
 

  
Abstract—In this paper, we investigate the optimal spectrum 

management problem in multiuser frequency selective 
interference channels. First, a simple pairwise interference 
coupling condition under which FDMA can achieve all Pareto 
optimal points of the rate region is discovered. Not only is this 
condition sufficient, we show that it is also necessary for FDMA 
to be always optimal at least in symmetric channels. For the 
general cases where this condition is not necessarily satisfied, we 
first explicitly obtain the optimal solution as the optimal 
combination of flat FDMA and flat frequency sharing for the 
sum-rate maximization problem in two user symmetric flat 
channels, and then show that the general n-user weighted 
sum-rate maximization in non-symmetric frequency selective 
channels can be formulated into primal domain convex 
optimizations. 
 

I. INTRODUCTION 
We consider the scenario of multiple multicarrier 

communications systems contending in a common frequency 
band, in which interference coupling between different users 
remains a major problem that limits the multiuser 
performance. We investigate the optimal spectrum and power 
allocation that achieves any Pareto optimal point of the 
achievable rate region, under the assumption that interference 
is treated as noise at the receivers.  

There are essentially two strategies for multiple users to 
co-exist: FDMA and frequency sharing (overlapping). As the 
cross coupling varies from being extremely strong to 
extremely weak, the preferable co-existence strategies 
intuitively shift from complete avoidance (FDMA) to pure 
frequency sharing. We start from the strong coupling 
scenario, and investigate the weakest interference condition 
under which FDMA is still guaranteed to be optimal. In the 
literature, a relatively strong pairwise coupling condition for 
FDMA to be optimal was proved, and it applies to all Pareto 
optimal points of the n-user rate region [5]. By pairwise we 
mean that whether two users should avoid each other only 
depends on the interference condition between those two 
users. For one typical Pareto optimal point which is the 
sum-rate maximization point, the required coupling strengths  

 
for FDMA to be optimal are further lowered [6]. However, 
this condition is a group-wise one, meaning that the 
couplings between all existing users are required to be strong 
for FDMA to be provably sum-rate optimal. 

We relax these conditions and obtain the weakest possible 
pairwise condition for FDMA to be optimal: for any two 
users, as long as the two normalized cross couplings between 
them are both larger than or equal to 1/2, all n-user Pareto 
optimal points are guaranteed to be achievable with FDMA 
between these two users. When the interference coupling is 
less than 1/2 in symmetric channels, we give a precise 
characterization of the non-empty power constraint region 
within which frequency sharing between two users leads to a 
higher rate than an FDMA between them. Thus, the proposed 
condition for FDMA to be always optimal is not only 
sufficient, but also necessary. 

With the interference coupling less than 1/2, the weighted 
sum-rate maximization is in the form of a non-convex 
optimization and generally hard to solve [9]. However, the 
Lagrangian dual problem is decomposed in frequency and 
easier to solve [4][10]. It is shown in the literature that the 
duality gap goes to zero when the number of sub-channels 
goes to infinity [10]. This justifies the asymptotic optimality 
of solving the problem in the dual domain, and many 
spectrum balancing algorithms using dual methods have been 
developed [3] [4] [10]. 

We approach this general non-convex optimization from 
the primal perspective. We start with the sum-rate 
maximization problem in two-user symmetric flat channels, 
and obtain analytically the optimal solution by combining 
FDMA and frequency sharing in an optimal way. By 
generalizing this method, we show that all the general n-user 
arbitrarily weighted sum-rate maximization in 
non-symmetric frequency selective channels can be 
formulated into equivalent primal domain convex 
optimizations. As will be shown at the end, it also directly 
implies the zero duality gap theorem in the literature [10]. In 
retrospect, the methodology we provide shares some 
common insight with the time sharing condition discussed in 
[10]. 
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Table I summarizes the various forms of the multiuser 
interference channel co-existence problems, the prior work, 
and in which sections we present solutions that improve upon 
these prior results. We suggest future research directions in 
the conclusion. Due to space limitations, proof details which 
can be found in [11] are omitted here in favor of explaining 
the sequence of results and their significance. 

 

II. CHANNEL MODEL AND TWO BASIC CO-EXISTENCE 
STRATEGIES  

An n-user interference channel is modeled by 
, 1, 2,...,i ii i j ji ij i

y H x x H n i n
≠

= + + =∑ , where ix  is the 

transmitted signal of user i, and iy  is the received signal of 
user i including additive Gaussian noise in (a user 
corresponds to a pair of transmitter and receiver). iiH  are the 
direct channel gains, whereas jiH  are the cross coupling 
gains. We assume that the channel is frequency selective over 
the band 1 2( , )f f , where 2 1W f f−  is the total bandwidth. 
The channel gains are denoted by ( )iiH f  and ( )jiH f . The 
transmit power spectrum density (PSD) of user i is denoted 
by ( )iP f , and the noise PSD at receiver i by ( )i fσ . We 
assume that interference is treated as noise and random 
Gaussian codebooks are used. The achievable rate for user i 
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Normalizing the channel gains and noise power by the direct 
channel gains, we have 
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To facilitate analyzing the optimal spectrum management 
scheme, we introduce two basic co-existence strategies: Flat 
Frequency Sharing and Flat FDMA, both defined in flat 
channels. These two strategies are the building blocks of all 

non-flat co-existence strategies in frequency selective 
channels, and will be used to establish general conditions for 
FDMA to be optimal.  

Consider a two-user flat channel: 1 2( , )f f f∀ ∈ , 

1 1 2 2 21 21 12 12( ) , ( ) , ( ) , ( ) ,N f n N f n f fα α α α= = = =        (1) 
a flat frequency sharing scheme of two users is defined as any 
power allocation in the form of 

1 1 2 2 1 2( ) , ( ) , ( , );P f p P f p f f f= = ∀ ∈                             (2) 
a flat FDMA scheme of two users is defined as any power 
allocation in the form of  

1 2 1 2 1 2( ) ( ) 0 ( ) ( ) , ( , ).P f P f and P f P f p f f f= + = ∀ ∈  
Next, we define the flat FDMA reallocation to be the 

following power invariant transform that reallocates a flat 
frequency sharing scheme to be a flat FDMA scheme: user 1 
reallocates its power within a sub-band 1 1 1 2( / )W p p p W′= +  
with a flat PSD 1 1 2p p p′ = + ; user 2 reallocates its power 
within another disjoint sub-band 2 2 1 2( / )W p p p W′ = +  with 
the same flat PSD 2 1 2p p p′ = + .  

Illustrations of the power allocations of the two basic 
co-existence strategies before and after a flat FDMA 
reallocation are depicted in Fig. 1. Similarly, flat frequency 
sharing schemes, flat FDMA schemes, and flat FDMA 
reallocation in n-user flat channel cases can be defined.  

 

III. STRONG INTERFERENCE SCENARIO: THE CONDITIONS 
FOR THE OPTIMALITY OF FDMA 

In this section, we investigate the conditions under which 
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 (Before flat FDMA reallocation)          (After flat FDMA reallocation) 
Fig. 1.  Power allocations of flat frequency sharing and flat FDMA, also  
an illustration of flat FDMA reallocation.  

TABLE I  
PROBLEMS, PRIOR WORK, AND RELATED SECTIONS IN THIS PAPER 

Problems Prior Work  Our Results
Spectrum Management in Cooperative Scenarios   

Conditions for FDMA schemes to be optimal [5][6] Section III Strong Interference 
Scenarios Finding optimal schemes with FDMA constraints [6][8]  

Primal domain solution: Equivalent Convex Formulation  Section IV Continuous 
Frequency Scenarios Dual domain methods [10]  

 General 
Interference 
Scenarios Discrete Frequency Scenarios: Approximation Algorithms [3][4][7][10]  

Spectrum Sharing in Non-cooperative Scenarios: Nash Equilibriums [5][9]  
 



 

the optimal spectrum and power allocation is FDMA, and our 
objective is to encompass all Pareto optimal points. Firstly, 
we show a coupling condition under which FDMA is optimal 
within a group of strongly coupled users. We then show that 
this coupling condition also works when there are other users 
that are not strongly enough coupled. The two basic 
co-existence strategies serve as a powerful tool in proving the 
general condition for the optimality of FDMA. 

We begin with two-user flat channels. 
Theorem 1: Consider a two-user flat interference channel 

(1). Suppose the two users co-exist in a flat frequency sharing 
manner (2).  If 12 211/ 2 1/ 2andα α≥ ≥ , then with a flat 
FDMA power reallocation, both users’ rates will be higher 
(or unchanged).  

Proof : See [11], section III.A.                                        ■ 
Theorem 1 can be generalized to n-user cases in frequency 

selective channels [11]. We summarize these results as 
follows: pick any sub-band 1 2( , )f f′ ′ , as long as all the users 
having power within this sub-band are strongly coupled with 

( ) 1/ 2,ji fα ≥  1 2, ( , )j i f f f′ ′∀ ≠ ∀ ∈ , then for any power 
allocation scheme having frequency sharing happening 
anywhere within this sub-band, there always exists an FDMA 
power reallocation scheme (with the total power unchanged 
for each user) that leads to a rate higher than or equal to the 
original sharing scheme for every existing user.  

We have shown the condition for FDMA schemes to be 
optimal within strongly coupled users. In real communication 
networks, however, there are usually users not strongly 
enough (maybe just moderately) coupled with some other 
users. For these users outside the strongly coupled group, we 
show that they always benefit from an FDMA within the 
strongly coupled group.  

We begin with two-interferer flat channels. 
Theorem 2:  Consider a three-user (one user + two 

interferers) flat channel: ( )i iN f n= , ( )ji jifα α= . Suppose 
the three users co-exist in a flat frequency sharing manner: 

( ) ,i iP f p=  1 2( , ), 0,1, 2.f f f i∀ ∈ =  From user 0’s 
perspective, a flat FDMA power reallocation of its two 
interferers user 1 and user 2 always leads to a higher (or equal) 
rate for user 0. 

Proof: See [11], section III.B.                                           ■ 
Theorem 2 can be generalized to an arbitrary number of 

users in frequency selective channels, proving that an FDMA 
within a subset of users is always preferred by every user who 
is not in this subset, and this is true for all coupling conditions 
[11]. In the case that , , ( ) 1/ 2jii j fα∃ ≥  and ( ) 1/ 2,ij fα ≥  
combining Theorem 1 and Theorem 2 gives us a very strong 
insight into the conditions under which the optimal 
co-existence strategies must be FDMA: Suppose there are 

( 2)n ≥  users, for any two users i and j among them, for any 
frequency band 1 2( , )f f′ ′ , if the normalized cross coupling 
gains ( ) 1/ 2ji fα ≥  and ( ) 1/ 2ij fα ≥ , 1 2( , )f f f′ ′∀ ∈ , then 

no matter from which of the n users’ point of view, an FDMA 
of user i and user j within this band is always preferred.  

This pairwise condition is very convenient to use because 
it makes determining whether any two users should be 
orthogonally channelized depend only on the coupling 
conditions between the two of them. On the other hand, since 
this condition guarantees that an FDMA between user i and 
user j benefits every existing user, we conclude (with an 
immediate proof by contradiction) that under this condition, 
all the Pareto optimal points of the n-user achievable rate 
region can be achieved with these two users being 
orthogonalized (FDMA). In this section, we have shown that 
this condition is sufficient. In Section IV, we show that it is 
also necessary, i.e. it cannot be further weakened. 

 

IV. GENERAL INTERFERENCE SCENARIO: OPTIMAL 
SPECTRUM MANAGEMENT IN FREQUENCY SELECTIVE 

CHANNELS 
In this section, we continue to analyze the optimal 

spectrum management in the cases in which ( )fα  can be 
less than 1/2. We first analyze two-user symmetric flat 
channels, and then extend our results to the general cases. 
(Similar results for the symmetric flat channel case have also 
been independently developed in [1].) 

A. Solution of Sum-rate Maximization in Two-user 
Symmetric Flat Channels with Equal Power Constraints  
Consider the sum-rate maximization problem in a two-user 

symmetric flat Gaussian interference channel:  
12 21 1 2 1 2( ) ( ) , ( ) ( ) , ( , )f f N f N f n f f fα α α= = = = ∀ ∈   (3)  

First, we have the following theorem on the sufficient and 
necessary condition for a flat FDMA scheme to be better than 
a flat frequency sharing scheme. 

Theorem 3:  For any flat frequency sharing power 
allocation, a flat FDMA power reallocation (Fig. 1) leads to a 
higher or unchanged sum-rate if and only if 

( )2
1 2( ) / 2 1/ 2 1/p p n α α+ ≥ − . 
Proof: See [11], section VI.A.                                                     ■ 
Define the critical point ( )2

0 2 1/ 2 1/p α α= − . Clearly, 

when 01/ 2, 0pα < > , and within the non-empty triangular 
power region 1 2 00 p p np< + <  flat frequency sharing is 
better than flat FDMA (which is the optimal FDMA scheme 
in flat channels). It thus shows the necessity of the condition 

1/ 2α ≥  for FDMA to be always optimal. 
Next, we impose an equal power constraint P/2 for both 

users. The optimization problem becomes: 
2

1
1 2max , . . ( ) , ( ) 0, 1,2

2
f

i if

PR R s t P f df P f i+ ≤ ≥ =∫ .  (4) 

We normalize the signal power by the noise power and let 
1n = . Define an average density /p P W= . Then the 

maximum achievable sum-rate with flat frequency sharing is 



 

* / 2( ) 2 log 1
1 / 2

pf p W
pα

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

 [11]. The maximum 

achievable sum-rate with FDMA is * ( ) log(1 )h p W p= + . 
Define * *( ) max( ( ), ( ))r p f p h p= . It can be verified that 
* ( )f p  and * ( )h p  intersects at 0p p=  (directly implied by 

Theorem 3), and ( )r p  is not concave in [0, )∞ . Next, define 
* ( )r p  to be the unique convex hull of ( )r p . A typical plot of 
* ( )f p , * ( )h p , and the convex hull * ( )r p  when 1/ 2α <  is 

given in Fig. 2. When the power constraint p falls between 
the two points of tangency fp  and hp  on the convex hull, 

* ( )r p  can be achieved by applying flat FDMA and flat 
frequency sharing in disjoint sub-bands respectively [11]. 
Next, we show in the following theorem that * ( )r p  is not 
only achievable, but also an upper bound (Proof by Jensen’s 
inequality in continuous frequency [11]), and hence optimal. 

Theorem 4: In a two-user symmetric flat Gaussian 
interference channel (3), the maximum achievable sum-rate 
with power constraint P/2 (4) for both users is * ( )r p . 

Proof: See [11], section VI.A.                                             ■ 
The major implications of Theorem 4 are as follows [11]: 
i) The maximum achievable sum-rate in this case is 

computable. In fact, after solving the two points of tangency 
as in Fig. 2, we have an analytic expression for the maximum 
sum-rate as a concave function of the power constraint. 

ii) The optimal (potentially frequency selective) spectrum 
and power allocation is a combination of flat frequency 
sharing and flat FDMA in two disjoint bands, combined 
according to where the power constraint p lies on the curve of 

* ( )r p . 
iii) In flat channels, the convex hull of any achievable 

sum-rate function (as a function of power constraints) is also 

achievable.  

B. Primal Domain Convex Optimization Formulation for 
General Frequency Selective Interference Channels 
We now consider the general weighted sum-rate 

maximization in n-user non-symmetric frequency selective 
channels with arbitrary individual power constraints:  
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where ( )1( ) ( ),..., ( )nf P f P f=P , and the power constraints 

are ( )1,..., nP P=P . Define the rate density function as 
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Problem (5) can then be rewritten as  
2
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At every frequency point f, ( ( ); )r f fP  is a non-concave 
function of ( )fP , making optimization non-convex and hard. 
Now, we define * ( ( ); )r f fP  as the convex hull of 

( ( ); )r f fP  along the n dimensions of users’ power: 
1) Define the set of functions 

{ ( ( ); ) | ( ( ); ) concave in ( );
( ( ); ) ( ( ); ) , ( ) 0}

S r f f r f f f
r f f r f f f

=
≥ ∀ ≥

P P P
P P P

 

2) * ( ( ); )r f fP is the unique function satisfying 
*

*
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 Replacing the original non-concave rate density function 
( ( ); )r f fP  in (6) by its convex hull * ( ( ); )r f fP at every 

frequency point f, we obtain the following convex 
optimization: 
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∫

∫

P

P P P
        (7)  

Clearly, (7) has an optimal value that upper bounds that of 
the original problem (6), because the convex hull 

* ( ( ); )r f fP  upper bounds ( ( ); )r f fP  itself at every 
frequency point f. On the other hand, by treating every 
frequency point as an infinitesimal flat channel, any 
achievable objective value for (7) is also achievable for the 
original non-convex one (6). We then have the following 
theorem:  

Theorem 5: The convex optimization (7) has the same 
optimal value as the original non-convex optimization (6). 
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         Fig. 2.  The maximum achievable sum-rate as the convex hull of the 
rates of flat FDMA and flat frequency sharing, 0.1α = . 



 

Proof: See [11], section V.                                                   ■ 
From Theorem 5, we see that the original non-convex 

optimization (6) can be transformed in the primal domain to 
convex optimization (7) without loss of optimality. The 
optimal spectrum and power allocation of (7) can be 
transformed to that of (6) according to a weighting function 
with which the points on ( ( ); )r f fP  are weighted averaged 
(convexly combined) to be those on * ( ( ); )r f fP  [11]. 
Furthermore, we now show that Theorem 5 directly leads to 
the zero duality gap result in the literature [10].  

For the primal problem (6), the Lagrange dual is  
2 2

1 1

( ( ), ) ( ( ); ) ( ( ) )
f fT

f f
L f r f f df f df= − −∫ ∫P λ P λ P P . 

The dual objective is 
( ) 0

( ) sup ( ( ), )
f

g L f
≥

=
P

λ P λ . 

For the primal problem (7), the Lagrange dual is 
2 2

1 1

*ˆ( ( ), ) ( ( ); ) ( ( ) )
f fT

f f
L f r f f df f df= − −∫ ∫P λ P λ P P . 

The dual objective is 
( ) 0

ˆˆ ( ) sup ( ( ), )
f

g L f
≥

=
P

λ P λ . 

Since * ( ( ); ) ( ( ); ), ( ),r f f r f f f f≥ ∀ ∀P P P , we have 
ˆ( ( ), ) ( ( ), )L f L f≥P λ P λ  and ˆ( ) ( )g g≥λ λ always. Denote 

the primal optimal values for (6) and (7) by *p and *p̂ , and 
the dual optimal values by * min ( )d g= λ . . 0s t ≥λ  and 

*ˆ ˆmin ( ) . . 0d g s t= ≥λ λ . From ˆ( ) ( ),g g≥λ λ  0,∀ ≥λ  we 

get * *d̂ d≥ . From weak duality for (6), * *p d≤ . Since 
problem (7) is a convex optimization, it has strong duality 

* *ˆp̂ d=  [2]. Thus * * * *ˆp̂ d d p= ≥ ≥ . From Theorem 5, (6) 
and (7) are equivalent, and thus * *p̂ p= . Therefore, the 
original non-convex optimization (6) also have strong duality 
(zero duality gap), i.e. * *p d= . 

 

V. CONCLUDING REMARKS 
In this paper, we have analyzed the optimal spectrum and 

power allocation in all coupling conditions. We have shown 
that for any two users, as long as the two normalized cross 
couplings between them are both larger than or equal to 1/2, 
an FDMA between these two users benefits every existing 
user, and hence can be used to achieve any Pareto optimal 
point of the n-user achievable rate region. Because this 
interference condition has a pairwise nature, it leads 
foreseeably to distributed implementation. 

This condition cannot be further lowered as shown in two 
user symmetric flat channels. For the sum-rate maximization 
problem in this case with equal power constraints, we 
analytically obtained the optimal spectrum and power 
allocation which has a clear intuition of combining flat 
FDMA and flat frequency sharing in an optimal way. For the 
general n-user weighted sum-rate maximization problems in 
frequency selective channels, we generalized our insight 

from the flat channel case and formulated the originally 
non-convex optimization into an equivalent primal domain 
convex optimization by replacing the non-concave objective 
function at every frequency point with its convex hull. This 
result provides the performance limit and a new perspective 
into optimal algorithm designs in spectrum management.  

This paper has worked on the continuous frequency 
domain problems, and hence has infinite-dimension variables. 
The ideas can be applied to discrete frequency spectrum 
management via approximation. With the new insights we 
obtained for this optimization problem, the design of novel 
practical algorithms to approach the optimal spectrum 
management is an interesting future research direction. We 
note in particular that while it is in general difficult to 
compute high dimensional convex hull functions, 
preliminary investigations reveal that either pure FDMA or 
pure sharing strategies suffer little loss compared to the 
optimal scheme over a considerable range of the coupling 
parameter α . Consequently, relatively simple strategies and 
algorithms may suffice in practice. 
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