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Abstract—We find the uplink channel allocation that maxi-
mizes the total throughput in linear (one-dimensional) cellular
systems, under arbitrary fairness constraints defined by resource
distribution functions. We exploit a revenue-cost separation
principle in this multi-cell interference channel problem, and
equivalently transform maximizing the total throughput in to
minimizing the total interference cost of all cells. The keyidea
in obtaining the optimal channel allocation is the alignment of
interference signal strengths. We show that with very low com-
plexity, a complete optimal channel allocation can be constructed
by rippling along all the cells the proposed interference strength
alignment procedure. From analyzing the consequence of the
interference strength alignment, the superiority of the optimal
channel allocation over CDMA is justified. Numerical results are
provided to demonstrate the performance gap between these two
schemes.

I. I NTRODUCTION

We study the optimal uplink channel allocation (CA) of lin-
ear (i.e., one-dimensional) cellular communication networks.
The single cell cases take the form of multiple access channels
[8], for which the optimal power and channel allocation
schemes in Gaussian frequency selective channels are well
understood [5], [13]. The multi-cell cases have an added
interference channel nature, for which (weighted) throughput
maximization by power and channel allocation is a non-
convex optimization, and is NP-hard to solve [11], [12]. For
general (including cellular) interference networks, muchwork
has been done in reducing the complexity of solving this
non-convex problem (although still NP) [4], [14], [15]. With
convexified utility functions or other convex approximations,
(polynomial time) low complexity methods have also been
developed [6], [7], [10].

Recently, progress in interference alignment [2] and the
deterministic channel model [1] has provided new perspectives
into managing interference. Combining these two leads to
the idea of aligning the interference in bit-levels, or signal
strengths [3], [15].

In this paper, we exploit the idea of interference signal
strength alignment in multi-cell uplink channel allocation. We
first separate optimizing fairness and throughput by introduc-
ing the resource distribution function (rdf ), which can be
designed in a natural way to match the fairness requirement.
We then assumerdf is given as a fairness constraint on CA,
and focus on finding the optimal CA that maximizes the total
throughput.

With a revenue-cost separation principle, in our problem
setting, throughput maximization is equivalently transformed
into interference cost minimization. For every cell, we sort the
interference strengths (received at its base station) generated
by users in each of its neighboring cells. We then align
the ith (i = 1, 2, . . .) strongest interference in each of its
neighboring cellsto co-exist in the same channel. We prove
that once the alignment is done for every cell, the resulting
CA minimizes the total interference cost, and hence maximizes
the total throughput. For linear cellular networks, we showthat
alignment of all the cells can be done in a rippling manner. As
a result, this procedure of obtaining the complete optimal CA
has a low complexity ofO(ncellm log(m)), (wherencell is the
number of cells, andm is the number of channels.) As will
be shown, our methods enable both analytical and numerical
comparisons of optimal CA with CDMA schemes.

The rest of the paper is organized as follows. The system
model is established in Section II, where several key steps
are taken to clarify and simplify the problem structure. In
Section III, the complete uplink optimal channel allocation
using interference strength alignment is derived. In Section IV,
the performance of the optimal CA is compared with typical
CDMA schemes through two examples with different fairness
requirements. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider the uplink channel allocation of a linear cellular
system with base stations (BS) positioned on a straight line.
We make the following assumptions: i) Users within the same
cell use orthogonal frequency channels. ii) A frequency reuse
factor of 1 is applied among all the cells. iii) Interferenceis
treated as noise, (and hence no interference cancellation or
joint decoding is used.) iv) Interference from users not from
the immediate neighboring cells is ignored. Thus, each cell
has two interfering cells (Figure 1). v) There arem parallel
channels with unit bandwidth. In every cell, all them channels
are utilized, (i.e., there is no vacant channel in any cell.)
vi) Channels experience frequency flat fading, and the noise
spectral density is flat at all receivers. vii) Each user transmits
at its ownuniform power spectral density (PSD) over all the
channels it occupies. Accordingly,we focus on the problem
of channel allocation, assuming that users do not vary their
selected power levels.



A. Approximate Rate Function

Employing the Shannon capacity formula for Gaussian
channels [8], we haveR = log(1 + SINR) bits/sec/Hz. We
approximate this formula in the following way:

log(1 + SINR) ≈ max(0, log(SINR)) (1)

It can be verified that the maximum deviation from the R.H.S.
of (1) to the L.H.S. is 1 bit/sec/Hz, which occurs whenSINR =
0dB. Furthermore, note that (1)= log(SINR) provided that
SINR ≥ 0dB, and this leads to the decomposition of the
problem into two steps:

1) Active user selection: in each channel, we select the
users that are expected to haveSINR ≥ 0dB, so that
the zero floor becomes redundant. (The inactive users
are then dropped from the objective function in this
channel.)

2) Optimization with respect to the selected active users,
with R ≈ log(SINR).

Note that withoutSINR ≥ 0dB, log(SINR) can be arbitrarily
negative. Thus, choosing the correct active users in step 1)is
crucial for the approximation to be close.

B. Revenue-Cost Separation Principle

From now on, we will assume that the active user selection
is properly done in each channel so that the zero floor in
(1) can be equivalently dropped. In cellular scenarios with
in-cell orthogonalization, (i.e. interference only comesfrom
other cells,) this assumption is typically easy to satisfy.Thus,
we have the following separation principle for an active user
i’s rate in any one channel:

Ri = log(SINRi) = log(
giiPi∑

k 6=i gkiPk +Ni

)

= revenuei − costi (2)

whererevenuei , log(giiPi), costi , log(
∑

k 6=i gkiPk+Ni),
and k runs over all co-channel users of useri. Pk is the
transmit PSD of userk, Ni is the noise spectral density at
receiveri, andgki is the channel gain from transmitterk to
receiveri. As will be shown in Section III, this revenue-cost
separation principle has a significant impact in both analysis
and design — it greatly reduces the complexity of finding the
optimal CA in multi-cell cases.

C. Resource Distribution Function (rdf)

Definition 1: Theresource distribution functionrdf(i) (i =
1, . . . , n, wheren is the total number of users,) is defined to
be thenumberof channels allocated to useri, or equivalently,
the amountof bandwidth allocated to useri.

Note that there are many different CAs that correspond
to the samerdf , which may result in very different total
throughput due to the differences in multi-cell co-channeluser
selections. With the concept ofrdf , the channel allocation
problem is decomposed into two steps: i) deciderdf , and ii)
decide CA givenrdf . For step i), the design ofrdf should
match users’ demands and channel conditions: users with

higher target rates and/or worse channel conditions should
have more resources (channels) distributed to them. In this
paper, we assume that step i) has been properly done, i.e.rdf

is given according to the fairness requirement. (Differentcells
can have differentrdf .) We then investigate the optimal chan-
nel assignment in all cells that maximizes the total throughput.
(A future direction to investigate is to iteratively optimize step
i) and step ii) in an alternating manner, which remains an open
problem.)

III. O PTIMAL UPLINK CHANNEL ALLOCATION

A. Facts from the Single Cell and the Two-Cell Cases

For each single cell, we have the following lemma:
Lemma 1 (Revenue Invariance):Given rdf , the revenue of

any one user within a cell is invariant to different CAs that
conform to thisrdf .
This is an immediate implication of the flat fading and the
in-cell orthogonalization assumptions.

For the multi-cell cases, the revenue-cost separation princi-
ple (Section II-B) and the revenue invariance property (Lemma
1) imply the following:

Corollary 1: To maximizethe multi-cell total throughput
given rdf of all cells, it is equivalent to find the optimal CA
that has theminimum totalcost incurred.

For notational simplicity, whenever considering three con-
secutive cells on a line, we denote the center cell byC, the
left cell by L, and the right cell byR (Figure 1). We denote
the user indices occupying channelj(= 1, . . . ,m) in L, C,
andR by L(j), C(j), andR(j). Theseuser index functions
can also be viewed aschannel allocation functionsbecause
they fully specify the CAs inL,C andR.

Now, considertwo adjacent cellsL and C. We have the
following lemma on the interference received byC from L.

Lemma 2:Given rdf of L, the set of (a total ofm)
interference strengthsgenerated from the users inL to the
BS of C is invariant to the actual CA ofL.
This is again an immediate implication of the flat channel
assumption. In fact, for anyone user i in L, its (a total of
rdf(i)) interference strengths seen at the BS ofC do not
depend on whichrdf(i) channels it occupies.

B. Interference Strength Alignment of the Two Neighboring
Cells

For any three consecutive cellsL,C and R, we now
consider minimizing thetotal cost thatC sustains, generated

L C R

l4 l3 l2 l1 c1 c2 c3 c4 r1 r2 r3 r4

(BSs)

(Users)

Fig. 1. Three consecutive cells in a linear network. Users connected by lines
are suggested co-channel users.



from L andR. Clearly, the total cost thatC sustains does not
depend on its own CA, but depends on the CAs ofL andR.
According to Lemma 2, denote the set of interference strengths
from L to C by {I1L, . . . , I

m
L }, I

1
L ≥ I2L . . . ≥ ImL . Due to the

flat channel assumption, WLOG, weindex the m channels
such thatIjL is the interference fromL to C in channelj.
Consequently, the user index functionL(j)(j = 1, . . . ,m)
implied by such indexing satisfies thatIjL = gL(j)C(j)PL(j).
(Note that receiverC(j) is just the BS ofC regardless ofj.)

Next, we would like to specify the CA inR (i.e. {R(j), j =
1, . . . ,m}) under the givenrdf , such that the total cost
generated from{L and R} to C is minimized.

We start with an arbitrary initial CAR(j), and compute
{IjR = gR(j)C(j)PR(j), j = 1 . . .m}. With the channel
allocation functionsL(j) andR(j), the total cost that the users
in C sustain is

m∑

j=1

costj =

m∑

j=1

log(IjL + I
j
R +N), (3)

wherecostj is the interference cost thatC sustains in channel
j, andIjL andIjR (j = 1, . . . ,m) are co-channel interferences.

For any other CAR′(j) under the samerdf , it can be
represented by a permutation functionP (j)(j = 1, . . . ,m)
applied to the initial CAR(j), such thatR′(j) = R(P (j)).
In other words,channelj is assigned to the user who initially
has channelP (j) assigned to it.With L(j) and R′(j), the
total cost that the users inC sustain changes to

m∑

j=1

cost′j =
m∑

j=1

log(IjL + I
P (j)
R +N), (4)

whereIjL and I
P (j)
R (j = 1, . . . ,m) are the new co-channel

interferences.
The key in finding the optimalP (j) (and hence the optimal

CA in R) among them! permutations is an idea ofinterference
strength alignment. We sort{IjR, j = 1, . . . ,m} in descending
order: Ij1R ≥ I

j2
R ≥ . . . ≥ I

jm
R , and defineP ∗(k) , jk, k =

1, . . . ,m. The following theorem can be shown:
Theorem 1:Among all permutation functionsP (j),
{P ∗(j), j = 1, . . . ,m} yields theminimumtotal cost that the
users inC sustain.

Remark 1:From the definition ofP ∗(j), we haveI1L ≥
I2L . . . ≥ ImL andIP

∗(1)
R ≥ I

P∗(2)
R ≥ . . . ≥ I

P∗(m)
R . What has

been done in the optimal CA is that wealign the strongest
interference each fromL and R to co-exist in the same
channel, and so on for the2nd strongest, . . . , all the way
to aligning the weakest interference each fromL and R to
co-exist in the same channel.

Proof of Theorem 1:We prove an equivalent form of the
theorem: Ifa1 ≥ a2 ≥ . . . ≥ am ≥ 0, b1 ≥ b2 ≥ . . . ≥ bm ≥
0, then

∑m

j=1 log(aj + bj +N) ≤
∑m

j=1 log(aj + bf(j) +N),
for all permutation functionsf(j), j = 1, . . . ,m.

We use induction onm as follows.
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Fig. 2. After replacing(a1, bf(1)) and (af−1(1), b1) with (a1, b1) and
(af−1(1), bf(1)), the total cost decreases, (or remains unchanged.)

m = 1 is trivial. For m = 2, by Jensen’s inequality,

a1 − a2

a1 − a2 + b1 − b2
log(a1 + b1 +N)

+
b1 − b2

a1 − a2 + b1 − b2
log(a2 + b2 +N) ≤ log(a1 + b2 +N)

(5)
b1 − b2

a1 − a2 + b1 − b2
log(a1 + b1 +N)

+
a1 − a2

a1 − a2 + b1 − b2
log(a2 + b2 +N) ≤ log(a2 + b1 +N)

(6)

(5)+(6) implies the theorem form = 2.
Suppose the theorem holds for allm ≤ k.
For m = k + 1, we first represent the problem by a

bipartite graph (Figure 2): it consists of upperm points
a1, . . . , am and lowerm points b1, . . . , bm, and there is an
(undirected) edge between everyaj andbf(j). The theorem is
then equivalent to claiming that the graph with all “vertical”
edges(aj , bj), j = 1, . . . ,m yields the minimum total cost.
Proof follows:

Given a graph generated from a permutation functionf(j):
i) If edge (a1, b1) is in the graph, then after removing

(a1, b1), the rest of the graph degrades to anm = k case,
and applying the induction assumption proves this case.

ii) If edge (a1, b1) is not in the graph, Applying the
induction assumption withm = 2 yields,

log(a1+bf(1) +N) + log(af−1(1) + b1 +N) ≥

log(a1 + b1 +N) + log(af−1(1) + bf(1) +N) (7)

In other words, after replacing the two edges(a1, bf(1)) and
(af−1(1), b1) with (a1, b1) and (af−1(1), bf(1)), the total cost
decreases (or remains unchanged), and the new bipartite graph
falls into the case of i).

C. Optimal Channel Allocation in Infinite Linear Cellular
Networks

Now, consider a two-sided infinite linear cellular network,
with rdf of users in all cells given. The above alignment
procedure can then be used in a rippling manner along the
linear network to obtain the optimal CA of all cells — indexed
as . . . ,−3,−2,−1, 0, 1, 2, 3, . . ..

We first minimize the total cost sustained by cells
{. . . ,−3,−1, 1, 3, . . .}: this leads to the optimal CA in cells
{. . . ,−2, 0, 2, . . .}, specified by the following procedure.



Step 0. Assign an arbitrary CA to cell 0;
Step 1a.Based on the CA in cell 0, assign the CA in cell 2

according to the the alignment rules in Theorem 1,
and the total cost that cell 1 sustains is minimized;

Similarly,
Step 1b.CA in cell 0⇒ CA in cell -2: the cost in cell -1 is

minimized;
Step 2a.CA in cell 2⇒ CA in cell 4: the cost in cell 3 is

minimized;
Step 2b.CA in cell -2⇒ CA in cell -4: the cost in cell -3

is minimized;
And so on.

Note that in Step 0, the arbitrary CA assignment of cell 0 does
not lose any generality (and hence optimality) due to the flat
channel assumptions.

Next, we minimize the total cost sustained by cells
{. . . ,−2, 0, 2, . . .} by applying the rippling procedure to cells
{. . . ,−3,−1, 1, 3, . . .}. Finally, we obtain a complete optimal
CA that yields theminimum total costof all the cells. Because
of the revenue invariance property (Lemma 1), it achieves the
maximum total throughput.

Remark 2:Finding a complete optimal CA has a complex-
ity of O(ncellm log(m)), wherencell is the number of cells:
The termncell comes from the rippling procedure as above,
and the termm log(m) comes from sorting the interference
strengths for each cell (using e.g. Heapsort.)

Remark 3:For all the users in any one cell, theorderingof
their interference strengths at the left neighboring BS could be
differentfrom that at the right neighboring BS. (E.g., in Figure
1, userc1 (among all the users inC) creates the strongest
interference to the BS ofL, but the weakest interference to
the BS ofR.) To guarantee that a CA isglobal optimal, users
within each cell must align their interference strengths with
those fromboth their 2nd left and2nd right neighboring cells,
(as achieved by the proposed rippling procedure.)

Remark 4:We have considered linear cellular networks.
Generalizations to finding the optimal CA in two dimensional
cellular networks also follow the interference strength align-
ment idea. Each cell, however, needs to align with more than
two other cells (instead of aligning with just the2nd left and
the2nd right neighboring cells as in the linear case.) This often
leads to theimpossibility of perfect alignmentof all the cells,
and significantly raises the complexity of finding the global
optimal CA.

IV. PERFORMANCEEVALUATION :
OPTIMAL CA VS. CDMA

In this section, we give two typical examples that numer-
ically compare theaverage spectral efficiencyof the optimal
CA with that of CDMA schemes. We assume the simplified
path loss model [9]Pr = PtK(d0

d
)γ with d0 = 50m

(outdoor environment), and no multipath or shadow fading.
The parameterK is irrelevant to the comparison between
optimal CA and CDMA, and is assumed to be 1.γ between

2.5 and 4 will be tested below. We assume a linear cellular
network with cell radius= 500m, and that there aren users
equally spaced in every cell.

Example 1. Users with Equal Resource Share — Uniformrdf

In this example, we assume that every user gets the same
unit channel resource (uniformrdf ,) and all users transmit at
the same uniform PSD. We compute a completely interference
limited case, i.e., noise power is ignored. In this case, thevalue
of the PSD is irrelevant to the comparison between optimal CA
and CDMA, and is assumed to be 1. For any three consecutive
cellsL, C, R, the optimal CA derived in Section III yields a
fully symmetric CA inL andR such that users inL andR

with the same distance to the BS ofC co-exist in the same
channel (Figure 1). With the uniformrdf , the average cost per
user is

costopt.CA =
1

n

n∑

i=1

log(2Ii) bits/sec/Hz (8)

whereIi (i = 1, . . . , n) traverses the interference from alln
positions of the users inL (andR symmetrically.)

With CDMA, every user in a cell sustains thesameamount
of cost from other cells (since interference is averaged:)

costCDMA = log(
1

n

n∑

i=1

2Ii) bits/sec/Hz (9)

From Jensen’s inequality, the superiority of the optimal CA
over CDMA becomes evident:costCDMA ≥ costopt.CA always.
We plot in Figure 3 the differencecostCDMA − costopt.CA as
a function of n, parameterized byγ = 2.5, 3, 3.5, 4. Note
that from revenue invariance,−(costCDMA−costopt.CA) equals
the throughput difference in terms of the average spectral
efficiency. We observe the following:

1) As the number of users increases and/or asγ increases,
the variation in the set of interference strengths{Ii}
increases. Thus the gap from Jensen’s inequality, and
hence the cost difference, increases.
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Fig. 3. Superiority of optimal CA over CDMA — Equal resource case



2) As one numerical rule of thumb in this particular exam-
ple, withγ = 4, the superiority in throughput of optimal
CA over CDMA reaches above 1 bits/sec/Hz when the
number of users reaches 25 per cell.

Example 2. Users with Equal Rate — Hard Fairness

In this example, we guarantee that users at all positions in
a cell achieve the same rate in bits/sec. Thus,rdf needs to be
designed such that the edge users have more bandwidth. We
achieve this by designingrdf such that every user in a cell
has the sametotal revenuein bits/sec. This requiresrdf(i)
being inversely proportional torevenuei in bits/sec/Hz(we
assume that the uniform transmit PSD of all users is set such
that a user at the cell edge has arevenue of 1 bit/sec/Hz.)
Next, equaltotal costthat each user sustains can be achieved
by properly time sharing different optimal CAs. At the end,
each user achieves an equal rate in bits/sec.

We first normalizerdf within a cell: rdf(i)← rdf(i)∑
n
j=1

rdf(j) ,

such that
∑n

i=1 rdf(i) = 1. Then, similarly to Example 1, the
average cost with optimal CA is

cost
′

opt.CA =

n∑

i=1

log(2Ii +N)rdf(i) bits/sec/Hz (10)

With CDMA, the cost every user sustains is again equal to
each other:

cost
′

CDMA = log(
n∑

i=1

2Iirdf(i) +N) bits/sec/Hz (11)

Clearly, (10) (11) are generalizations of (8) (9): whenrdf is
a uniform function, (withN ignored,) (10) (11) degrade into
(8) (9).

Again, from Jensen’s inequality,cost
′

CDMA ≥ cost
′

opt.CA

always. In addition to the previous observations in Exam-
ple 1 which appear similarly here, we have computed and
observed that requiring hard fairness makesthe throughput
difference of optimal CA over CDMA even larger— The
asymptotic differences increase almost 50% compared to the
equal resource share case. The intuition is that allocatingmore
bandwidth to edge users increases the “total variation” in the
set of interference strengths, and hence the gap from Jensen’s
inequality.

Remark 5:We have usedrdf to achieve fairness between
users. We note that while using power control (PC) is also an
option, preliminary investigation has shown thatwith CDMA,
PC is often less efficient than adjustingrdf . The intuition is
that to compensate cell-edge users’ path loss disadvantage,
raising their power (instead of allocating more channels to
them) often creates more aggregate interference to neighboring
cells. For the optimal CA problem, the comparison between
adjustingrdf and PC remains an open question.

V. CONCLUSION

We defined the resource distribution function (rdf ) which
takes care of the fairness requirement in cellular networks.
Under any givenrdf as a fairness constraint, we have

found the uplink channel allocation that maximizes the total
throughput in linear cellular networks, assuming flat fading
and that users have fixed power levels (but not necessarily
equal to each other.) The optimal channel allocation is char-
acterized by an interference strength alignment property —
for every cell, its neighboring cells’ interference in allm
channels must be aligned such that each neighboring cell’s
ith strongest interference (i = 1, . . . ,m) co-exists in the same
channel. The complete optimal channel allocation is found
with O(ncellm log(m)) complexity. From Jensen’s inequality,
our results provide a clear justification of the superiorityof
optimal channel allocation over CDMA in terms of throughput.
Numerical comparisons under various fairness requirements in
linear cellular networks have shown evident gaps in bits/sec/Hz
between the throughput of optimal CA and that of CDMA.

For two (or higher) dimensional cellular networks in fre-
quency selective channels, finding the global optimal uplink
CA remains open due to its high complexity. Future research
will also be pursued on the combination of power allocation
andrdf design with the proposed channel allocation algorithm.
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