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Abstract—An outage detection framework for power distri-
bution networks is proposed. The framework combines the use
of optimally deployed real-time power flow sensors and that
of load estimates via Advanced Metering Infrastructure (AMI)
or load forecasting mechanisms. The distribution network is
modeled as a tree network. It is shown that the outage detection
problem over the entire network can be decoupled into detection
within subtrees, where within each subtree only the sensors
at its root and on its boundary are used. Outage detection is
then formulated as a hypothesis testing problem, for which a
maximum a-posteriori probability (MAP) detector is applied.
Employing the maximum misdetection probability Pmax

e as the
detection performance metric, the problem of finding a set of a
minimum number of sensors that keeps Pmax

e below any given
probability target is formulated as a combinatorial optimization.
Efficient algorithms are proposed that find the globally optimal
solutions for this problem, first for line networks, and then for
tree networks. Using these algorithms, optimal three-way trade-
offs between the number of sensors, the load estimate accuracy,
and the outage detection performance are characterized for line
and tree networks using the IEEE 123 node test feeder system.

I. INTRODUCTION

Outage detection and management has been a long-standing
problem in power distribution networks. As society becomes
more dependent on electric power, the economic and societal
costs due to loss of loads from distribution outages have been
increasingly severe. Outages are mainly caused by permanent
short circuit faults in the distribution system. When a short
circuit fault occurs, protective devices close to the fault will
automatically isolate the faulted area. The loads downstream
of the protective devices will be in outage. We employ the term
outage detection to denote the task of finding the status of the
protective devices, and the term fault detection to denote that
of finding the faults that caused the resulting outage situation.

Many methods for outage and fault detection based on
artificial intelligence have been developed. Outage detection
is often performed prior to fault detection and can greatly
improve the accuracy of fault diagnosis. For outage detection,
fuzzy set approaches have been proposed based on customer
calls and human inspection [1], and based on real-time mea-
surement with a single sensor at the substation [2]. In networks
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where supervisory control and data acquisition (SCADA)
systems are available, a subset of the protective devices’
status can be obtained via direct monitoring. When two-way
communications from the operator and the smart meters are
available, AMI polling has been proposed to enhance outage
detection [3]. There have also been knowledge based systems
that combine different kinds of information (customer calls,
SCADA, AMI polling) [4]. For fault detection, using only a
single digital transient recording device at the substation, fault
location and diagnosis systems have been developed based
on fault distance computation using impedance information
in the distribution system [5]. Using only the outage detection
results, i.e., the status of the protective relays, expert systems
have been applied to locate the underlying faults [6]. Incorpo-
rating voltage measurements in the distribution system with
the outage detection results, fault detection methods based
on knowledge based systems have been proposed [7]. Fault
detection that uses during fault voltage-sag measurements and
matching has been proposed in [8], [9]. Fault diagnosis based
on fuzzy systems and neural networks have also been proposed
that can resolve multiple fault detection decisions [10].

Nonetheless, current practice of outage and fault detection
does not provide real-time detection decisions. In addition,
as the existing outage and fault detection methods based on
artificial intelligence do not provide any analytical metric on
how well the algorithms perform, while their performance can
be evaluated numerically, it is in general hard to examine the
optimality of the algorithms. Moreover, because of this lack
of an analytical metric, while some of the existing approaches
depend on near real-time sensing (e.g. SCADA), they do not
provide guidance on where to deploy the limited sensing
resources within the distribution system.

In this paper, we focus on real-time outage detection based
on optimally deployed power flow sensors within the distribu-
tion system and load estimates via AMI or load forecasting
mechanisms. The proposed sensing and feedback framework
exploits the combination of real-time sensing and feedback
from a limited number of power flow sensors and the infre-
quent load update from AMI or forecasting mechanisms. We
develop a probabilistic model of the outage detection prob-
lem, and formulate outage detection as a hypothesis testing
problem. This formulation not only allows the development
of optimal detectors, but also enables an analytical metric of
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Fig. 1. Diagram for a distribution network with a tree structure.

the overall detection performance. Based on this performance
metric, we propose efficient algorithms that determine the
globally optimal locations for deployment of real-time sensors,
and characterize the optimal trade-off between the number of
sensors to use and the optimal detection performance.

II. SYSTEM MODEL

We consider a power distribution network that has a tree
structure. The power is supplied from the feeder at the root,
and is drawn by all the downstream loads. We consider
an outage to be line tripping when it leads to loss of the
corresponding downstream loads. An outage can be caused
by any type of fault event that triggers protection devices
to isolate the fault. We investigate the optimal design and
performance of automatic outage detection systems, with the
use of the following two types of measurements:
• Load pseudo-measurements from intermittently collected

AMI data, or load forecasts. These are considered noisy
observations of the true load at any given time.

• Real-time measurements of the power flows on a fraction
of the lines obtained using accurate sensors placed on the
selected lines. They are modeled as noiseless sensors,
since the errors of these measurements are negligible
compared to those of the load pseudo-measurements.

Topology of the Distribution System: We index the buses
in the distribution network by V0, V1, . . . , VN , with bus V0
denoting the root of the tree. We index by En (n ≥ 1) the
line that connects bus Vn and its parent node. We denote by
T (n) the subtree with Vn as the root node.

Outage Hypothesis: Outages are modeled as disconnected
edges, corresponding to the lines tripped by the protective
devices. For example, when we consider single line outages in
a tree with N edges, there exist N+1 hypotheses to consider:
Hi that denotes the trip of edge Ei, as well as HN+1 that
denotes the non-outage situation.

Load Model: Each node Vn (n ≥ 1) in the graph has a
consumption load Ln. The pseudo-measurement of this load
is L̂n. We denote the pseudo-measurement error of load Ln

by εn = Ln − L̂n. We consider the loads to have single
phase real power. The developed methods can be generalized
to loads of complex three phase values. We assume that the

errors are mutually independent random variables that follow
εn ∼ N(0, σ2

i ). Therefore, Li ∼ N(L̂i, σ
2
i ). We denote

the vectors of true loads, load pseudo-measurements, and
the error covariance matrix by L, L̂ and Σ, respectively.
Thus, L ∼ N(L̂,Σ), and Σ is a diagonal matrix due to the
independence of errors.

Sensor Model: For any line En, we denote by Sn the power
flow on it to all active downstream loads. The measured flow
depends on the network topology, outage situation and the true
loads. For example, under outage Hi on Ei,

Sn =
∑

Vj∈T (n)\T (i)

Lj , ∀n ≥ 1. (1)

III. PROBLEM FORMULATION

In this section, we formulate the problems of detection of
outages and optimization of power flow sensor locations.

A. Tree Partitions and Decoupling Principle

Suppose there are M power flow sensors at lines M ,
{p(1), . . . , p(M)}. Define p(0) = 0. Accordingly, the M
sensors partition the tree network into M+1 subtrees Tm,m =
0, 1, . . .M :

Tm , T (p(m))

∖ ⋃
m′ 6=m,

Vp(m′)∈T (p(m))

T (p(m′)), (2)

An illustrative example is depicted in Figure 1, where the
sensor placement p(1) = 1, p(2) = 4 and p(3) = 8
forms partitions T1, T2 and T3. We now state the following
decoupling principle in using the sensor measurements for
detecting outages in different partitions of the tree: the optimal
detection of outage hypotheses within a partition Tm can be
performed using only the sensor measurement at the root of
Tm and those on the boundary of Tm. For example, in Figure
1, the optimal detection decision in partition T1 is made using
sensors Sp(1), Sp(2) and Sp(3), while the optimal decisions in
T2 and T3 are made using only Sp(2) and Sp(3) respectively.

B. Outage Detection within a Partition

An outage detection decision within partition Tm is made
using a MAP detector. For an outage Hk on Ek ∈ Tm, we
compute from the sensor measurements the sum of all the
remaining active loads within Tm, defined as the effective
measurement of sensor p(m):

∆Sp(m) , Sp(m) −
∑

Ep(m′)∈Tm

Sp(m′). (3)

In other words, ∆Sp(m) is the difference of the incoming and
outgoing power within partition Tm. With L ∼ N(L̂,Σ),
under Hk, Sp(m) is a random variable with a conditional
probability density function (pdf) of N(µk, τ

2
k ), where

µk =
∑

Vi∈Tm\T (k)

L̂i, τ2k =
∑

Vi∈Tm\T (k)

σ2
i . (4)

Given a set of outage hypotheses, MAP detection can then
be performed based on {µk} and {τ2k}. We evaluate the
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Fig. 2. A line network with N loads and M power flow sensors.

performance of the MAP detector based on the hypothesis
misdetection probability, Pr(Ĥ 6= Hk|Hk is true), and use
the maximum misdetection probability as the detection perfor-
mance metric, denoted by Pmax

e (L̂,Σ,M).

C. Minimum Number of Sensors and Their Locations
For any given probability target Pe, we find the minimum

number of sensors that keep the maximum misdetection prob-
ability below Pe. This is formulated as:

min M (5)
s.t. ∃M, |M| ≤M,M⊆ {1, . . . , N},

Pmax
e (L̂,Σ,M) ≤ Pe.

We see that (5) is a combinatorial optimization overM which
is in general hard to solve. In the following sections, we will
show that (5) can be solved very efficiently.

IV. OUTAGE DETECTION AND OPTIMAL SENSOR
LOCATIONS IN LINE NETWORKS

In this section, we consider a special case of tree networks,
namely, the line networks (cf. Figure 2).

A. Outage Detection
Line Partitioning: With M power flow sensors at lines

p(1) < . . . < p(M), partition Tm is the segment from Vp(m)

to Ep(m+1): Tm , T (p(m))

∖
T (p(m+ 1)), with TM as the

segment from Vp(M) to VN .
Sensor Measurements and MAP Detector: Consider a single

line outage Hk at Ek ∈ Tm∗ for some m∗. From the
decoupling principle, only the sensor at the root of Tm∗ ,
namely, Sp(m∗) =

∑k−1
i=p(m∗) Li should be used. In this case,

∆Sp(m∗) = Sp(m∗). For each Hk, ∆Sp(m∗)|Hk ∼ N(µk, τ
2
k ),

where µk =
∑k−1

i=p(m∗) Li and τ2k =
∑k−1

i=p(m∗) σ
2
i .

B. Minimum Number of Sensors and Their Locations
Given a probability target Pe, we propose Algorithm 1 (cf.

Table I) that solves the global optimum of (5). The main idea
of the algorithm is as follows. We start from the root where a
sensor is placed at E1. If Pmax

e does not fall below Pe with
the 1st sensor only, the 2nd sensor is needed. We then move
the 2nd sensor forward starting from E2 to E3, E4, . . ., and
compute Pmax

e on segment T1. We choose line p(2) to place
the 2nd sensor, such that
• Pmax

e on segment T1 is below Pe, whereas
• if the 2nd sensor is instead placed at Ep(2)+1, Pmax

e on
segment T1 will exceed Pe.

Similarly, if the mth sensor is needed, we place it as far from
the root as possible while satisfying Pe on segment Tm−1.

TABLE I
ALGORITHM 1

Find a minimum set of sensor locations that
satisfy Pe for line networks

Place the 1st sensor at E1, i.e., p(1) = 1.
Initialize m = 2, p(m) = 2.
Repeat

for segment Tm−1,
If Pmax

e (L̂Tm−1
,ΣTm−1

) ≤ Pe,
If p(m) = N + 1,

return M = {p(1) . . . , p(m− 1)},
(m− 1 sensors are sufficient.)

Else p(m)← p(m) + 1.
Else,

p(m)← p(m)− 1,
m← m+ 1,
p(m) = p(m− 1) + 1.

TABLE II
EXAMPLE OF HYPOTHESIS SET REDUCTION

Possible sets of line outages, S1 > 0.
S8 = 0 S8 > 0

S4 = 0 {E2} {E3}, {E4}
S4 > 0 {E7}, {E8} {E5}, {E6}, ∅

V. OUTAGE DETECTION AND OPTIMAL SENSOR
LOCATIONS IN TREE NETWORKS

Here, we first describe hypothesis set reduction in trees.
and then develop the optimal sensor location algorithm for
arbitrary tree networks.

A. Hypothesis Set Reduction

With M power flow sensors at lines p(1) < . . . < p(M),
define p(0) = 0. We observe that, Sn = 0 if and only if there
is a line outage in the unique path from En to the root V0.
Therefore, in any partition Tm, the set of valid hypotheses can
be greatly reduced using the knowledge of whether sensor m
and the downstream sensors on the boundary of Tm see zero
or non-zero measurements.

We now give an illustrative example of the hypothesis set
reduction for the tree network in Figure 1. Consider outage
detection in partition T1 using S1, S4 and S8. If S1 = 0,
there is an outage on line 1 for sure. If S1 > 0, for different
combinations of S4 and S8, we summarize all the possible
sets of outage hypotheses in Table II.

B. Minimum Number of Sensors and Their Locations

Generalizing the intuition from Section IV-B, we first define
an efficient set of sensor locations. This efficiency captures the
fact that all the sensors are as far as possible from the leaves
of the tree, while still maintaining Pmax

e ≤ Pe:
Definition 1: Given a target Pe, a set of sensor locations

M={p(1),. . .,p(M)} with p(1)=1 is efficient if and only if:
1) Pmax

e (L̂,Σ,M) ≤ Pe.



...

...

...

Ej

Ei

Vi

Vi’

Vj

Vj’

(a) Step 1.

... ...

...
...

...

...

Vn

En

(b) Step 1’.

...

...

...

Vn

En

(c) Step 2, con-
figuration 1.

...

...

...

Vn

En

(d) Step 2, con-
figuration 2.

...

...

...

Vn

En

(e) Step 2, con-
figuration 3.

...

...

...

Vn

En

(f) Step 2, con-
figuration 4.

Fig. 3. Algorithm 2, solid squares denote placed sensors, and dashed open
squares denote undecided candidate sensors.

2) ∀m = 1, . . . ,M , with a sensor at Ep(m), within subtree
T (p(m)), all sets of sensor locations of |{m′|Vp(m′) ∈
T (p(m))}| − 1 sensors yield Pmax

e > Pe.
3) ∀m = 1, . . . ,M , with a sensor at Ep′(m) where Vp′(m)

is the parent node of Vp(m), within subtree T (p′(m)), all
sets of sensor locations of |{m′|Vp′(m′) ∈ T (p′(m))}|−
1 sensors yield Pmax

e > Pe.
By definition, we immediately observe that an efficient set of
sensor locations, if it exists, solves (5).

Next, we propose the following algorithm that always finds
an efficient set of sensor locations for any given Pe. We
allocate sensors in a bottom-up manner with candidate sensors
starting at all the leaves of the tree. We then move the sensors
up as much as possible, for which the operational details can
be described as a combination of two steps:

Algorithm 2, find an efficient set of sensor locations for a
given Pe in tree networks:

1) Each candidate sensor moves up along its branch until one
of the following three scenarios happens:
• It moves to Ei where Vi’s parent node Vi′ only has one

child Vi, and Pmax
e within T (i) is below Pe, whereas

Pmax
e within T (i′) would exceed Pe had the candidate

sensor moved up to Vi′ . In this case, we place the sensor
at Ei, and start a new candidate sensor moving up from
Ei′ . Then, we repeat step 1.

• It moves to Ej , where Vj’s parent node Vj′ is a joint node
where multiple branches meet. In this case, we pause the
current candidate sensor at Ej , and go to step 2).

• It moves to the root of the entire tree, i.e., E1. In this
case, we place the candidate sensor at E1, and stop.

An illustrative example is depicted in Figure 3(a).
2) At a joint node Vn, with all of its current downstream
candidate sensors moved up to the lines connecting to Vn’s
children, we find the minimum number of sensors required
to keep Pmax

e within T (n) below Pe, assuming that there
is a sensor at En. This is done by enumerating all placement
configurations of the candidate sensors immediately below Vn.
An illustrative example where two branches join at Vn is
depicted in Figure 3(c)-3(f).
3) After deciding the minimum required number of sensors
below a joint node Vn, we start a new candidate sensor moving
up from En, and repeat step 1).
An illustrative example is depicted in Figure 3(b), where the
minimum required number of sensors below the joint node Vn
is one, achieved by the configuration of Figure 3(d).

As Algorithm 2 always finds an efficient set of sensor
locations, it solves for the global optimum of (5).

VI. SIMULATION

We simulate Algorithm 1 and 2 in line and tree networks
each with 123 nodes. The IEEE 123 node test feeder system
[11] is used for the tree topology, with a unique switch
configuration to guarantee a fully connected tree. The true
loads Li are drawn from a uniform distribution U [5, 10] KW,
while the pseudo-measurement error standard deviation σi is
proportional to the true load Li: σi = κ × Li. The typical
values of κ seen in load forecast mechanisms are 10− 30%.
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The optimal trade-off curves between the number of sensors
M and Pmax

e for line and tree networks are solved via Algo-
rithm 1 and 2, and are depicted in Figure 4 and 5. Pe values
of 1%, 10%, 20%, . . . , and 90% are evaluated. We evaluated
the trade-offs for different pseudo-measurement accuracies κ,
namely 10%, 20% and 30%. For κ = 30%, we see that roughly
half of the lines must be monitored if Pmax

e < 1% is required,
for both line and tree topologies. By improving κ to 10%, only
about a third of the lines need to be monitored.

Discussion: On average the line network requires 40% fewer
sensors than the tree network. When the sensor density is



0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

Probability Target Pe

S
en

so
r
D
en

si
ty

 

 

σ = 0.1µ

σ = 0.2µ

σ = 0.3µ

Fig. 5. Minimum number of sensors required for tree networks.

S1S1S1

E2 E3

E1

S1
E1 E2 E3

(a) 3-node line and tree networks

−2 0 2 4 6 8 10
0

0.2

0.4

The 3-node line network

f
(S

1
|H

k
)

 

 

f (S1|H1)

f (S1|H2)

f (S1|H3)

f (S1|H4)

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

The 3-node tree network

f
(S

1
|H

k
)

 

 

f (S1|H1)

f (S1|H2)

f (S1|H3)

f (S1|H4)

(b) Conditional pdf f(S1|Hk)

Fig. 6. Conditional pdf in 3-node line and tree networks.

higher, this difference is smaller. There are various factors
that contribute to this difference. To illustrate these factors,
we examine example 3-node line and tree networks (cf.
Figure 6(a)). Considering single line outages, the line network
has the following possible flow measurements, S|H1 = 0,
S|H2 = L1, S|H3 = L1 + L2, S|H4 = L1 + L2 + L3.
Likewise the tree network has S|H1 = 0, S|H2 = L1 + L2,
S|H3 = L1 + L3, S|H4 = L1 + L2 + L3. Assuming Li = 1
and σ2

i = 1,∀i, the conditional pdf of the flow measurement
under each hypothesis is plotted in 6(b). Clearly, in the line
network, all the hypotheses are distinguishable, whereas in the
tree network H2 and H3 are not distinguishable. Algorithm 2
will then place a sensor at E2 or E3 in the tree network.
The difference between line and tree networks narrows as
Pe decreases for the following reasons. For tree networks, as
Algorithm 2 proceeds to upper nodes within the tree, the leaves
of the intermediate partitions are all terminated by downstream
sensors, and the hypothesis set reduction (cf. Section V-A)
plays an important role. For example, if the 3-node tree was

a partition terminated with 2 sensors below V2 and V3, all the
hypotheses will be fully distinguishable with zero misdetection
probability. Indeed, we observe that there are large partitions
having close to zero misdetection probability when Pe is small.
Depending on the values of Pe and κ, one of the above two
factors dominates the optimization of sensor locations.

VII. CONCLUSIONS

We have proposed outage detection in power distribution
systems using optimally deployed real-time power flow sen-
sors combined with load estimates from intermittent AMI data
or load forecasts. We have shown a decoupling principle that
allows detection of outages within a subtree using only the
sensor measurements at its root and on its boundary. Accord-
ingly, we have formulated the outage detection problem as
one-dimensional hypothesis testing, and have applied the MAP
detector. Employing the maximum misdetection probability
Pmax
e as the outage detection metric, we have studied the

problem of finding a set of a minimum number of sensors
that keep Pmax

e below any given target. We have proposed
efficient algorithms that find the globally optimal solution of
this problem in line and tree networks respectively. Using these
algorithms, we have evaluated the optimal trade-offs between
the number of sensors, the pseudo-measurement (i.e., load
estimate) accuracy, and the outage detection performance in
line and tree networks. We have observed that on average 40%
fewer sensors are needed in line networks than in tree networks
to satisfy the same target Pmax

e .
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