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Abstract—Profit allocation mechanism (PAM) for aggregat-
ing renewable power producers (RPPs) to participate in two-
settlement power markets is studied. As opposed to assuming all
renewable generation forecast information are publicly known,
with a PAM, the aggregator elicits private forecast information
from the RPPs, participates in the power markets, and allo-
cate profit to each RPP. A novel profit allocation mechanism
is proposed that simultaneously achieves four design goals:
truthfulness, individual rationality, social welfare maximization,
and budget balance. The proposed PAM is evaluated using the
forecast and generation data from ten wind power producers
in PJM, and is observed to closely follow the ideal fair profit
allocation derived by assuming all forecast information are
public.

I. INTRODUCTION

Integration of renewable energies from sources such as wind
and solar into the electric grid plays a key role in achieving
a sustainable energy future. Unlike conventional generation,
these renewable energies are inherently not controllable, and
yet have highly variable and uncertain output. In particular,
wind and solar generation forecast is typically much less
accurate than load forecast [1]. Such uncertainty raises signif-
icant challenges for using renewable energies to serve power
demands reliably. While there are a range of technologies
for compensating for the uncertainty of renewable energies,
such as fast-ramping generators, energy storage and demand
response [2], [3], [4], [5], [6], challenging issues of their
cost and capacity remain to be solved. On the other hand,
aggregation of statistically diverse renewable energy sources
can effectively reduce their generation uncertainty. If fully
exploited, renewable energy aggregation can greatly reduce the
requirement and cost of using other means of compensation
for the uncertainty.

The benefit of renewable energy aggregation has been
demonstrated in a number of studies. For renewable power
producers (RPPs) to sell reliable power in forward power
markets, aggregation of multiple RPPs reduces their generation
uncertainty and brings significant increase to their total profit.
A central question is thus how to allocate such economic
benefit to the RPPs in an aggregation, in other words, how
to value the contribution of each RPP to an aggregation. A
coalitional game approach for profit allocation among RPPs
was introduced in [7], and it is shown that the core of the
game is non-empty. Using an instrument named risky power
contract, it is shown that there is a unique fair profit allocation
to each contributing RPPs in an aggregation, determined by

the competitive equilibrium of the risky power market [8].
While the above works guarantee a stable profit allocation
(i.e., in the core) in an “ex-ante” sense (i.e., in expectation),
other works that discuss “ex-post” (i.e., for each realization)
individual rationality include [9], [10]. A key lesson learned
from the renewable energy aggregation studies is that the
fair valuation of each contributing RPP critically depends on
the probabilistic properties of the uncertain generation. In
particular, a lower variance of an RPP’s generation, and/or
a more negative/less positive correlation of its generation with
other RPPs’, lead to a higher valuation of this RPP.

A primary assumption made by existing renewable energy
aggregation studies is that the probability distributions of the
RPPs’ forecast generation, which are random variables when
selling in the forward markets, are public information that
everyone agrees on. This is however a simplification of the
reality, as different entities can often have different information
and forecast of future generation. For example, in CAISO,
the operator asks wind power producers to provide their own
generation forecast [11]. This leads to a fundamental incentive
compatibility issue: If private information from RPPs are used
in determining profit allocation in an aggregation, it is to the
advantage of an RPP to report whatever information (e.g.,
claiming, even if it’s not true, that its forecast generation has
a lower variance and is negatively correlated with others) that
can lead to a higher profit allocated to itself. It is thus crucial
to design profit allocation mechanisms (PAMs) so that RPPs
are incentivized to report their true information on generation
forecast. Mechanism for eliciting forecast information of RPPs
has been studied in [12]. However, it does not consider the
alternative of an RPP leaving an aggregation and separately
selling power in power markets, or whether its profit allocation
is close to the fair profit allocation for renewable energy
aggregation.

In this paper, we first formulate the mechanism design
problem of profit allocation for aggregating RPPs. As opposed
to assuming that generation forecast information are publicly
known, we design the PAM to elicit the private forecast
information from RPPs. We propose a PAM to simultaneously
achieve four design goals: a) RPPs are willing to report their
private forecast information truthfully, b) RPPs are willing to
form an aggregation as opposed to sell power separately in
power markets, c) Full benefit of aggregation is achieved as if
all RPPs fully cooperate with each other in a grand coalition,
and d) the profit obtained by the aggregation is always equal to



the sum of the profits allocated to all participating RPPs. We
evaluate the proposed PAM with the wind power data (forecast
and generation) from ten wind power producers in PJM [13].
It is shown that the proposed PAM allocates profit very closely
to the ideal fair profit allocation obtained by assuming all
information are public.

II. PROBLEM FORMULATION

A. Renewable Power Producers in a Two Settlement Market

We consider RPPs participating in a two-settlement power
market consisting of a day ahead (DA) market and a real time
(RT) market. We assume that the RPPs are price takers.

Without considering aggregation, RPPs sell power in the
DA market separately. In the DA market, RPP i’s generation
at the time of interest in the next day is modeled as a random
variable, denoted by Xi. Based on all forecast information
it has on Xi, RPP i commits certain level of power si in the
DA market. At the delivery time, RPP i sees its actual realized
generation xi. If there is a shortfall, i.e., si − xi > 0, RPP i
is responsible for the difference and buys the corresponding
amount in the RT market, and if otherwise, it sells the surplus
xi− si. The profit of RPP i who separately participates in the
DA-RT market is:

Psep
i = pdsi − pr,b (si − xi)+ + pr,s (xi − si)+ , (1)

where pd is the DA price, pr,b and pr,s are the RT prices
of buying and selling power, pr,b > pd > pr,s, and (·)+ =
max(0, ·). Since there is uncertainty of RPP i’s generation
Xi one day head of delivery, RPP i needs to commit in
the DA market somewhat conservatively. Based on the DA
forecast probability distribution of Xi, the optimal level of
commitment, denoted by s∗i , can be solved as a news-vendor
problem [14], [15] (see Remark 1 below).

B. Aggregation of RPPs and Profit Allocation

The benefit of aggregation stems from the inherent un-
certainty of the renewable power sources. An aggregator
aggregates multiple RPPs so that their statistical diversity
helps reduce the uncertainty of their generation. By selling
power in the DA-RT market jointly and sharing the risk in
an aggregation, a higher total profit can be achieved for the
RPPs. The key question that an aggregator faces is how to
allocate the total profit to the RPPs in an aggregation. Prior
works primarily assumed that the forecast joint probability
distribution function (PDF) of RPPs’ future generation are
public information known to the aggregator and the RPPs.
Based on this, fair profit allocation is shown to critically
depend on this joint PDF. In particular, for an aggregation
of N RPPs under a unique fair profit allocation, RPP i has an
expected profit Pfair,exp

i = p∗iµi, where µi = E[Xi], and p∗i
is a “competitive price” computed based on the joint PDF of
X1, . . . , XN and the power market prices (see [8] for details).

However, it is a simplification to assume that the forecast
joint PDF of RPPs’ generation are public information on
which everyone agrees. For RPP i, there can be private
information that only RPP i itself knows. Such information

can determine the true uncertainty of its generation Xi as well
as its correlation with other RPPs’ generation. As a result,
the aggregator would need to a) elicit such private forecast
information from the RPPs in order to make more informed
decisions in the DA market, and b) incorporate the elicited
information in computing the profit allocation to the RPPs.

C. Aggregation and Profit Allocation with Private Information
Elicited

We consider an aggregator aiming to aggregate N RPPs.
The aggregation and profit allocation procedure consists of
the following steps: 1) One day ahead, the RPPs report
their forecast information, denoted by IRi to the aggregator,
(note that this reported information are not necessarily their
true information ITi ,) 2) Based on the joint PDF determined
by these reported information, on behalf of the RPPs, the
aggregator sells a commitment sA in the DA market, 3) At RT,
the aggregator combines the actual realized generation from
the RPPs, x1, . . . , xN , supplies the committed power sA, and
resolves the imbalance sA −

∑N
i=1 xi in the RT market, 4)

The aggregator accrues a total profit of PA from participating
the two-settlement market, and allocates profit P1, . . . ,PN to
the RPPs. The general structure of the aggregation and profit
allocation procedure in shown in Fig. 1.

Fig. 1. The general structure of aggregation and profit allocation
mechanism.

The key task for the aggregator is the mechanism by which
it allocates profit to all the RPPs. In designing the PAM, we
would like to achieve the following goals:

1) Truthfulness: It is optimal for the RPPs to report to
the aggregator their true private information, i.e., IRi =
ITi ,∀i.

2) Individual rationality: An RPP cannot get a higher
expected profit by leaving the aggregation and separately
selling power in the DA-RT markets.



3) Social welfare maximization: The total profit of the
RPPs achieves the maximum as if they fully cooperate
as a grand coalition.

4) Budget balance: The allocated profit to the RPPs {Pi}
exactly sum to the profit earned by the aggregator PA.

III. PROFIT ALLOCATION MECHANISM DESIGN

Assuming truthfulness, the profit allocation schemes devel-
oped in [7], [8] achieve individual rationality, social welfare
maximization, and budget balance. However, without assum-
ing it, truthfulness is not necessarily achieved. In this section,
we first introduce a simple PAM to achieve truthfulness, which
does not necessarily achieve individual rationality. Extending
this, we propose a PAM that achieves all the design goals.

A. Profit Allocation Based on Realized Generation

Truthfulness itself can be achieved with a simple idea:
allocate profit based on the realized generation of the RPPs,
namely, {x1, . . . , xN}. In particular, a simple and intuitive
mechanism is to let profit allocated to RPP i be

Pi =
xi∑
j xj
PA, (2)

where PA is the profit earned by the aggregator. This PAM
achieves truthfulness, and the intuition is the following: Since
what RPP reports to the aggregator has no influence at all on
the actual realized generation {xi}, it is to the interest of each
RPP to report information so that the only other factor that
influences its profit – PA – is maximized. As the aggregator
depends on the reported information {IRi } to maximize PA,
and PA is clearly maximized only if no false information is
used, it is optimal for each RPP to report its true information
to the aggregator, i.e., IRi = ITi .

It is immediate to see that this simple PAM achieves budget
balance. However, it does not necessarily achieve individual
rationality and hence social welfare maximization.

B. The Proposed Profit Allocation Mechanism

The key idea to achieve individual rationality is to guarantee
the profit to each RPP that would be obtained if it separately
sells power in the DA-RT market.

Specifically, based on the received reported information
{IRj }, the aggregator commits the optimal DA contract
s∗A
(
{IRj }

)
by solving the news-vendor problem [14], and

collects the following profit after resolving the aggregate
imbalance in the RT market:

P∗A = pds∗A
({
IRj
})
− pr,b

(
s∗A
({
IRj
})
−

N∑
j=1

xj

)
+

+ pr,s
( N∑

j=1

xj − s∗A
({
IRj
}))

+
(3)

To allocate P∗A, the aggregator employs the following proce-
dure. First, each RPP i is allocated the amount that it can

maximally earn if it were to separately sell power in the DA-
RT market based on its reported information IRi :

Psep,∗
i = pds∗i

(
IRi
)
− pr,b

(
s∗i
(
IRi
)
− xi

)
+

+ pr,s
(
xi − s∗i

(
IRi
))

+
(4)

where s∗i
(
IRi
)

is the optimal commitment by RPP i if it
separately sells in the DA-RT markets based on IRi . Then, the
remaining profit P∗A−

∑N
i=1 P

sep,∗
i (which will be shown later

to be always nonnegative in expectation) is allocated based on
the realized generation of the RPPs as in the last subsection.

Accordingly, the complete PAM is as follows:

Pi = Psep,∗
i +

xi∑
j xj

P∗A − N∑
j=1

Psep,∗
j

 . (5)

Remark 1: The optimal commitment s∗i for RPP i to sell
in the DA market can be solved by a news-vendor problem
[14]:

s∗i = arg max
si

E
[
pdsi − pr,b (si −Xi)+ + pr,s (Xi − si)+

]
= F−1i

(
pd − pr,s

pr,b − pr,s

)
, (6)

where Fi is the cumulative distribution function (CDF) of the
forecast generation of RPP i, Xi.

In an aggregation, the aggregator also uses (6) to compute
the optimal commitment s∗A for the aggregation, based on the
CDF FA of the aggregate generation

∑N
i=1Xi.

C. The Proposed PAM Achieves the Design Goals

We now show that the proposed PAM (5) achieves all the
four design goals.

Theorem 1: The proposed profit allocation mechanism
achieves truthfulness, individual rationality, social welfare
maximization, and budget balance.

Proof: i) Truthfulness: Consider RPP i. Assume that all
other RPPs report their true information. We have:

Pi = Psep,∗
i +

xi∑
j xj

P∗A − N∑
j=1

Psep,∗
j


=

∑
j 6=i xj∑
j xj

Psep,∗
i +

xi∑
j xj
P∗A −

xi∑
j xj

∑
j 6=i

Psep,∗
j (7)

Note that {xj} are the actual realized generation that do not
depend on what information the RPPs report. In addition,
for RPP i, the last term

∑
j 6=i P

sep,∗
j does not depend on

its reported information IRi (but on others’ reported infor-
mation IRj , j 6= i). Therefore, RPP i would like to report
its information such that the expected Psep,∗

i and P∗A are
maximized. Now, we notice that a) as Psep,∗

i (4) is based
on the DA commitment s∗i

(
IRi
)

computed according to its
reported information IRi , it is maximized when RPP i reports
the true information IRi = ITi , and b) as P∗A (3) is the
aggregator’s profit whose commitment s∗A is based on the
reported information, similar to the argument in Section III-A,



it is also maximized when RPP i report its true information
IRi = ITi .

ii) Individual Rationality: Here, we consider that the RPPs
report their true information as we proved above. We need to
prove that E[P∗A −

∑N
j=1 P

sep,∗
j ] ≥ 0. This is immediate as

E[P∗A] is the maximum expected profit that the aggregation can
achieve, whereas

∑N
j=1 P

sep,∗
j is some expected profit that the

aggregation can achieve. A detailed proof is given below:

P∗A = pds∗A
({
IRj
})
− pr,b

(
s∗A
({
IRj
})
−

N∑
j=1

xj

)
+

+ pr,s
( N∑

j=1

xj − s∗A
({
IRj
}))

+

≥ pd
N∑
j=1

s∗j
(
IRj
)
− pr,b

( N∑
j=1

s∗j
(
IRj
)
−

N∑
j=1

xj

)
+

(8)

+ pr,s
( N∑

j=1

xj −
N∑
j=1

s∗j
(
IRj
) )

+

≥ pd
N∑
j=1

s∗j
(
IRj
)

+

N∑
j=1

(
− pr,b

(
s∗j
(
IRj
)
− xj

)
+

(9)

+ pr,s
(
xj − s∗j

(
IRj
) )

+

)

=

N∑
j=1

Psep,∗
j .

(8) is because s∗A
({
IRj
})

is by definition the optimal DA
commitment for the aggregation, whereas

∑N
j=1 s

∗
j

(
IRj
)

is
some feasible commitment. To see (9), let us define a func-
tion f(∆) = −pr,b(∆)+ + pr,s(−∆)+,∆ ∈ R. Note that
a) f(∆) is concave since pr,b ≥ pr,s, and b) f(α∆) =
αf(∆),∀α ≥ 0. With these two properties, by Jensen’s
inequality, f(

∑N
j=1 ∆j) ≥

∑N
j=1 f(∆j),∀∆1, . . . ,∆N . This

then implies (9).
iii) Budget balance: It is by design achieved.
iv) Social welfare maximization: From i), ii) and iii), it

is immediate that the total profit of the RPPs achieves the
maximum as if all of them fully cooperate as a grand coalition.

IV. SIMULATION

A. Data description and simulation setup

We perform the simulation using the NREL dataset [13]
based on ten wind power producers (WPPs) located in PJM.
For each WPP, both the hourly DA forecast and actual realized
generation are available. The generation of the WPPs are
modeled as follows:

Wi (t) = Ŵi (t) + εi (t) ,

where Ŵi is the (point) forecast power of WPP i, and εi is the
forecast error, i.e., the difference between the realization and
the forecast of generation. For numerical simplicity, we model

Fig. 2. Comparison of average daily profits of the WPPs.

the forecast error vector using a zero mean jointly Gaussian
distribution, N(0,Σ). We fit the covariance matrix Σ using
the data of these ten WPPs in Jan. 2004. We then run the
simulation using the data of the ten WPPs in Feb. 2004. Note
that the jointly Gaussian forecast error model does not affect
the wind power forecast and generation data that we use in
the simulation. This model only affects how WPPs model
their forecast errors when determining DA commitments. To
simulate the interactions with the DA-RT markets, we employ
the hourly DA and RT locational marginal prices (LMPs),
during Feb. 2004, from where the ten WPPs are located. As
these ten WPPs are located close to each other, they faced the
same LMPs. For each hour of Feb. 2004, the aggregator has the
total wind energy forecast

∑10
i=1 Ŵi, the learned covariance

matrix of the forecast errors Σ, and the DA, RT prices.
Based on these, the aggregator sets an optimal contract in the
DA market (cf. Remark 1), and also resolves any imbalance
between the current hour’s generation and the DA contract
committed one day ago.

The comparison between a) the average daily profit of each
WPP if it separately participates in the DA-RT markets, and
b) when the ten WPPs form an aggregation and each is paid
according to the proposed profit allocation mechanism (5),
is shown in Fig. 2. It demonstrates the individual rationality
achieved by the proposed PAM, as each WPP’s allocated
profit in the aggregation is greater than its profit when it
separately participates in the DA-RT markets. We also know
from Theorem 1 that the maximum total profit is achieved as
if all WPPs fully cooperate as a grand coalition.

Furthermore, we are interested in comparing the profit
allocation under the proposed PAM (5) that elicits truthful
private information vs. the fair profit allocation assuming
that all information are public, i.e., truthfulness is enforced,
(see [8] for details). This is plotted in Fig. 3. Note that
the proposed PAM and the fair profit allocation assuming
truthfulness both achieve the same maximum total profit, and
are hence allocating the same amount of total profit among
the ten WPPs. From Fig. 3, it is interesting to see that the
proposed PAM allocates profit very closely to the fair profit
allocation derived by assuming all information are public.

To take a closer look at how the proposed PAM approxi-
mately follows the fair profit allocation, we plot in Fig. 4 the



Fig. 3. Comparison of the proposed PAM and the fair PAM that
assumes truthfulness.

Fig. 4. Comparison of the profits of WPP8, the proposed PAM vs. the
fair PAM that assumes truthfulness.

traces of profit allocation by the two mechanisms for WPP
8 (who experiences the largest difference between the two as
observed from Fig. 3), for a total of 696 hours in Feb. 2004.
We observe that, again, the proposed PAM follows the fair
profit allocation very closely over time.

We further know from prior work that the fair profit allo-
cation assuming truthfulness is in the core of the coalitional
game of aggregating RPPs [8]. We note that being in the core
implies individual rationality for a PAM, and is thus a stronger
requirement. An interesting future direction is to find a PAM
that, in addition to achieving all the design goals in this work,
also achieves being in the core. From the numerical proximity
between the proposed PAM and the fair profit allocation, we
see that the proposed PAM approximately achieves being in
the core.

V. CONCLUSION

We have proposed a profit allocation mechanism (PAM) for
aggregating multiple renewable power producers (RPPs), so
that the aggregation participates in two-settlement power mar-
kets based on the private information elicited from the RPPs
on their generation forecast. The proposed PAM achieves a)
truthfulness, i.e., it elicits the true private forecast information
from the RPPs, b) individual rationality, i.e., it allocates to
each RPP a profit that is in expectation no less than what it
would obtain by separately participating in the power markets,
c) social welfare maximization, i.e., the maximum total profit
is achieved for the RPPs as if they fully cooperate as a

grand coalition, and d) budget balance, i.e., the total profit
earned by the aggregator is always equal to the sum of the
profits allocated to all the RPPs. The performance of the
proposed PAM is demonstrated using wind power forecast and
generation data from ten WPPs in PJM. It is observed that
the proposed PAM that elicits true private information closely
follows the ideal fair profit allocation that assumes all forecast
information are public.
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