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Abstract—We find the uplink channel allocation that maxi- With a revenue-cost separation principle, in our problem
mizes the total throughput in linear (one-dimensional) cdlilar  setting, throughput maximization is equivalently tramsfed
systems, under arbitrary fairness constraints defined by reource into interference cost minimization. For every cell, wetsbe

distribution functions. We exploit a revenue-cost separabn . . . .
principle in this multi-cell interference channel problem, and interference strengths (received at its base station)rgeste

equivalently transform maximizing the total throughput into DY users in each of its neighboring cells. We then align
minimizing the total interference cost of all cells. The keyidea the i'" (i = 1,2,...) strongest interference in each of its
in obtaining the optimal channel allocation is the alignmem of  neighboring cellsto co-exist in the same channel. We prove
interference signal strengths. We show that with very low co- that once the alignment is done for every cell, the resulting
plexity, a complete optimal channel allocation can be consicted CA minimizes the total interference cost, and hence maxmiz
by rippling along all the cells the proposed interference sength A '
alignment procedure. From analyzing the consequence of the the total throughput. For linear cellular networks, we sttbat
interference strength alignment, the superiority of the ogimal alignment of all the cells can be done in a rippling manner. As
channel allocation over CDMA s justified. Numerical results are g result, this procedure of obtaining the complete optimal C
provided to demonstrate the performance gap between thesavb has a low complexity 00 (nee;m log(m)), (Wheren..; is the
schemes. . .
number of cells, andn is the number of channels.) As will
|. INTRODUCTION be shown, our methods enable both analytical and numerical
We study the optimal uplink channel allocation (CA) of lincomparisons of optimal CA with CDMA schemes.
ear (i.e., one-dimensional) cellular communication nekso  The rest of the paper is organized as follows. The system
The single cell cases take the form of multiple access chann@odel is established in Section Il, where several key steps
[8], for which the optimal power and channel allocatioare taken to clarify and simplify the problem structure. In
schemes in Gaussian frequency selective channels are \gelttion Ill, the complete uplink optimal channel allocatio
understood [5], [13]. The multi-cell cases have an addesing interference strength alignment is derived. In $ed,
interference channel nature, for which (weighted) thrqugh the performance of the optimal CA is compared with typical
maximization by power and channel allocation is a norfsDMA schemes through two examples with different fairness
convex optimization, and is NP-hard to solve [11], [12]. Forequirements. Conclusions are drawn in Section V.
general (including cellular) interference networks, muairk
has been done in reducing the complexity of solving this
non-convex problem (although still NP) [4], [14], [15]. Wit  We consider the uplink channel allocation of a linear caliul
convexified utility functions or other convex approximaisy System with base stations (BS) positioned on a straight line
(polynomial time) low complexity methods have also beeWe make the following assumptions: i) Users within the same
developed [6], [7], [10]. cell use orthogonal frequency channels. ii) A frequencyeeu
Recently, progress in interference alignment [2] and thHactor of 1 is applied among all the cells. iii) Interfererise
deterministic channel model [1] has provided new perspesti treated as noise, (and hence no interference cancellation o
into managing interference. Combining these two leads j@int decoding is used.) iv) Interference from users notrfro
the idea of aligning the interference in bit-levels, or signthe immediate neighboring cells is ignored. Thus, each cell
strengths [3], [15]. has two interfering cells (Figure 1). v) There areparallel
In this paper, we exploit the idea of interference sign@hannels with unit bandwidth. In every cell, all thechannels
strength alignment in multi-cell uplink channel allocatioVMe are utilized, (i.e., there is no vacant channel in any cell.)
first separate optimizing fairness and throughput by intoed vi) Channels experience frequency flat fading, and the noise
ing the resource distribution functiondf), which can be spectral density is flat at all receivers. vii) Each usersnaits
designed in a natural way to match the fairness requiremeat.its ownuniform power spectral density (PSD) over all the
We then assumedf is given as a fairness constraint on CAchannels it occupies. Accordinglwe focus on the problem
and focus on finding the optimal CA that maximizes the totalf channel allocation, assuming that users do not vary their
throughput. selected power levels.

II. SYSTEM MODEL



A. Approximate Rate Function higher target rates and/or worse channel conditions should

Employing the Shannon capacity formula for Gaussidive more resources (channels) distributed to them. In this
channels [8], we have? = log(1 + SINR) bits/sec/Hz. We Paper, we assume that step i) has been properly donedj.e.

approximate this formula in the following way: is given according to the fairness requirement. (Differeeils
can have differentdf.) We then investigate the optimal chan-
log(1 + SINR) ~ max(0, log(SINR)) (1) nel assignment in all cells that maximizes the total thrgugh

A future direction to investigate is to iteratively optinei step
1) and step ii) in an alternating manner, which remains amope
problem.)

It can be verified that the maximum deviation from the R.H.
of (1) to the L.H.S. is 1 bit/sec/Hz, which occurs wHaNR =

0dB. Furthermore, note that (& log(SINR) provided that
SINR > 0dB, and this leads to the decomposition of the [1l. OPTIMAL UPLINK CHANNEL ALLOCATION

problem into two steps: A. Facts from the Single Cell and the Two-Cell Cases
1) Active user selection: in each channel, we select theFOr each single cell, we have the following lemma:

users that are expected to ha&s#\R > 0dB, so that Lemma 1 (Revenue Invariancefiven rdf, the revenue of

the zero floor becomes redund_ant.. (The mgcuye us,ee[ﬁy one user within a cell is invariant to different CAs that
are then dropped from the objective function in th'ﬁonform to thisrdf

Cha_””_e'-)_ . . This is an immediate implication of the flat fading and the
2) O.ptlmlzatlon with respect to the selected active USEES, cal| orthogonalization assumptions.

with R ~ log(SINR). For the multi-cell cases, the revenue-cost separatiortiprin
Note that withoutSINR > 0dB, log(SINR) can be arbitrarily ple (Section 11-B) and the revenue invariance property (lem
negative. Thus, choosing the correct active users in stép 1)_[) imply the following:
crucial for the approximation to be close. Corollary 1: To maximizethe multi-cell total throughput
givenrdf of all cells, it is equivalent to find the optimal CA
i ] _that has theminimum totalcost incurred.
~ From now on, we will assume that the active user selectiongq, notational simplicity, whenever considering three con
is properly done in each channel so that the zero floor #q tive cells on a line, we denote the center cellChythe
(1) can be equivalently dropped. In cellular scenarios Wil cgl| by L, and the right cell byR (Figure 1). We denote
in-cell orthogonalization, (i.e. interference only confesm o user indices occupying channgk= 1,....m) in L, C,
other cells,) this assumption is typically easy to satiStyus, 5nqp by L(j), C(5), and R(j). Theseuser index functions
we havg the following separation principle for an activerus@,, a1so be viewed ashannel allocation functionecause
i's rate in any one channel: they fully specify the CAs inL, C' and R.

9ii P; Now, considertwo adjacent cellsl. and C. We have the
i Gri i + Ni) following Iemma on the interference received Gyfrom L.

Lemma 2:Given rdf of L, the set of (a total ofm)

interference strengthgenerated from the users ih to the
whererevenue; £ log(gii P;), cost; = 10%@:;#1' griPL+N;), BS of C is invariant to the actual CA of.
and & runs over all co-channel users of userP, is the This is again an immediate implication of the flat channel
transmit PSD of usek, N; is the noise spectral density atassumption. In fact, for angne user: in L, its (a total of
receiveri, and g; is the channel gain from transmittérto 7df(i)) interference strengths seen at the BS(ofdo not
receiveri. As will be shown in Section I, this revenue-cosgdepend on whichdf (i) channels it occupies.
separation principle has a significant impact in both am&lyg; |nterference Strength Alignment of the Two Neighboring
and design — it greatly reduces the complexity of finding theg 5
optimal CA in multi-cell cases.

B. Revenue-Cost Separation Principle

R; = 1log(SINR;) = log(

= revenue; — cost; (2)

For any three consecutive cells,C and R, we now

C. Resource Distribution Function (rdf) consider minimizing theotal cost thatC' sustains, generated
Definition 1: Theresource distribution functiondf (i) (i =

1,...,n, wheren is the total number of users,) is defined to (gss) L c R

be thenumberof channels allocated to us&ror equivalently, Ox e 50

the amountof bandwidth allocated to useér \:;,&;/:;f://’ ‘\}‘}\\:\:\:\:

Note that there are many different CAs that correspond l
to the samerdf, which may result in very different total
throughput due to the differences in multi-cell co-chanrsadr
selections. With the concept ofdf, the channel allocation
problem is decomposed into two steps: i) decidg, and ii)
decide CA givenrdf. For step i), the design afdf should Fig. 1. Three consecutive cells in a linear network. Usersmeoted by lines
match users’ demands and channel conditions: users with suggested co-channel users.

(Users) Is Iz b It C1 C C3 C4 rf rp rz oI
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from L and R. Clearly, the total cost that' sustains does not

depend on its own CA, but depends on the CAd.adnd R. =~ O
According to Lemma 2, denote the set of interference strengt \\

from Lto C by {I},...,I7"},I} > I?...> I Due to the \

flat channel assumption, WLOG, wiedex the m channels OO0

such thatI{ is the interference fronl to C in channelj. b, b, br1) b

Consequently, the user index functidi(j)(; = 1,...,m)

implied by such indexing satisfies th&t = g.(;)c(j)Prj)- Fig- 2. After replacing(a1,bf(1)) and (a;-1(y),b1) with (a1,b1) and

(Note that receive€() is just the BS ofC regardless ofi.) (as-1(1),bs(1)). the total cost decreases, (or remains unchanged.)
Next, we would like to specify the CA ik (i.e. {R(j),j =

1,...,m}) under the givenrdf, such that the total cost o . .
generated fron{Z and R} to C' is minimized. m = 1 is trivial. For m = 2, by Jensen’s inequality,
We start with an arbitrary initial CAR(j), and compute ai — az 1 b+ N

{I% = 9rGyc()Pri)> 3 = 1...m}. With the channel a; —az + b1 — b2 og(ar + b1+ N)

allocation functiond.(j) andR(j), the total cost that the users by — bo

. - <

in C sustain is a1 — as + by — by log(az + by + N) < log(ar + b2 + N)
. . (6)
> cost! =7 log(Iy + I, + N), (3) L2 log(ar + by + N)
i=1 = a1 — as + by — by

ap — az

log(as + by + N) <log(az + b1 + N)

wherecost? is the interference cost théat sustains in channel - ay —az + b1 — by

j,andlj andIl3 (j =1,...,m) are co-channel interferences. (6)
For any other CAR'(j) under the same<df, it can be (5)+(6) implies the theorem fom = 2.

represented by a permutation functiét(j)(j = 1,...,m) Suppose the theorem holds for all < k.

applied to the initial CAR(j), such thatR'(j) = R(P(j)). For m = k + 1, we first represent the problem by a

In other wordschannelj is assigned to the user who initially bipartite graph (Figure 2): it consists of uppet points

has channelP(j) assigned to itWith L(j) and R'(j), the a4,...,a, and lowerm pointsb,...,b,, and there is an
total cost that the users iff sustain changes to (undirected) edge between everyandby ;. The theorem is
then equivalent to claiming that the graph with all “vertica
i L ; ; edges(a;,b;),j = 1,...,m yields the minimum total cost.
> cost” = log(Ij, + ;Y + N). 4) Pproof follows:
j=1 j=1

Given a graph generated from a permutation funciioy):

i PG) . i) If edge (a1,b1) is in the graph, then after removing

wherel; and I " (j = 1,...,m) are the new co-channel , "y ) "the rest of the graph degrades to an= k case,

interferences. and applying the induction assumption proves this case.
The key in finding the optimaP(j) (and hence the optimal ) |f edge (a1,b1) is not in the graph, Applying the

CAin R) among then! permutations is an idea ofterference jnqyction assumption with, = 2 yields,

strength alignment\e sort{_I-}%,j =1,...,m} in descending
order: I3} > I%2 > ... > I}, anddefineP*(k) £ ji, k =  logla+bsay + N) +log(ag-11) + b1+ N) >
1,...,m. The following theorem can be shown: log(ay + by + N) +log(ag—1(1y + byay + N) (7)

Theorem 1:Among all permutation functions P(j),
{P*(4),7 =1,...,m} yields theminimumtotal cost that the
users inC' sustain.

Remark 1:From the definition ofP*(j), we havel; >
2. >1pandrf W > 1@ > > 12 what has
been done in the optimal CA is that vadign the strongest C. Optimal Channel Allocation in Infinite Linear Cellular
interference each froml, and R to co-exist in the same Networks

In other words, after replacing the two edges, b)) and
(ag-1(1y,b1) with (ay,b1) and (af-1(1),bs1y), the total cost
decreases (or remains unchanged), and the new bipartjib gra
falls into the case of i). [ |

channel, and so on for the" strongest, ..., all the way Now, consider a two-sided infinite linear cellular network,

to aligning the weakest interference each frémand R t0  with rdf of users in all cells given. The above alignment

co-exist in the same channel. procedure can then be used in a rippling manner along the
Proof of Theorem 1:We prove an equivalent form of thelinear network to obtain the optimal CA of all cells — indexed

theorem: Ifa; > a2 > ... > ay, 20,1 2 by > ... 2 by > as...,—3,-2,-1,0,1,2,3,...

0, then37", log(a; +b; + N) < 370 log(a; +bgj) + N), We first minimize the total cost sustained by cells

for all permutation functiong(5),5 =1,...,m. {...,=3,-1,1,3,...}: this leads to the optimal CA in cells

We use induction omn as follows. {...,=2,0,2,...}, specified by the following procedure.



2.5 and 4 will be tested below. We assume a linear cellular

Step 0. Assign an arbitrary CA to cell 0; _ network with cell radius= 500/, and that there are users
Step laBased on the CA in cell 0, assign the CA in cell 2 gqually spaced in every cell.

according to the the alignment rules in Theorem 1, _ _
and the total cost that cell 1 sustains is minimized;Example 1. Users with Equal Resource Share — Unifedfn

Similarly, In this example, we assume that every user gets the same
Step 1b.CA in cell 0= CA in cell -2: the cost in cell -1 is  ynit channel resource (uniformif,) and all users transmit at
minimized; the same uniform PSD. We compute a completely interference
Step 2aCA in cell 2= CA in cell 4: the cost in cell 3 is |imited case, i.e., noise power is ignored. In this casey#hee
minimized, of the PSD is irrelevant to the comparison between optimal CA
Step 2b.CA in cell -2 = CA in cell -4: the cost in cell -3 and CDMA, and is assumed to be 1. For any three consecutive
is minimized, cells L, C, R, the optimal CA derived in Section lll yields a
And so on. fully symmetric CA in L and R such that users il and R

with the same distance to the BS 6f co-exist in the same

Note that in Step 0, the arbitrary CA assignment of cell 0 doggannel (Figure 1). With the uniformif, the average cost per
not lose any generality (and hence optimality) due to the flgte, is

channel assumptions.

Next, we minimize the total cost sustained by cells COSTopt.CA = 1 Zlog(gm bits/sec/Hz (8)
{...,=2,0,2,...} by applying the rippling procedure to cells n—
{--=3,~1,1,3,..}. Finally, we obtain a complete ODtImalwhereIi (i = 1,...,n) traverses the interference from all

CA that yields theminimum total cosbf all the cells. Because
of the revenue invariance property (Lemma 1), it achieves t With CDMA, every user in a cell sustains tsameamount

maximum total throughput of cost from other cells (since interference is averaged:)
Remark 2:Finding a complete optimal CA has a complex- ged:

Hositions of the users i, (and R symmetrically.)

ity of O(ncenmlog(m)), wheren.. is the number of cells: _ 1 < .

The termn..; comes from the rippling procedure as above, costcoma = 10g(g Zﬂi) bits/sec/Hz (©)
and the termmlog(m) comes from sorting the interference =t

strengths for each cell (using e.g. Heapsort.) From Jensen’s inequality, the superiority of the optimal CA

Remark 3:For all the users in any one cell, toederingof ~0ver CDMA becomes evidentostcoma > costopt.ca always.
their interference strengths at the left neighboring BSdtbe We plot in Figure 3 the differenceostcoma — costopr.ca as
differentfrom that at the right neighboring BS. (E.g., in Figuré function of n, parameterized byy = 2.5,3,3.5,4. Note
1, userc; (among all the users i) creates the strongestthat from revenue invariance,(costcoma —costopt.ca) €quals
interference to the BS of,, but the weakest interference tothe throughput difference in terms of the average spectral
the BS ofRR.) To guarantee that a CA iglobal optimal, users efficiency. We observe the following:
within each cell must align their interference strengththwi 1) As the number of users increases and/of ascreases,

those fromboththeir 27 left and2™¢ right neighboring cells, the variation in the set of interference strengtis;}
(as achieved by the proposed rippling procedure.) increases. Thus the gap from Jensen’s inequality, and
Remark 4:We have considered linear cellular networks. hence the cost difference, increases.

Generalizations to finding the optimal CA in two dimensional
cellular networks also follow the interference strengtigral

ment idea. Each cell, however, needs to align with more than Lo
two other cells (instead of aligning with just ti2&? left and ] V-ash
the 2”4 right neighboring cells as in the linear case.) This often — =40
leads to thempossibility of perfect alignmerf all the cells, <§ 1 T
and significantly raises the complexity of finding the globagg /
optimal CA. gg% 08 / ------------- -
822 e
IV. PERFORMANCEEVALUATION : ;-f»;,c“ﬁ 067 MMW t
OPTIMAL CA vs. CDMA 2t . [;’ﬁ
In this section, we give two typical examples that numer- ' F;
ically compare theaverage spectral efficienayf the optimal 02l
CA with that of CDMA schemes. We assume the simplified F
path loss model [9]P, = PK (%)Y with dy = 50m R Y S o

(outdoor environment), and no multipath or shadow fading.
The parameterk is irrelevant to the comparison between
optimal CA and CDMA, and is assumed to be+lbetween Fig. 3. Superiority of optimal CA over CDMA — Equal resourcase

Number of users per cell



2) As one numerical rule of thumb in this particular examfound the uplink channel allocation that maximizes theltota
ple, with~ = 4, the superiority in throughput of optimal throughput in linear cellular networks, assuming flat fadin
CA over CDMA reaches above 1 bits/sec/Hz when thend that users have fixed power levels (but not necessarily

number of users reaches 25 per cell.

equal to each other.) The optimal channel allocation is-char

acterized by an interference strength alignment property —

Example 2. Users with Equal Rate — Hard Fairness

for every cell, its neighboring cells’ interference in ait

In this example, we guarantee that users at all positionsdhannels must be aligned such that each neighboring cell's
a cell achieve the same rate in bits/sec. Thdg,needs to be ' strongest interferencé & 1, ..., m) co-exists in the same
designed such that the edge users have more bandwidth. dWannel. The complete optimal channel allocation is found
achieve this by designingdf such that every user in a cellwith O(n..;mlog(m)) complexity. From Jensen’s inequality,

has the saméotal revenuein bits/sec This requiresrdf (i)

our results provide a clear justification of the superiooty

being inversely proportional torevenue; in bits/sec/Hz(we optimal channel allocation over CDMA in terms of throughput
assume that the uniform transmit PSD of all users is set sudbmerical comparisons under various fairness requiresiant
that a user at the cell edge has@enue of 1 bit/sec/Hz.) linear cellular networks have shown evident gaps in bit¢Hz
Next, equaltotal costthat each user sustains can be achievégtween the throughput of optimal CA and that of CDMA.
by properly time sharing different optimal CAs. At the end, For two (or higher) dimensional cellular networks in fre-

each user achieves an equal rate in bits/sec. _

We first normalizerdf within a cell: rdf (i) < %,
such thaty_"" | rdf (i) = 1. Then, similarly to Example 1, the
average cost with optimal CA is

will

ostope.cn = Y log(21; + N)rdf (i) bits/sec/Hz ~ (10)
i=1

With CDMA, the cost every user sustains is again equal to

each other: 2]

costcpma = log(Y_ 2Lirdf (i) + N)  bitslsec/Hz  (11) 4
1=1

Clearly, (10) (11) are generalizations of (8) (9): whelf is
a uniform function, (withN ignored,) (10) (11) degrade into [4]
®) (9). . .

Again, from Jensen’s inequalityostcpma = COStopeca  [5]
always. In addition to the previous observations in Exam-
ple 1 which appear similarly here, we have computed an%]
observed that requiring hard fairness malkles throughput
difference of optimal CA over CDMA even larger The
asymptotic differences increase almost 50% compared to trfﬁ
equal resource share case. The intuition is that allocatioge
bandwidth to edge users increases the “total variationhe t
set of interference strengths, and hence the gap from Jensel§!
inequality. (9]

Remark 5:We have useddf to achieve fairness between
users. We note that while using power control (PC) is also &f!
option, preliminary investigation has shown theith CDMA
PC is often less efficient than adjustindf. The intuition is [11]
that to compensate cell-edge users’ path loss disadvantage
raising their power (instead of allocating more channels g,
them) often creates more aggregate interference to neigigoo
cells. For the optimal CA problem, the comparison betweéh)
adjustingrdf and PC remains an open question.

V. CONCLUSION [l

We defined the resource distribution functionif) which ;5
takes care of the fairness requirement in cellular networks
Under any givenrdf as a fairness constraint, we have

qguency selective channels, finding the global optimal plin
CA remains open due to its high complexity. Future research

also be pursued on the combination of power allocation

andrdf design with the proposed channel allocation algorithm.
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