D2
I

· · ·

Dc
I

 . (15)

Since the original graph G is connected, each connected component of the induced subgraph G[I] must be

connected to at least one node in N\I. This implies the following fact:

Fact 1. Each diagonal submatrix Dj
I (1 ≤ j ≤ c) has at least one strictly positive diagonal entry.

Now, for any non-zero vector xI ∈ RI , we write it as a concatenation of c sub-vectors:

xI = [[x1
I ]
T [x2

I ]
T . . . [xcI ]

T ]T , (16)

where the length of each sub-vector xjI (1 ≤ j ≤ c) follows the size of the sub-matrix LjI .

As LI is positive semidefinite, xTILIxI ≥ 0:

1) If xTILIxI > 0, then immediately xTIBIIxI > 0.

2) If xTILIxI = 0, then LIxI = 0, which implies

LjIx
j
I = 0, ∀j = 1, 2, . . . , c. (17)

Namely, xjI is in the null space of LjI . Note that as LjI corresponds to a single connected component of

G[I], the dimension of the null space of LjI is one, and is spanned by the all one vector 1 = [1, 1, . . . , 1]T

with the appropriate length. Thus, xjI must be in the form of αj ·1, for some αj > 0. From Fact 1, Dj
I has

non-negative diagonal entries with at least one of them strictly positive, and we have [xjI ]
TDj
Ix

j
I > 0, and

hence xTI (BII)xI = xTI (LI +DI)xI > 0.

Therefore, BII is positive definite, and hence of full rank.
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(b) Case 1, B′t+1,t+1 ∈ BJK is on a non-zero permuted diagonal of B′.

Fig. 7. Proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 1

First, for a matrix H ∈ RN1×N2 with a full structural rank, we define an equivalent term, “a non-zero permuted

diagonal”, for a set of min(N1, N2) independent entries (cf. Definition 3). This term is based on the following

intuition: For example, for H ∈ RN×N , a non-zero permuted diagonal (i.e., a set of N independent entries)

corresponds to a permutation function π(i), i = 1, 2, . . . , N , such that Hi,π(i) 6= 0,∀i = 1, 2, . . . , N .

Proof of Theorem 1: It is sufficient to prove for the case of N ′ = N ′′ ≤ N − 1. We use induction as follows.

i) Clearly, any non-zero 1× 1 submatrix of B is of full rank.

ii) Assume that all t× t (t ≤ N − 2) submatrices of B with a non-zero permuted diagonal are of full rank with

probability one.

For a (t+ 1)× (t+ 1) submatrix of B with a non-zero permuted diagonal, we denote it by B′. We denote the

set of row indices of B that are selected in forming B′ by R = {r(1), r(2), . . . , r(t+1)}, and similarly the set of

selected column indices by C = {c(1), c(2), . . . , c(t+ 1)}: B′i,j = Br(i),c(j),∀1 ≤ i, j ≤ t+ 1. Clearly, if R = C,

B′ is of full rank from Lemma 3.

Now, consider the case that R = I ∪ J , C = I ∪ K, where I ∩ J = I ∩ K = ∅, J ∩ K = ∅, J ,K 6= ∅. In

other words, I denotes the common indices that appear in both the row indices R and the column indices C, J

denotes the indices that appear in R but not in C, and K denotes the indices that appear in C but not in R. WLOG,

B′ has the form as in Figure 7(a), in which the common row and column indices I are located in the upper left

part of B′, and B′ consists of four blocks BII ,BJI ,BIK,BJK.

Since B′ has a non-zero permuted diagonal, there exists a permutation function π(i), i = 1, 2, . . . , t + 1, such

that B′i,π(i) > 0,∀i = 1, . . . , t+1. In other words, the mapping r(i)→ c(π(i)), i = 1, 2, . . . , t+1 forms a bijection

between I ∪ J and I ∪ K, such that Br(i),c(π(i)) > 0,∀i = 1, 2, . . . , t + 1. We now consider the following two
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cases:

Case 1: ∃r(i) ∈ J , s.t. c(π(i)) ∈ K. In other words, one of the entries in BJK is on a non-zero permuted

diagonal of B′.

WLOG, assume that the entry B′t+1,t+1 in BJK is on a non-zero permuted diagonal of B′, i.e., π(t+1) = t+1.

As in Figure 7(b), we partition B′ into B′[1:t],[1:t],B
′
t+1,[1:t],B

′
[1:t],t+1 and B′t+1,t+1. Because B′t+1,t+1 is on a

non-zero permuted diagonal of B′, the t× t submatrix B′[1:t],[1:t] has a non-zero permuted diagonal.

From the induction assumption, B′[1:t],[1:t] is of full rank with probability one. When B′[1:t],[1:t] is of full rank,

let

α = B′
−1
[1:t],[1:t]B

′
[1:t],t+1. (18)

Thus, B′[1:t],t+1 = B′[1:t],[1:t]α. Then, B′ is rank-deficient if and only if

B′t+1,t+1 = B′t+1,[1:t]α (19)

Note that, except for Br(t+1),c(t+1) = B
′
t+1,t+1 itself, there are only three other entries in the Laplacian B that

are correlated with B′t+1,t+1:

Bc(t+1),r(t+1) = Br(t+1),c(t+1) = B
′
t+1,t+1, (20)

Br(t+1),r(t+1) = −
∑

j 6=r(t+1)

Br(t+1),j , (21)

Bc(t+1),c(t+1) = −
∑

i6=c(t+1)

Bi,c(t+1). (22)

However, as r(t + 1) ∈ J ⇒ r(t + 1) /∈ I ∪ K, c(t + 1) ∈ K ⇒ c(t + 1) /∈ I ∪ J , none of the above three

entries is selected into the submatrix B′. Therefore, B′t+1,t+1 is independent to all other entries in B′, and is

hence independent to B′t+1,[1:t]α. Because B′t+1,t+1 is drawn from a continuous distribution, the probability that

(19) is satisfied is zero. As a result, B′ is of full rank with probability one.

Case 2: ∀r(i) ∈ J , c(π(i)) /∈ K. Thus, ∃r(i) ∈ I, s.t. c(π(i)) ∈ K. In other words, one of the entries in BIK

is on a non-zero permuted diagonal of B′.

WLOG, assume that the entry B′1,t+1 in BIK is on a non-zero permuted diagonal of B′, i.e., π(1) = t+1. As

in Figure 8(a), we partition B′ into B′1,[1:t],B
′
[2:t+1],[1:t],B

′
1,t+1 and B′[2:t+1],t+1. Because B′1,t+1 is on a non-zero

permuted diagonal of B′, the t× t submatrix B′[2:t+1],[1:t] has a non-zero permuted diagonal.

From the induction assumption, B′[2:t+1],[1:t] is of full rank with probability one. When B′[2:t+1],[1:t] is of full

rank, let

α = B′
−1
[2:t+1],[1:t]B

′
[2:t+1],t+1. (23)

Thus, B′[2:t+1],t+1 = B′[2:t+1],[1:t]α. Then, B′ is rank-deficient if and only if

B′1,t+1 = B′1,[1:t]α (24)
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(b) Case 2, B′i,i depends on B′i,1,B
′
i,t+1 only

via the sum B′i,1 +B′i,t+1.

Fig. 8. Proof of Theorem 1.

Note that r(1) = c(1) ∈ I. We have

B′1,1 = Br(1),c(1) = Br(1),r(1) = −
∑
j 6=r(1)

Br(1),j = −B′1,t+1 − C1, (25)

where B′1,t+1 = Br(1),c(t+1), and C1 =
∑
j 6=r(1),j 6=c(t+1)Br(1),j is independent to B′1,t+1. Substitute (25) for

B′1,1 in (24), we have

B′1,t+1 = α1B
′
1,1 +

t∑
j=2

αjB
′
1,j = −α1B

′
1,t+1 +

−α1C1 +

t∑
j=2

αjB
′
1,j

 .

⇔ (1 + α1)B
′
1,t+1 = −α1C1 +

t∑
j=2

αjB
′
1,j . (26)

Note that B′1,t+1 is independent to α1, and independent to the right hand side of (26). Because B′1,t+1 is drawn

from a continuous distribution, if α1 6= −1, the probability (conditioned on α1 6= −1) that (26) is satisfied is zero.

Next, we prove that the probability of α1 = −1 is zero. From (23), if α1 = −1,

B′[2:t+1],t+1 =

t∑
j=1

αjB
′
[2:t+1],j

⇔ B′[2:t+1],1 +B
′
[2:t+1],t+1 =

t∑
j=2

αjB
′
[2:t+1],j . (27)

Thus, α1 = −1 implies that B′[2:t+1],1+B
′
[2:t+1],t+1 is in the range space of B′[2:t+1],[2:t]. Note that, all the entries

in the two vectors B′[2:t+1],1 and B′[2:t+1],t+1 are mutually independent non-diagonal entries of B.

Now, consider that we make the following change of distributions of certain entries in B′ (and also B corre-

spondingly):
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1) ∀i = 2, . . . , t+ 1, let B′i,1(= Br(i),c(1)) be drawn from the distribution of the sum B′i,1 +B
′
i,t+1.

2) Let every entry of B′[2:t+1],t+1 to be a deterministic zero, i.e., ∀i = 2, . . . , t+1, B′i,t+1(= Br(i),c(t+1)) = 0.

Observe that,

• As in Figure 8(b), ∀i, s.t. r(i) ∈ I, the only entry in B′[2:t+1],[2:t] that is correlated with B′i,1 and B′i,t+1 is

B′i,i = −(B′i,1 +B′i,t+1)− C2, (28)

where C2 =
∑
j 6=c(1),j 6=c(t+1)Br(i),j . Note that B′i,i depends on B′i,1,B

′
i,t+1 only via the sum B′i,1+B

′
i,t+1.

• ∀i, s.t. r(i) ∈ J , B′i,1 and B′i,t+1 are independent to all the entries in B′[2:t+1],[2:t].

This implies the following fact:

Fact 2. The joint distribution of B′[2:t+1],1 and B′[2:t+1],[2:t] after the change of distributions is equal to the joint

distribution of B′[2:t+1],1 +B
′
[2:t+1],t+1 and B′[2:t+1],[2:t] before the change.

We now note that, after the change of distributions, the t × t matrix B′[2:t+1],[1:t] = [B′[2:t+1],1 B
′
[2:t+1],[2:t]]

still satisfies the induction assumption, and is hence of full rank with probability one. Thus, before the change

of distributions, B′[2:t+1],1 +B
′
[2:t+1],t+1 falls in the range space of B′[2:t+1],[2:t] with probability zero. Therefore,

α1 = −1 with probability zero, hence the probability that (24) is satisfied is zero. As a result, B′ is of full rank

with probability one.

APPENDIX C

PROOF OF LEMMA 6

We first prove the following lemma in preparation for proving Lemma 6:

Lemma 7. For a matrix H ∈ RN×N , if the following conditions are satisfied,

H1,1 6= 0, (29)

∀i = 2, . . . , N,Hi,i−1 6= 0, (30)

∀i = 2, . . . , N, the sub-column H[1,i],i has at least one non-zero entry, (31)

then H satisfies Property 1.

A depiction of a matrix satisfying (29), (30) and (31) is given in Figure 9, in which the entries with an “x” are

known to be non-zero, and the shaded sub-columns each has at least one non-zero entry.

Proof: We use induction as follows.

i) The lemma is true for N = 1.

ii) Assume that the lemma is true for all N = 1, . . . , t. For N = t+ 1:

First, because the upper left (N − 1)× (N − 1) submatrix of H satisfies the induction assumption, each of H’s

first left N − 1 columns must contain at least one non-zero entry. From (31), the last column of H has at least

one non-zero entry. Thus, the case of n = N in Property 1 holds for H .
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Fig. 9. A matrix that satisfies (29), (30) and (31) as in Lemma 7.

Next, ∀1 ≤ n ≤ N − 1, for any n×N submatrix of H , denote it by H ′, and its corresponding row indices in

H by r(1) < r(2) < . . . < r(n).

• If the last n rows of H are selected to form H ′, (i.e. r(i) = i+N−n, i = 1, . . . , n), from (30), the columns

N − n, . . . , N − 1 each has one non-zero entry, namely, HN−n+1,N−n, . . . ,HN,N−1.

• Otherwise, there exists a row r∗, r∗ ≥ N−n+1, which is not selected inH ′ (cf. Figure 9). In this case, the row

indices of H ′ can be partitioned into two subsets: ∃i(∈ {1, 2, . . . , n}), r(1) < . . . < r(i) ≤ r∗−1 and r∗+1 ≤

r(i+1) < . . . ≤ r(n). On the one hand, note that the upper left (r∗−1)×(r∗−1) submatrix of H satisfies the

induction assumption. Thus, among the first r∗− 1 columns of the rows r(1), . . . , r(i), there exists i columns

each of which has one non-zero entry. On the other hand, from (30), Hr(i+1),r(i+1)−1, . . . ,Hr(n),r(n)−1 are

all non-zero, and none of these non-zero entries appears in the first r∗ − 1 columns. Therefore, there exist n

columns of H ′ such that each of them has at least one non-zero entry.

We now prove Lemma 6.

Proof of Lemma 6: Clearly, Property 1 is implied by the non-zero diagonal property.

To prove that the non-zero diagonal property is also implied by Property 1, we use induction on N as follows.

i) For N = 1, the non-zero diagonal property is implied by Property 1.

ii) Assume that ∀N ≤ t, (t ≥ 1, ) the non-zero diagonal property is implied by Property 1.

For N = t+ 1, we use another induction on the number of rows n of submatrices of H in proving a non-zero

permuted diagonal property.

a) For n = 1, directly from Property 1, any n×N submatrix of H (i.e., any row of H) has at least one non-zero

entry.

b) Assume that ∀n ≤ t < N , ∀n×N submatrix of H , denoted by H ′, it has the following property:

∃π(i) (i = 1, . . . , n) that satisfies π(i) 6= π(j),∀i 6= j, s.t. H ′i,π(i) 6= 0. (32)
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Fig. 10. The matrix H ′ in the proof of Lemma 6.

For n = t+1, from the induction assumption b), there exists a non-zero permutated diagonal for the (n−1)×N

submatrix H ′[2:n],[1:N ]: WLOG, assume that it corresponds to ∀i = 2, . . . , n,H ′i,i−1 6= 0 (cf. Figure 10.)

Now, we use proof by contradiction, and assume that H ′ does not have a non-zero permuted diagonal. Then,

the sub-row H ′1,[n,N ] must be all zero, because otherwise any non-zero entry within H ′1,[n,N ] will form a non-

zero permuted diagonal of H ′ with H ′i,i−1(i = 2, . . . , n). From Property 1, the 1st row of H ′ must have at

least one non-zero entry. WLOG, assume that H ′1,1 is non-zero. Then, the sub-row H ′2,[n,N ] must be all-zero,

because otherwise any non-zero entry within H ′2,[n,N ] will form a non-zero permuted diagonal of H ′ with H ′1,1

and H ′i,i−1(i = 3, . . . , n). From Property 1, the first two rows of H ′ must have at least two columns each of which

has at least one non-zero entry. Since H ′2,1 6= 0, there is at least one more column of H ′[1,2],[1,N ] that has at least

one non-zero entry. WLOG, assume that the sub-column H ′[1,2],2 has at least one non-zero entry, (cf. the shaded

area in Figure 10).

Similarly, consider the rth row of H ′. Note that the submatrix H ′[1:r−1],[1:r−1] satisfies (29), (30) and (31),

and hence satisfies Property 1 by Lemma 7. From the induction assumption ii), H ′[1:r−1],[1:r−1] has a non-zero

permuted diagonal. Then, the sub-row H ′r,[n,N ] must be all-zero, because otherwise any non-zero entry within

H ′r,[n,N ] will form a non-zero permuted diagonal of H ′ with the non-zero permuted diagonal of H ′[1:r−1],[1:r−1]
and H ′i,i−1(i = r + 1, . . . , n).

Therefore, the submatrix H ′[1,N ],[n,N ] must be all-zero. This implies that there are only n − 1 (instead of n)

columns of H ′ each of which has at least one non-zero entry, and hence contradicts with Property 1.
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