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Interference Channels

Yue Zhao, Member, IEEE, and Gregory J. Pottie, Fellow, IEEE

Abstract—In this paper, we study the problem of continuous
frequency optimal spectrum management in multiuser frequency
selective interference channels. We assume that interference is
treated as noise by the decoders, and separate encoding is applied.
First, a simple pair-wise channel condition for frequency division
multiple access schemes to achieve all Pareto optimal points
of the rate region is derived. It enables fully distributed global
optimal decision making on whether any two users should use
orthogonal channels. Next, we present an analytical solution to
finding the maximum sum-rate in two-user symmetric frequency
flat channels. Generalizing this solution to frequency selective
channels, a convex optimization is established that yields the
global optimum. Finally, we show that our method generalizes to
-user weighted sum-rate maximization in asymmetric

frequency selective channels, and we transform this classic non-
convex optimization to an equivalent convex optimization in the
primal domain.

Index Terms—Frequency-division multiple access (FDMA) opti-
mality condition, multiuser interference channel, nonconvex opti-
mization, optimal spectrum management.

I. INTRODUCTION

I N multiuser communications systems, interference cou-
pling between different users remains a major problem that

limits the system performance. A general multiuser Gaussian
interference channel is depicted in Fig. 1, in which each user
consists of a transmitter and receiver pair, and there is cross
interference coupling between every pair of users. In this
paper, we consider the decoding assumption that interference is
treated as noise. While treating interference as noise achieves
the information theoretic capacity under certain weak interfer-
ence conditions [1], [17], [18], in general, potentially higher
system capacity can be achieved with more complex decoding
techniques such as interference cancellation or joint decoding.
However, finding the optimal schemes using such techniques
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Fig. 1. Multiuser Gaussian interference channel.

to achieve the information theoretic capacity region remains an
open problem particularly for interference channels with three
or more users [11]. Furthermore, these techniques often incur
higher implementation complexity in practice than treating
interference as noise.
We consider the scenario of multiple multicarrier communi-

cation systems contending in a common frequency band. (There
may sometimes be practical reasons to channelize the resources
in some other fashion, e.g., in time. Here, we regard any such
alternatives as equivalent to channelizing in the frequency do-
main.) We assume that separate encoding for each subcarrier
is applied. We note that using joint encoding across subcar-
riers can sometimes achieve higher system capacity than using
separate encoding [4]. We investigate the optimal continuous
frequency spectrum and power allocation problem, for which
the channel frequency responses and the users’ power spec-
tral density (PSD) can be any bounded piecewise continuous
functions of frequency over a finite band. The continuous fre-
quency problem is an infinite-dimensional optimization. How-
ever, in the special case of a frequency flat channel response, the
problem has been shown to have a finite number of dimensions
[13], [19] . Despite the infinite number of dimensions, signifi-
cant insights can still be provided from solving the optimal so-
lution in this continuous frequency form, as shown in the later
sections of this paper.
In practical systems, a discrete frequency model with a

finite number of sub-carriers is often assumed, and the PSD
within each sub-carrier is required to be flat. For a variety of
objective functions, the nonconvex optimization of spectrum
and power allocation with the discrete frequency model has
been shown to be NP complete in the number of users even
for the single carrier case [16]. For the single carrier sum-rate
maximization problem, two special cases have been solved: the
two-user case with general channel parameters [10], [14], and
the -user case of fully symmetric channels [2]. For
the multicarrier weighted sum-rate maximization problem, also
known as spectrum management or spectrum balancing, there
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has been considerable research addressing the nonconvexity of
the problem and the NP completeness in both the number of
users and the number of carriers. With sufficient primal objec-
tive relaxations, the problem can be approximated as convex
optimization [8], [9] . For solving the original nonconvex
optimization, dual decomposition methods have been widely
applied to decompose the problem in frequency [6], [7], [20],
[23] . While these methods effectively reduced the scale of
the problem to solve, two remaining issues are as follows. 1)
While the dual master problem is a convex optimization (which
can be solved by, e.g., subgradient method [20],) the single
carrier sub-problem is still a nonconvex optimization which is
NP-complete in the number of users 2) The dual optimal
solution does not necessarily give a primal optimal solution.
Addressing the second issue, an important result is that the
duality gap of the spectrum management problem goes to zero
as the number of sub-channels goes to infinity, under mild
technical conditions [16], [20]. Our results will be connected to
this result at the end of this paper.
For themodel studied here, there are essentially two strategies

for multiple users to co-exist: frequency-division multiple ac-
cess (FDMA) and frequency sharing (overlapping). As the cross
coupling varies from being extremely strong to extremely weak,
the preferable co-existence strategies intuitively shift from com-
plete avoidance (FDMA) to pure frequency sharing. We start
from the strong coupling scenario, and investigate the weakest
interference condition under which FDMA is still guaranteed
to be optimal, regardless of the power constraints. In the litera-
ture, a relatively strong pair-wise coupling condition for FDMA
to achieve all Pareto optimal points of the rate region is de-
rived with the continuous frequency model [13]. By pair-wise
we mean that whether two users should be orthogonalized in
frequency only depends on the interference condition between
these two users. For sum-rate maximization, the required cou-
pling strengths for FDMA to be optimal are further lowered in
[15], approaching roughly the weakest possible. However, this
condition is derived in a group-wise form, requiring the cou-
plings between all users to be sufficiently strong.
In this paper, by analyzing the continuous frequency model,

the weakest possible pair-wise condition for FDMA to achieve
all Pareto optimal points of the rate region is proved: for any
two (among all of the ) users, as long as the product of the two
normalized cross channel gains between them is greater than or
equal to 1/4, an FDMA allocation between these two users ben-
efits every one of the users. In symmetric channels, when the
cross channel gain is less than 1/2 (and thus the product of them
is less than 1/4), we precisely characterize the nonempty power
constraint region within which frequency sharing between two
users leads to a higher rate than an FDMA allocation between
them.
For the general nonconvex optimization of spectrummanage-

ment, we develop a novel method that transforms the problem in
the primal domain into an equivalent convex optimization. We
begin with sum-rate maximization in two-user symmetric fre-
quency flat channels. We show that the optimal spectrum man-
agement can be solved by computing a convex hull function.
As a result, the optimal spectrum management always consists
of one sub-band of flat frequency sharing and one sub-band of

flat FDMA. This sets up our more general results. The optimal
solution for the sum-rate maximization was also independently
derived in [19] for two-user asymmetric frequency flat chan-
nels, and in [2] for -user symmetric frequency flat
channels.
We first generalize our results to two-user symmetric fre-

quency selective channels, and show that a convex relaxation
of the original nonconcave objective actually leads to the same
optimal value as the original problem. Next, we generalize our
results to -user asymmetric frequency flat channels for arbi-
trary weighted sum-rate maximization, and show that the op-
timal solution can be found by computing a convex hull func-
tion. Finally, we combine the ideas of these generalizations, and
establish the equivalent primal domain convex optimization for
the spectrum management problem in its general form, i.e., ar-
bitrary weighted sum-rate maximization for -user
asymmetric frequency selective channels.
The rest of this paper is organized as follows. The problem

model is established in Section II. In Section III, we discuss the
channel conditions under which FDMA schemes can achieve all
Pareto optimal rate tuples. In Section IV, we solve the sum-rate
maximization in two-user symmetric (potentially frequency se-
lective) channels. In Section V, we extend our method to the
general cases, and show that the continuous frequency optimal
spectrum management scheme can be equivalently cast as a
primal domain convex optimization. We then discuss the com-
putational complexities of finding the optimal spectrum man-
agement scheme. Conclusions are drawn in Section VI.

II. CHANNEL MODEL AND TWO BASIC
CO-EXISTENCE STRATEGIES

A. Interference Channel Model and the Rate Density Function

As depicted in Fig. 1, a -user Gaussian interference channel
is modeled by

where is the transmitted signal of user , and is the re-
ceived signal of user including additive Gaussian noise , (a
user corresponds to a transmitter and receiver pair). is the
direct channel gain from the transmitter to the receiver of user
. is the cross channel gain from the transmitter of user
to the receiver of user . For the purposes of the analysis in this
paper, without loss of generality (WLOG), we assume that the
channel is over a unit bandwidth frequency band . The re-
sults derived directly generalize to frequency bands with arbi-
trary bandwidths.
We denote the frequency selective channel gains and

by and , . We denote the transmit PSD
of user by , and the noise PSD at receiver by . We
assume that , , , are all bounded piece-
wise continuous functions over the band . Further-
more, we assume that all functions appearing in this paper have
a finite number of discontinuities.
We assume that every user uses a randomGaussian codebook,

and only decodes the signal from its own transmitter, treating
interference from other transmitters as noise. Employing the



ZHAO AND POTTIE: OPTIMAL SPECTRUM MANAGEMENT IN MULTIUSER INTERFERENCE CHANNELS 4963

Shannon capacity formula for Gaussian channels, we have the
following achievable rate for user :

where , are the cross channel
gains and the noise power normalized by the direct channel
gains. We further make a technical assumption that

(1)
which naturally holds in all physical channels.
To reach any Pareto optimal point of the -user rate region,

we optimize the spectrum management schemes (i.e., the power
and spectrum allocation functions)

As we consider the continuous frequency model, we make the
following definition.
Definition 1: ,with

Now, we have the rate density function of user at frequency

and

Accordingly,

B. Piecewise Continuous Functions as Limits of Piecewise
Flat Functions

We consider the channel responses and power allocations
as bounded piecewise continuous functions of frequency. Intu-
itively, one may approximate continuous functions by piecewise
constant functions, by subdividing the support (frequency) to a
sufficiently large number of small pieces. We make use of this
idea in later sections, and provide a technical lemma for this
purpose whose proof is relegated to Appendix A.
Lemma 1 (Approximation Lemma): Given , ,

, , all bounded piecewise continuous, for any
utility function that is a uniformly continuous func-
tion of , , , , there exists a set of piece-
wise flat power allocation functions and channel responses

for which the band is divided into intervals
, , with , ,
, and

where , , are
constants that only depend on the interval index , such that
the following three properties hold:

P1. , , .
P2. , , , , .
P3. ,

.
From now on, we name the , , and found
in Lemma 1 a “piecewise flat -approximation.”
Remark 1: Property P1 ensures that the approximate piece-

wise flat power allocations consume less power than the orig-
inal ones. Property P2 ensures that the approximate piecewise
frequency flat channel responses are “worse” than the orig-
inal ones (as the cross channel gains and the noise power are
all stronger, and interference is treated as noise.) Nonetheless,
property P3 ensures that under these “adverse” conditions, these
approximations can still achieve the original utility arbitrarily
closely.
With finite power constraints and nondegenerate channel pa-

rameters (1), most utility functions considered in practice (e.g.,
a weighted sum-rate) satisfy the uniform continuity condition of

.

C. Two Basic Co-Existence Strategies and one Basic
Transformation

There are essentially two co-existence strategies for users to
reside in a common band: frequency sharing and FDMA. We
introduce two basic forms of these two strategies: flat frequency
sharing and flat FDMA, both defined in frequency flat chan-
nels. We will see that these two basic strategies are the building
blocks of general nonflat co-existence strategies in frequency
selective channels.
Consider a two-user frequency flat channel:

(2)
Definition 2: A flat frequency sharing scheme of two users is

any power allocation in the form of

(3)

Definition 3: A flat FDMA scheme of two users is any power
allocation in the form of

where and are given constants.
Definition 4: Given bandwidths
a flat FDMA reallocation is the following power invariant

transform that reallocates the power of the two users from a flat
frequency sharing scheme to a flat FDMA scheme.
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Fig. 2. Power allocations of flat frequency sharing and flat FDMA, and an il-
lustration of flat FDMA reallocation.

1) User 1 reallocates all of its power within a sub-band

with a flat PSD .
2) User 2 reallocates all of its power within another disjoint

sub-band with a flat PSD .
Illustrations of the power allocations of the two basic co-ex-

istence strategies before and after a flat FDMA reallocation are
depicted in Fig. 2.
Similarly, flat frequency sharing schemes, flat FDMA

schemes, and flat FDMA reallocation can be defined for any
users. ( is the degraded case in which

flat frequency sharing is the same as flat FDMA.)
Remark 2: A flat FDMA scheme is mathematically the same

as multiple disjoint bands each seeing a flat frequency sharing
of only one user. Thus, it is actually sufficient to only define
flat frequency sharing schemes of any users,
without introducing the definition of flat FDMA schemes. This
alternative approach is used later in Section V for the general
optimization in -user frequency selective channels. Here, flat
FDMA and flat FDMA reallocation are explicitly defined, be-
cause they offer clear intuitions for optimizing spectrum man-
agement as will be shown in Sections III and IV.

III. THE CONDITIONS FOR THE OPTIMALITY OF FDMA

In this section, we investigate the conditions under which
the optimal spectrum and power allocation is FDMA. We show
that our results apply to all Pareto optimal points of the achiev-
able rate region. First, we provide a coupling condition under
which FDMA schemes achieve all Pareto optimal rate tuples
within a group of strongly coupled users. In real-world commu-
nication networks, however, there are usually users not strongly
enough coupled with some other users. For these users outside
the strongly coupled group, we show that they always benefit
from an FDMA allocation within the strongly coupled group.
These results lead to the following simple pair-wise condition:
for any two of the users, as long as the product of the normal-
ized cross channel gains between them is greater than or equal
to 1/4, every one of the users will benefit from an FDMA al-
location between these two users.

A. The Optimality of FDMA Within Strongly Coupled Users

In this section, we prove a sufficient condition in -user in-
terference channels under which FDMA among all users can
achieve any Pareto optimal rate tuple. We begin with two-user
frequency flat channels, and extend the results to -user fre-
quency selective channels.

Fig. 3. The PSD composition at receivers 1 and 2.

Theorem 1: Consider a two-user frequency flat interference
channel (2). Suppose the two users co-exist in a flat frequency
sharing manner (3). If , then there exists a flat
FDMA power reallocation such that both users’ rates will be
higher (or unchanged.)
Before proving Theorem 1, we provide the following lemma

whose proof is relegated to Appendix B.
Lemma 2: Let , ; then

Proof of Theorem 1: It is sufficient to prove for the case of
since we are treating interference as noise. The

received PSD of the desired signal, interference, and noise at
both receivers are depicted in Fig. 3. The rates of users 1 and 2
are

(4)

We apply a flat FDMA power reallocation (cf., Fig. 2) with
the following specific bandwidths:

(5)

Accordingly, , . It is straight-
forward to check that , i.e.,
this reallocation is feasible.
Denote user 1’s rate after this reallocation by

(6)
From (4) and (6),

(7)

Define , , and (7) can be
rewritten as

(8)

From Lemma 2, (8) always holds since and .
Thus, . Similarly, we also have . Therefore,
for both users, a proper flat FDMA power reallocation leads to
rates higher than or equal to a flat frequency sharing.
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Moreover, Theorem 1 can be generalized to the -user case
as follows.
Theorem 2: Consider a -user frequency flat interference

channel, , . Suppose the users
co-exist in a flat frequency sharing manner: ,

. If , , then there exists a
flat FDMA power reallocation such that all users’ rates will be
higher or unchanged.
To prove Theorem 2, we choose a proper set of reallocation

bandwidths that generalizes (5). We note
that while is straightforward for the two-
user case, showing that for
the -user case is a much more involved task. The detailed
proof of Theorem 2 is relegated to Appendix B. Theorem 2 can
be immediately generalized to frequency selective channels as
follows.
Corollary 1: Consider a -user frequency selective interfer-

ence channel. Suppose we have an arbitrary spectrum and power
allocation scheme with some frequency sharing (overlap-
ping) in the band. If , , ,
then there exists anFDMA power reallocation scheme , sat-
isfying , such that all
user’s rates are higher or unchanged.

Proof: The proof is immediate as the strong coupling con-
dition is for all frequencies.

B. FDMA Within a Subset of Users Benefits All Other Users

We have seen that by properly separating a group of strongly
coupled users to orthogonal channels, every user among them
will have a rate higher than or equal to the rate of any frequency
sharing (overlapping) scheme. In this section, we show that an
FDMA allocation among a group of users also benefits every
other user outside this group. This result completes the fun-
damental fact that to achieve any -user Pareto optimal rate
tuple, all the strongly coupled users (among all the users) must
be separated into disjoint frequency bands.
We begin with the three-user (one interferers)

frequency flat channels, and extend the results to -user
(one interferers) frequency selective channels.
Lemma 3: Consider a three-user frequency flat channel:

, . Suppose the three users co-exist
in a flat frequency sharing manner: , ,

. From user 0’s perspective, a flat FDMA power
reallocation of its two interferers, namely users 1 and 2, always
leads to a rate higher than or equal to the original rate for user 0.

Proof: At the receiver of user 0, the received PSDs before
and after a flat FDMA power reallocation of its interferers are
depicted in Fig. 4. User 0’s rates before and after the reallocation
are

Fig. 4. PSD compositions at receiver 0 before and after a flat FDMA realloca-
tion of users 1 and 2.

With straightforward calculations, one can verify that the func-
tion is convex in . Therefore, by Jensen’s In-
equality, , , .
Lemma 3 can be generalized to an arbitrary number of users

as in the following corollary.
Corollary 2.1: Consider a -user (one in-

terferers) frequency flat channel: , .
Suppose the users co-exist in a flat frequency sharing
manner: , . From user 0’s perspective, a
flat FDMA power reallocation of its interferers, namely user
1, user 2, , user , always leads to a rate higher than or equal
to the original rate for user 0.

Proof: Similarly to the proof of Lemma 3, it follows from
the convexity of in .
Finally, the benefits of an FDMA allocation within a subset of

users to the other users can be generalized to frequency selective
channels.
Corollary 2.2: Consider a -user (one inter-

ferers) frequency selective channel. Suppose we have an arbi-
trary spectrum management scheme , ,
in which user 1, , user are not completely using FDMA.
Then, from user 0’s perspective, there exists an FDMA power
reallocation of its interferers, namely user 1, , user , that
leads to a rate higher than or equal to the original rate for user 0.

Proof: , by Lemma 1, take a piecewise flat - ap-
proximation , and , s.t.

where is user 0’s rate computed with , and
. If is not completely FDMA yet, do

a flat FDMA reallocation to in every flat sub-
channel that has a flat frequency sharing of any subset of the
interferers. By Corollary 2.1, the resulting rate of user 0 satisfies

. Finally, let .
We summarize Theorem 1 and Lemma 3 as follows:
Theorem 3: For any two users and (among all the

users), for any frequency band , if the normalized cross
channel gains , , then no
matter from which user’s point of view, an FDMA of user and
user within this band is always preferred.

Proof: Suppose the spectrum and power alloca-
tion for user and are not FDMA, take a piecewise
flat -approximation , , and , s.t.

. As in the proof of Corollary
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2.2, with a flat FDMA reallocation of and in every
flat sub-channel in that has a flat frequency sharing
of user and , Theorem 1 implies that user and ’s rates
are increased or unchanged, and Lemma 3 implies that every
one of the other users’ rate is increased or unchanged.
Finally, let .
The pair-wise condition makes deter-

mining whether any two users should be orthogonally channel-
ized depend only on the coupling conditions between the two
of them. Furthermore, since this condition guarantees that an
FDMA allocation between user and user benefits every one of
the users, under this condition, all the Pareto optimal points
of the rate region can be achieved with these two users having an
FDMA allocation. This pair-wise condition is thus an example
of distributed decision making (on whether to orthogonalize any
pair of users) with optimality guarantees.
We conclude this section by comparing our results with the

previously developed conditions for the optimality of FDMA in
[13] and [15].
1) In [13], it was shown that all Pareto optimal points of the
rate region can be achieved with an FDMA allocation be-
tween user and user if , . In
comparison, our result on the condition of

improves this condition by a factor of four.
2) In [15], a discrete frequency model is considered. It was
shown that the sum-rate optimal point of the rate region
can be achieved with an FDMA allocation among all the
users if

where is the channel index in the discrete frequency
model, and is some constant. In comparison, we con-
sider a continuous frequency model, and our result im-
proves the above condition from the following three as-
pects: 1) Our result not only applies to the sum-rate optimal
point, but also applies to all Pareto optimal points of the
rate region. 2) Our result does not require all the users to
be strongly coupled, but can be applied to any subset of the
users who are strongly coupled. 3) Our result on the con-
dition of strictly improves the above
condition as the requirement of is dropped (cf.,
Theorem 2).

IV. OPTIMAL SPECTRUM MANAGEMENT IN TWO-USER
SYMMETRIC CHANNELS

In this section, we continue to analyze the optimal spectrum
management in the cases with . We give a
complete analysis of two-user (potentially frequency selective)
symmetric Gaussian interference channels, defined as follows:

We choose the objective to be the sum-rate of the two users
. Generalizations with users and arbitrary weighted

sum-rate objective functions in general (asymmetric) channels
are discussed later in Section V.

Here, an equal power constraint

or equivalently, a sum-power constraint

is assumed. (Equivalency is shown later in this section.) We
begin with frequency flat channels, and solve the optimal spec-
trum management scheme. Based on this result, we show that
finding the spectrum management scheme that maximizes the
nonconcave sum-rate objective in symmetric frequency selec-
tive channels can be equivalently transformed into a convex op-
timization in the primal domain.

A. Optimal Solutions for Frequency Flat Channels With
a Sum-Power Constraint, Or Equivalently, Equal Power
Constraints

Consider a two-user symmetric frequency flat Gaussian in-
terference channel model

WLOG, we can normalize the power and their constraints by
the noise, , , and assume . First,
we have the following lemma on the condition under which a flat
FDMA scheme is better than a flat frequency sharing scheme.
Denote to be the PSD of user in a flat frequency
sharing scheme.
Lemma 4: For any flat frequency sharing power allocation,

a flat FDMA power reallocation with and
leads to a higher or unchanged sum-rate if

and only if .
The proof is relegated to Appendix C.
Given the cross channel gains , Lemma 4 provides us a

power region within which flat FDMA has a higher
sum-rate than flat frequency sharing, depicted as the shaded area
in Fig. 5 (with the complement region also depicted).
Clearly, if and only if (which implies ),

contains the entire nonnegative quadrant. This provides
a “weak” converse argument on the necessity of the coupling
condition , as derived in Section III, for
FDMA to be always optimal regardless of the power budget.
Next, we derive the optimal flat frequency sharing scheme

and the optimal flat FDMA scheme. Denote the sum-rate of a
flat frequency sharing by

With a sum-power constraint , the maximum
achievable sum-rate with flat frequency sharing, denoted by

is defined as the optimal value of the following opti-
mization problem.
Definition 5:

(9)
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Fig. 5. The power region in which flat FDMA has a higher sum-rate than flat
frequency sharing.

Next, we show the form and the concavity of in the
region of .
Lemma 5: When

(10)

is a concave function of the constraint . The optimal flat fre-
quency sharing scheme is .
The proof is relegated to Appendix C.
In comparison, we compute the maximum achievable sum-

rate with a sum-power constraint for FDMA schemes, denoted
by .
Definition 6:

From FDMA and the symmetry assumption of the channel, the
sum-rate of both users is equivalent to the rate of a single user
with a power constraint of . With the water-filling principle,

is achieved when the PSD over the whole band is flat. In
other words, both users’ powers are allocatedmutually nonover-
lapped and collectively filling the whole band uniformly. Ac-
cordingly, we have the following lemma.
Lemma 6: The maximum achievable sum-rate with FDMA

is

(11)

Define the critical point . Directly from
Lemma 4, it can be verified that . As

are both increasing and concave, the upper
envelope of and is given by

Fig. 6. The maximum achievable rate as the convex hull function of point-wise
maximum of the achievable rate of flat FDMA and flat frequency sharing.

Furthermore, as

(12)
and the upper envelope is nonconcave in .
Next, we define the convex hull function as follows.
Definition 7: The convex hull function of , de-

noted by , is a function of that is the point-
wise infimum of all the concave functions that upper bound

where ,
provided that .
Since at any , the infimum over uniquely

exists, is a well-defined function of . It is
straightforward to check that , and we define

(13)

A typical plot of , , and is given in Fig. 6.
Since and are concave, the convex hull function

is found by computing their common tangent line. For
example, in Fig. 6, is chosen to be 0.1. and inter-
sect at . The two points of tangency are

and . In order to find the common
tangent line of and , the two points of tangency
and are determined by

which simplifies to finding by solving

(14)
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and computing by

(15)

and can be obtained by solving the closed form (14) where
various numerical methods can be applied. We note that (14)
always has only one valid fixed point solution as shown in [2].
Next, we provide the main theorem of this section.
Definition 8: In a frequency flat symmetric Gaussian inter-

ference channel with , define to be the maximum
achievable sum-rate with a sum-power constraint

(16)

Theorem 4:

While the proof of the achievability of is fairly straight-
forward, the proof of the converse follows from Jensen’s in-
equality, as we recognize that all allocation schemes are
point-wise either flat frequency sharing or flat FDMA.
Proof of Theorem 4:
i) (Achievability of ).
The achievability of when or is

immediate. When

where , and is achievable by the following
scheme as depicted in Fig. 7: The band of the original channel
is split into two disjoint channels: with bandwidth , and
with bandwidth .
• In , a flat frequency sharing with a PSD of for
each user is applied, achieving a sum-rate of

.
• In , a flat FDMA with a PSD of for each user is
applied, achieving a sum-rate of .

Note that the sum-power constraint is satisfied by such a com-
bination of flat frequency sharing and flat FDMA

Therefore, the sum-rate

can be achieved in the original problem (16).

Fig. 7. The optimal spectrum management scheme as a mixture of flat FDMA
and flat frequency sharing.

ii) (Converse)
For any given , let be an optimal scheme that

achieves . Define the sum-rate density function

and . Clearly, .
From Lemma 5, when

From Lemmas 4 and 6, when

Thus, ,
and

The second inequality arises from the concavity of and
Jensen’s inequality, and the last inequality arises from the sum-
power constraint and the fact that is increasing.
The mixture of a flat frequency sharing and a flat FDMA

shown in Fig. 7 represents the general form of the optimal spec-
trum management scheme that achieves .
The computation of the optimal spectrum management

scheme is summarized in Procedure 1. Note that there always
exists an optimal spectrum management scheme with two users
each using the same total power of . Therefore, the above
optimal solution with a sum-power constraint directly leads to
the optimal solution with equal individual power constraints:
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Corollary 3: In a flat symmetric Gaussian interference
channel with , the maximum sum-rate defined as the
optimal value of the following optimization problem

is .
Proof: On the one hand, the equal power constraints imply

the sum-power constraint. On the other hand, the optimal value
with the sum-power constraint can be achieved with the equal
power constraints.

B. Generalizations to Frequency Selective Channels

In this section, we extend the sum-rate maximization problem
to the symmetric frequency selective Gaussian interference
channel

With

define to be the maximum achievable sum-rate with a sum-
power constraint as follows:
Definition 9:

(17)

Note that the objective function is separable in f. (The whole
problem is, however, not immediately separable in because of
the total power constraint across the whole band.) Because for
every fixed , is nonconcave
in , the above infinite-dimensional problem (17)
is a nonconvex optimization. Next, we derive a primal domain
convex relaxation of (17). We first normalize the PSD and the
sum-PSD by .
Definition 10: At every frequency

1. .
2. In the same form of (10) and (11) with instead of :

, ,
and

Note that the convex hull operation is performed along the
power dimension for every fixed (not along the frequency di-
mension.) , , and are com-
puted in the same way as in Procedure 1 with instead of .
In the (separable) objective function of (17), at every frequency
, we replace the nonconcave with
the concave (concave in the first variable ), and
define to be the corresponding maximum achievable value as
follows:
Definition 11:

(18)

Note that, for every fixed , is concave
in . The constraint is linear in Thus, the above in-
finite-dimensional problem (18) is a convex optimization. Now,
we have the following theorem.
Theorem 5:

The proof of the converse is similar to that in Theorem 4. For
the proof of the achievability of , as the channel is frequency
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selective, we need to introduce a piecewise flat -approxima-
tion, and the remaining proof follows that in Theorem 4.
Proof of Theorem 5:
i) (Converse).
It is sufficient to prove the inequality between the inte-
grands in (17) and (18). From Lemmas 4, 5, and 6

ii) (Achievability).
Let sum-PSD be an optimal solution of (18) such
that . Then,

By Lemma 1, based on , take a piece-
wise flat -approximation , s.t.

where is a piecewise flat sum-PSD, and is
computed with . (Note that, since the noise
PSD is already normalized to 1 as in Definition 10, no further
piecewise flat approximation of the noise is needed.)
Based on the piecewise flat -approximation, in every flat

sub-channel with a flat , as in the proof of Theorem 4,
can be achieved by further dividing this flat sub-

channel into two sub-bands, applying a flat frequency sharing
and a flat FDMA, respectively (cf., Fig. 7). Removing the nor-
malization by multiplying by , we denote the resulting al-
location scheme by which achieves
the same sum-rate

where and are computed with the
piecewise flat approximate channel responses .
Then

where the first inequality occurs because is a feasible so-
lution of (17); the second inequality arises because (by P2 from
Lemma 1) , , i.e., the -approx-
imation leads to worse channel responses, resulting in lower
rates. Finally, let .
Therefore, although the integrand in (18) is a convex relax-

ation of that in (17), the optimal objective value of the problem
does not change, and the original nonconvex optimization (17)

is equivalently transformed to the convex optimization (18). Fi-
nally, for the same reasons as in Section IV-A, the optimal solu-
tion with equal individual power constraints is the same as that
with a corresponding sum-power constraint.
Remark 3: Throughout this section, we have worked with a

sum-power constraint for brevity in derivations of the results
for the fully symmetric cases. One may also derive the results
directly with equal individual power constraints. In Section V,
as we consider potentially asymmetric channels, we will directly
work with individual power constraints.

V. OPTIMAL SPECTRUM MANAGEMENT IN THE

GENERAL CASES

In Section IV, we solved the sum-rate maximization problem
in two-user symmetric frequency selective channels with equal
power (or sum-power) constraints. In this section, we make the
following generalizations:
1. two-user -user;
2. equal power constraints arbitrary individual power
constraints;

3. symmetric channels arbitrary (including asymmetric)
channels;

4. sum-rate weighted sum-rate.
The general optimization problem is thus the following:

(19)

Next, we analyze (19) in parallel with the analysis in
Section IV, and generalize the basic ideas in Section IV.

A. Optimal Solutions for Frequency Flat Channels

Consider a -user (potentially asymmetric) frequency flat
channel

First, consider the weighted sum-rate achieved with flat
power allocations defined as

(20)

Denote its -dimensional convex hull function by

(21)

We have the following lemma on the monotonicity of
whose proof is relegated to Appendix C.
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Lemma 7: is strictly increasing in every component
of , .
Next, the original problem (19) in frequency flat channels can

be rewritten as
Definition 12:

Now, we have the following theorem.
Theorem 6:

and the optimal spectrum and power allocation consists
of sub-bands, with flat in each of the sub-bands.

Proof: The proof is in parallel with that of Theorem 4.
1. (Achievability).
As , by Carathéodory’s theorem

Accordingly, we can divide the band into
sub-bands, each with a bandwidth of and uses the flat
power levels of for the users.

2. (Converse).
For any feasible allocation scheme

where the first inequality is from definition (21), the second
inequality arises from Jensen’s inequality, and the third in-
equality arises from Lemma 7 that is increasing
in .

Remark 4: In the literature, it was first shown that allocation
schemes consisting of sub-bands of frequency flat power
allocations are sufficient to achieve any Pareto optimal solution
[13], and this sufficient number of sub-bands was later refined to

[19]. From Theorem 6, the sufficiency of sub-bands
is also immediately implied by the fact that the optimal value
and solution are obtained by computing the convex hull function
(21) of a nonconcave function (20).
Now, for the special case of two-user symmetric frequency

flat channels as discussed in Section IV-A, we compare
(21) and (13) as follows.
1) is defined over the 2-D nonnegative quadrant of two
individual powers, and is the convex hull function of the
achievable rate of flat frequency sharing.

2) is defined over the 1-D nonnegative half-line of sum-
power, and is the convex hull function of the point-wise
maximum of the achievable rates of flat frequency sharing
and flat FDMA.

3) By Theorems 4 and 6, .

As previously mentioned in Remark 3, we see that the op-
timal solution in two-user symmetric frequency flat channels,
solved in Section IV-A, can also be solved using the general ap-
proach derived in this section. In Section IV-A, by exploiting the
symmetry of the channel and the power constraints, we showed
that can be characterized in a simpler form,
namely, . Finally, as mentioned in Remark 2, the power
allocation in each sub-band of a flat FDMA allocation can be
viewed as a special case of flat frequency sharing with only one
user’s power strictly positive. This explains the intuition of why,
to have Theorem 6, it is sufficient to define as in (21)
without explicitly considering flat FDMA as in (13).

B. Generalizations to Frequency Selective Channels

In frequency selective channels, define theweighted sum-rate
density function as

(22)

Problem (19) can then be rewritten as follows.
Definition 13:

(23)

Note that, for every fixed , is noncon-
cave in , and (23) is an infinite-dimensional nonconvex op-
timization. At every frequency , define

i.e., the convex hull function of along the dimen-
sions of power . Note that the convex hull operation is not
taken along the frequency dimension . ( is concave
in for every fixed , but not necessarily jointly concave in
and .)
Next, we derive the following primal domain convex relax-

ation of (23): At every frequency , we replace the nonconcave
with the concave (concave in the first

variable ), and define to be the correspondingmaximum
achievable value as follows.
Definition 14:

(24)

Clearly, (24) is an infinite-dimensional convex optimization, be-
cause the integrand is a concave function of the vari-
ables , and the constraint is linear in . Now, we
have the following theorem whose proof is in parallel with that
of Theorem 5 and is relegated to Appendix C.
Theorem 7:

We see that the optimal value for the nonconvex optimization
(23) equals that of its convex relaxation (24).
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C. On the Complexity of Solving the General Problem

For general bounded piecewise continuous channel re-
sponses, problem (23) can have up to an uncountably infinite
number of dimensions, for which describing the complexity of
solving the continuous frequency optimal solution is pointless.
However, one can first approximate the channel responses by
piecewise flat functions of frequency, which is the approach
with which spectrum management problems are addressed
in practice. With piecewise frequency flat channel responses,
denote the corresponding flat sub-channels by ,
each with a given bandwidth .
One can consider two types of problems distinguished by the

assumptions on power allocations.
Case a) consists of bounded piecewise continuous
functions.
Case b) must be flat in every flat sub-channel .

For example, consider a single frequency flat band. It makes a
fundamental difference whether we allow a user to freely subdi-
vide this flat band and use different PSD in different sub-bands.
If so, it is Case a, and the problem model is still continuous fre-
quency; otherwise, it is Case b, and it corresponds to the discrete
frequency model.
For the discrete frequency model (Case b), it has been

proven that finding the optimal solution of weighted sum-rate
maximization is NP hard in both the number of users and
the number of sub-channels [16]. Next, we discuss the com-
plexity of solving the continuous frequency (Case a) optimal
spectrum management problem (23) in piecewise frequency flat
channels. From Theorem 7, it is sufficient to solve the convex
optimization (24), which consists of two general steps.
Step 1: Compute the convex hull function

for every frequency flat sub-channel ,
.

Step 2: Optimize with the objective
In Step 1, given the channel parameters for each flat

sub-channel , , a convex hull function

is computed. In Step
2, given the convex hull functions for all the flat sub-chan-
nels, as the number of sub-channels is finite, problem (24)
becomes finite dimensional, with an increasing concave utility
function in each sub-channel . Now, because
each has frequency flat channel parameters and
is increasing and concave, by Jensen’s inequality, the optimal
solution must satisfy that is flat in each sub-channel ,
i.e., , ,
Problem (24) then becomes

(25)

(Note that is the bandwidth of
sub-channel , and is not an optimization variable). Problem
(25) is a finite-dimensional convex optimization problem that
has efficient polynomial time algorithms to solve the global

optimal solution. (For example, a dual decomposition algo-
rithm works; see, e.g., [7] among many others.) In particular,
the computational complexity of (25) grows linearly in the
number of sub-channels [7]. Finally, the optimal solution
of (25) which is also the optimal solution of (24), denoted by

, is transformed back to the optimal
solution of (23): In each sub-channel , as

is formed by a convex combination of at most
points of (cf., Remark 4), we further sub-

divide the sub-channel into (at most) sub-bands in
each of which a corresponding flat frequency sharing scheme
is used.
We see that the critical complexity in solving the gen-

eral problem (23) based on Theorem 7 lies in computing
convex hull functions . Computing
-dimensional convex hull functions is known to be NP hard

in the number of users [12]. We note that similar complexi-
ties from computing convex hulls also appear in [5] where the
objective is to find the optimal time shared power transmission
modes in single carrier networks for network utility maximiza-
tion.
Thus, the overall computational complexity of the above two-

step approach is NP in (although this does not directly follow
from the results in [16] because the assumptions are different,
i.e., Case a versus Case b). Nonetheless, this two-step method
does provide the following advantage:
Remark 5: Once the channel parameters are given, the

convex hull functions are computed for one time, con-
suming an NP complexity in the number of users . Then,
no matter how the power constraints may vary due to problem
needs, the additional computational complexity of solving the
optimal solution (Step 2) grows linearly in the number of sub-
channels .
We note that, for the discrete frequency model (Case b), the

constraint that a user must use a flat PSD within every (flat)
sub-channel leads to the well known NP hardness in both
and . In comparison, for the continuous frequency model
(Case a), the main complexity is from computing convex
hull functions which is NP in . Finally, better approxima-
tion of the continuous frequency channel can be obtained by
increasing the number of sub-channels in the piecewise
flat channel approximation. This, however, does not lead to
prohibitively greater computational cost since the overall
complexity grows linearly in for the continuous frequency
model (cf., Remark 5).

D. On the Zero Duality Gap

It has been proven that the continuous frequency nonconvex
optimization (23) has an exact zero duality gap [16], [20]. It is
pointed out that the zero duality gap comes from a time sharing
condition[20]. It is also proved using the nonatomic property of
the Lebesgue measure [16].
We show that this is also immediately implied by Theorem 7.
Definition 15: For problem (23), its Lagrange dual is defined

as
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Its dual objective and dual optimal value are defined as

Similarly, for problem (24), its Lagrange dual, dual objective,
and dual optimal value are defined as

Corollary 4: The nonconvex optimization (23) has a zero
duality gap.

Proof: Since , , we have

Note that the primal optimal values for (23) and (24) are
and . Therefore

where the first equality occurs because problem (24) is a convex
optimization and has strong duality [3]; the second inequality is
from the weak duality of the nonconvex optimization (23); the
key step is the second equality from Theorem 7.
Furthermore, it has been shown that, under mild technical

conditions, the nonconvex optimization for the discrete fre-
quency model has an asymptotically zero duality gap as the
number of sub-channels goes to infinity [20]. The result is
rigorously generalized to include Lebesgue integrable PSDs in
[16]. Indeed, for a bounded piecewise continuous frequency
channel, as it is divided into more and finer/flatter sub-channels,
the difference between the power allocation assumptions Cases
a and b vanishes (discrete frequency model continuous
frequency model.) The intuition is that we can bundle a large
number of similar frequency flat sub-channels, treat them as
one combined frequency flat channel, compute the continuous
frequency power allocation, and accordingly distribute the
power within these roughly identical sub-channels (as a dis-
crete approximation of the continuous allocation.)

VI. CONCLUSION

In this paper, we considered two general problems for con-
tinuous frequency optimal spectrum management in Gaussian
interference channels: 1) the channel conditions under which
FDMA schemes are Pareto optimal; and 2) equivalent convex
formulations for the nonconvex weighted sum-rate maximiza-
tion problem.
First, we have shown that for any two (among ) users, as

long as the product of the two normalized cross channel gains
between them is greater than or equal to 1/4, an FDMA alloca-
tion between these two users benefits every one of the K users.
Therefore, under this pair-wise condition, any Pareto optimal
point of the -user rate region can be achieved with this pair
of users using orthogonal channels. The pair-wise nature of the
condition allows a completely distributed decision on whether

any two users should use orthogonal channels, without loss of
any Pareto optimality.
Next, we have shown that the classic nonconvex weighted

sum-rate maximization in -user asymmetric frequency se-
lective channels can be equivalently transformed in the primal
domain to a convex optimization. We first analyzed in detail
the sum-rate maximization in two-user symmetric frequency
flat channels, and showed that the optimal solution consists of
one sub-band of flat frequency sharing, and one sub-band of
flat FDMA. We generalized the results to weighted sum-rate
maximization in -user asymmetric frequencyflat channels: we
showed that the optimal value is computed as the convex hull
function of the nonconcave objective function, and the piecewise
frequency flat optimal solution is obtained based on the convex
combination used in computing the point on the convex hull
function. Finally, a primal domain convex formulation is estab-
lished for frequency selective channels. For piecewise frequency
flat channels, we showed that the overall computational com-
plexity is NP in the number of users from computing convex
hull functions, and is linear in the number of sub-channels .
This paper has focused on providing a unified and in-depth

view on solving the optimal spectrum management problem for
the continuous frequency model. The multicarrier discrete fre-
quency model is different from (although related to) the con-
tinuous frequency model (even with piecewise frequency flat
channel responses). As problems with the discrete frequency
model are in general NP-complete in both and , finding
practical algorithms to find approximately optimal solutions has
attracted many research endeavors, and continues to be very
interesting.

APPENDIX A

Proof of Lemma 1: First, we prove for the case that
are bounded continuous in

, (not piecewise.) It is then immediate to generalize to
bounded piecewise continuous functions with a finite number
of discontinuities.
1) Since is a uniformly continuous function
of , , s.t.

and satisfying

we have .
2) For , since bounded conti-
nuity implies uniform continuity, , s.t.

, s. t. , we have

Now, combining 1) and 2), , divide into consec-
utive intervals with lengths all less than .

, let
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Thus, Properties P1 and P2 are satisfied, and

Thus, we have proved the lemma for bounded continuous
power allocations and channel responses. To generalize it to
bounded piecewise continuous cases, simply use the fact that
the number of discontinuities in
are finite. Thus, we can construct piecewise flat functions ,

, and in every sub-interval with bounded con-
tinuity, and the values on the discontinuities do not have any
impact on the power and rates, as they form a set of measure
zero.

APPENDIX B

Proof of Lemma 2: We want to show

Since , it is equivalent to show

Let and .

We have .
Since , we have
. Thus, , ,
.
Proof of Theorem 2: It is sufficient to prove for the case

of since we are treating interference as
noise. Generalizing (5), we apply a flat FDMA power realloca-
tion with the following specific bandwidths:

(26)

Accordingly,

From exactly the same argument as in the proof of Theorem 1

Now, the final and main part of the proof is to show that

meaning that (26) is a feasible FDMA realloca-

tion.
We use induction as follows.

1) For as shown in the proof of Theorem 1,

2) Suppose for , we always have

Consider .
For users , we rewrite their reallocation band-
widths (26) as,

where we define , and we have used

the fact that . Note that, if then
is exactly the reallocation bandwidth

corresponding to the case of . From the induc-
tion assumption, we have

(27)

For notational simplicity, we use the following change of

variables: Accordingly

(28)

We now prove that for any

. To do so, we optimize over

such that is maximized. We

first take the following partial derivative,

Clearly, for fixed , there is a unique

that maximizes

(29)

Since is upper bounded by , we have the following:

1) There exists a globally optimal solution

that maximizes .

2) From (29), the globally optimal solution must satisfy the
following set of linear equations:

(30)

With straightforward calculations, (30) implies the following:

(31)

Equation (31) implies that the globally optimal solution must
take the following form:

(32)

where is some constant.



ZHAO AND POTTIE: OPTIMAL SPECTRUM MANAGEMENT IN MULTIUSER INTERFERENCE CHANNELS 4975

Substitute (32) for in (28), we have

(33)

where is the total bandwidth for the case of ,
as defined in (27). Finally, from the induction assumption that

, we have

APPENDIX C

Proof of Lemma 4: With flat frequency sharing, the rates
of users 1 and 2 are

With a flat FDMA reallocation, implies
that , and implies that

. The rates of users 1 and 2 become

Straightforward calculations lead to

which implies the conclusion of Lemma 4.
Proof of Lemma 5: Clearly, the condition of implies

.
First, we find the solution to the optimization problem with

an equality sum-power constraint instead of inequality, i.e.,

With

Straightforward calculations lead to

Since , when is
nondecreasing. Furthermore, note that , i.e.,

is symmetric about . Therefore, takes

the maximum value when .
With straightforward calculations, one can verify that

is an increasing concave function of .
Consequently, the constraint in the definition

problem of (9) can be equivalently replaced by

, and we have .
Proof of Lemma 7: We use the proof by contradiction.

Suppose in some component of , is not everywhere
strictly increasing. WLOG, assume this component is . Thus

(34)

Because is a jointly concave function, it is concave
in for any fixed . From this concavity and
(34), for fixed must be
nonincreasing in , . In particular

(35)

However, from (20),

. This contradicts with
(cf., Definition 7).

Proof of Theorem 7:
1. (Converse).
It is immediately true, because the integrands in (23) and
(24) by definition satisfy

2. (Achievability).
Let be an optimal solution of (24) such that

. Then,
By Lemma 1, based on , take

a piecewise flat -approximation and ,
s.t.

where for every fixed , ,
with

.
Based on the piecewise flat -approximation, in every flat

sub-channel with a flat , as in Theorem 6,
can be achieved by further dividing this sub-channel into
sub-bands, each applying a frequency flat power allocation. De-
note the resulting allocation scheme by , achieving the
same sum-rate
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Then

where the first inequality occurs because is a feasible so-
lution of (23); the second inequality occurs because (by P2 from
Lemma 1)
i.e., the -approximation leads to worse channel responses, re-
sulting in lower rates. Finally, let .
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