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New Formulation and Optimization Methods

for Water Sensor Placement

Yue Zhao, Rafi Schwartz, Elad Salomons, Avi Ostfeld and H. Vincent Poor

Abstract

Optimal sensor placement for detecting contamination events in water distribution systems is a well

explored problem in water distribution systems security. We study herein the problem of sensor placement

in water networks to minimize the consumption of contaminated water prior to contamination detection.

For any sensor placement, the average consumption of contaminated water prior to event detection

amongst all simulated events is employed as the sensing performance metric. A branch and bound

sensor placement algorithm is proposed based on greedy heuristics and convex relaxation. Compared

to the state of the art results of the battle of the water sensor networks (BWSN) study, the proposed

methodology demonstrated a significant performance enhancement, in particular by applying greedy

heuristics to repeated sampling of random subsets of events.

I. INTRODUCTION

A water distribution system (WDS) is a basic infrastructure in modern society. Contamination

events generated in the network can risk many lives within minutes. This underlines the impor-

tance of gaining knowledge regarding detection of such events within a WDS. Contamination of

water networks can be caused by intentional and unintentional events. The necessity to connect to
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all consumers causes WDSs to be spatially dispersed so that supervision and control over central

pipelines is not economically viable. In addition, many unintentional contamination events may

not be identified by only grab sampling monitoring. These demonstrate the need to place sensors,

which measure quality parameters in water distribution systems, to allow detection of such cases

and prevent further consumption of contaminated water.

Currently, there are limited predefined actions in case of a contamination event in water

networks (Hart and Murray, 2010). The assumption is that in case of an event a “Do Not Use”

order will likely be declared first which can evolve to a shutdown of the entire system in extreme

circumstances. The evolution of sensor deployment and assessment in the network may lead to

the option of isolating the contaminant and shutting off only the polluted region. This would

allow solving for the optimal performance of a network with specific links and consumers taken

out of the network operation.

Optimal sensor placement integrates two conflicting intentions: insuring the health and safety

of the population, on the one hand, and satisfying the budget and other constraints which define

the number of sensors assigned to the project, on the other (Berry et al., 2005; Ostfeld et al.,

2008; Berry et. al., 2008b; Hart 2008). As a result, sensor placement optimization can be used

to lower the degree of impact on consumers, keeping it to a minimum.

We study placing sensors to minimize the consumption of contaminated water prior to detection

of the contamination. Given any sensor placement, the average consumption of contaminated

water prior to event detection among all simulated events is employed as the sensing performance

metric. We then transform the sensor placement problem into a mixed integer-convex program-

ming (MICP) problem. A greedy heuristic and a branch and bound algorithm are developed

and implemented on two benchmark battle of the water sensor networks (BWSN) example

applications (Ostfeld et al., 2008). We discovered that our method is greatly competitive, and

improves the state of the art results.

II. LITERATURE REVIEW

Intentional injection of contaminants in WDSs can be attained with relatively simple equip-

ment. The only constraint is to be able to overcome the relatively low pressure in the network.

Contamination events in water distribution systems are not particularly common, yet several have

been reported (Hickman, 1999; Denininger, 2000; Craun et al., 1991; Clark et al., 1996; HACH,

2011; Whelton et al., 2014; Ha’aretz, 2014).
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As an example, one such recent event is the West Virginia’s Elk River contamination incident

(Whelton et al., 2014). In that occurrence an industrial solvent contaminated the Elk River,

causing about 300,000 residents to detach from access to potable water. The chemical spill

originated upstream from the principal water distribution system treatment plant intake. A Do Not

Use order was called shortly after the event, which lasted for about ten days. Post the immediate

consequences, investigations were still ongoing and the communities were still recovering more

than eleven months after the incident.

Contamination events can be detected by sensors placed within the network. The state of the

art sensor packages include a set of sensors and a device with computational and analytical

capabilities. The sensors measure indicative water quality parameters such as pH, residual

chlorine, turbidity, and electrical conductivity. The data collected by the sensors is then analyzed

to determine if there is an indication of an event alert. This is the so called event detection

problem which attracted substantial interest in recent years (e.g., EPA, 2012 through CANARY;

Perelman et al., 2012; Arad et al., 2013; Oliker and Ostfeld, 2014a, 2014b).

As sensors cannot be placed at every system node as of budget and other constraints, only a

small set of monitoring stations can be deployed. This reality led to the development of numerous

algorithms which attempt to find the optimal locations of a limited number of sensors within a

WDS.

The first study on sensor placement is attributed to Lee et al. (1991). Lee et al. (1991), Lee

and Deininger (1992), and Kumar et al. (1997) solved the sensor placement problem with use of

mixed integer linear programming (MILP). The objective function was defined as the maximum

demand coverage and steady state flows were assumed in the network. Later on Harmant et. al

(1999), Woo et. al (2001), Propato et. Al (2005) and Berry et. al (2005) modified the demand

coverage to include water quality and time dependence in the demands. With the introduction

of heuristic optimization, Al-Zahrani et al. (2001, 2003) employed genetic algorithms to solve

the same problem formulation.

Following Lee et al. (1991), Kessler et al. (1998) added to the coverage problem an all shortest

path algorithm and the construction of a pollution matrix. The pollution matrix contained data

regarding the nodes which are contaminated by many possible contamination events. The defini-

tion of a contaminated node in their study refers to a contaminant concentration which is above

a predefined threshold. Ostfeld and Salomons (2004) expanded the study of Kessler et al. (1998)
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by introducing a randomized pollution matrix (RPM) which holds a set of randomly generated

multiple injection locations and times. The values in the matrix are binary and determine if a

node was contaminated at a specific random event. The RPM concept is also used in this study.

Other studies suggested different concepts for sensor placement. Cozzolino et. al (2006)

formulated a Lagrangian advection method which estimates the time of each flow path in the

network. Chastain (2006) created a database of responses to contamination events at each node in

the network. Berry et al. (2008a) formulated a low memory Lagrangian relaxation method which

simplified the original problem by assigning a penalty to constraint violation. Berry et al. (2008b)

and Hart (2008) presented the Teva Spot toolkit which combines general purpose heuristics with

integer programming and bounding algorithms. Several others are based on risk assessment to

the consumers (Propato, 2006; Kraus et al. 2006, 2008), data uncertainties (Chastain, 2004; Carr

et al., 2004, 2006), imperfect sensors (Wu et al., 2008; Preis and Ostfeld, 2008a; Berry et al.,

2006), and multi-objective formulations (Aral et al., 2008; Dorini et al., 2006; Preis and Ostfeld,

2008b).

A benchmark in sensor placement modeling development is the battle of the water sensor

networks (BWSN) study held in Cincinnati in 2006 (Ostfeld et al., 2008). The BWSN compared

fifteen different approaches of optimal sensor placement in water distribution systems. The

approaches considered four objectives: (1) the time of detection; (2) affected population prior

to detection; (3) consumption of contaminated water prior to detection; and (4) likelihood of

detection. This work is using the networks and outcomes of the BWSN for comparing and

evaluating the current developed model and algorithms.

Research on sensor placement is still ongoing: Chang et. al (2012) formulated a rule-based

decision support system which consists of two rules: (1) Accessibility; and (2) complexity which

is parallel to the optional path calculations from previous articles. Diao and Rauch (2013)

presented a controllability analysis of the network which determines the nodes that have an

outcome indication over a maximum number of downstream nodes.

III. PROBLEM FORMULATION

We consider placing sensors in water distribution networks for detecting water contamination.

For any contamination event, we are interested in the consumption of the contaminated water

prior to detection of the event. The RPM which is constructed as part of the problem, holds a risk
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assessment for many contamination events. Each column in the matrix represents a contamination

event and each row, a network node. Each value of the matrix represents an assessment of the

consumption of the contaminated water assuming that a sensor in the related node is the first

to detect the event. For example: if the value in row two column four is 100, then the fourth

event will have 100 gallons of the contaminated water consumed before the contaminated water

flows into node two and then would immediately be detected by the sensor located there. The

matrix results are according to simultaneous simulations with EPANET and EPANET-MSX

which calculate the contaminant concentration within the network over time. No assumptions

were made as to the risk injection locations to this network and therefore all network nodes

were assumed to have an even probability for a contamination event.

We denote the set of all possible sensor locations by N = {1, 2, . . . , N}, and a set of simulated

contamination events by E = {E1, E2, . . . , EK}. We define a matrix G ∈ RN×K , in which gnk

is the consumption of the contaminated water prior to detection of contamination event Ek at

node n, if Ek happens.

A. Optimal Sensor Placement

Given a set of M sensors M ⊆ N , for any event Ek, we consider the detection time of

this event to be the minimum detection time among these sensors. This is because, Ek will be

detected as long as it is detected by any one of the sensors inM. Consequently, the consumption

of the contaminated water prior to event detection by the sensors in M is minm∈M gmk. For

evaluating the performance by the set of sensors M on detecting all the K events, we employ

an average-impact criterion as follows:

gavg(M) =
1

K

∑
Ek∈E

min
m∈M

gmk. (1)

In other words, we consider the average consumption of the contaminated water among all events

as the performance metric.

With a limited number of sensors, we investigate which M among the N locations to place

sensors in order to optimize contamination detection performance. Based on the average-impact

metric (1), we formulate the optimal sensor placement problem as follows:

min
M⊆N

gavg(M) (2)

s.t. |M| ≤M, (3)
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where | · | denotes the cardinality of a set. Clearly, (2) is a combinatorial optimization problem,

for which an exhaustive search will render a exponential computational complexity of
(
N
M

)
.

B. Approximation of the Optimization Problem

To overcome the combinatorial complexity of (2), we first employ the following approximation

of min
m∈M

gmk in (1), setting up for a mixed binary integer convex programming (MICP) that

follows. Specifically,

min
m∈M

gmk ≈ −β log

(∑
m∈M

exp

(
−gmk

β

))
. (4)

where β > 0 is a tunable parameter. The rationale of this approximation is that the log-sum-

exp function is a differentiable approximation of the non-differentiable max function (Boyd and

Vandenberghe (2004)). In particular, the lower β is, the better approximation we have, and as

β goes to zero, this approximation becomes exact. In practice, however, β cannot be chosen

arbitrarily close to zero for algorithmic reasons (Boyd and Vandenberghe (2004)). In addition,

we need a minimum numerical precision of exp
(
−gmk

β

)
: if β is too small, exp

(
−gmk

β

)
will

go below machine precision and be rounded to exactly zero. A comprehensive discussion of the

choice of β is given later in Section V-C.

Next, we introduce a sensor location indicator vector w ∈ RN×1, in which

∀n = 1, 2, . . . , N, wn =

1, if n ∈M, i.e., there is a sensor at location n,

0, otherwise.
(5)

Accordingly, we have ∑
m∈M

exp

(
−gmk

β

)
=

N∑
n=1

wn exp

(
−gnk
β

)
. (6)

Substituting (6) and (4) into (1) and (2), and rewriting the constraint on the number of sensors

(3) in terms of w, we arrive at the following optimization problem,

min
w
− β

K

∑
Ek∈E

log

(
N∑
n=1

wn exp

(
−gnk
β

))
(7)

s.t.

N∑
n=1

wn ≤M, wn ∈ {0, 1}.

Note that the objective (7) is convex in w. Because w is a binary vector, solving (7) is a MICP

which requires a worst-case exponential computational complexity. In the next section, we will
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Algorithm 1: Greedy Sensor Placement

Initialize the set of sensor locations M0 = ∅,

and the number of sensors m = 0.

Repeat

m← m+ 1,

Mm =Mm−1 ∪

{
argmin

n∈N\Mm−1

gavg (Mm−1 ∪ {n})

}
(9)

Until m =M .

see that it allows a convex relaxation, and eventually a branch and bound algorithm that can

effectively solve for its global optimum.

IV. SENSOR PLACEMENT ALGORITHM DESIGN

A. A Greedy Heuristic

We first develop a low-complexity greedy sensor placement heuristic as in Algorithm 1 for

optimizing the original objective (2). It generates a series of sensor locationsM1,M2, . . . ,MN

for M = 1, 2, . . . , N , respectively, that satisfy the following consistency property:

M1 ⊂M2 ⊂ . . . ⊂MN . (8)

In other words, given the total number of sensors M , we choose sensor locations one by one:

At each step, we keep the already chosen locations; from the remaining locations, we choose

the one that minimizes the current step’s average consumption of the contaminated water prior

to contamination event detection, and include it in the set of the chosen locations. We note that

this greedy heuristic can also be applied to the approximate formulation (7), which will be used

as a building block in the branch and bound algorithm development next.

B. A Branch and Bound Algorithm

Toward finding globally optimal sensor locations with low computational complexity, we begin

with the approximate formulation (7). Since (7) has a convex objective function in w, it has the

following relaxation as a convex optimization:



8

min
w
− β

K

∑
Ek∈E

log

(
N∑
n=1

wn exp

(
−gnk
β

))
(10)

s.t.
N∑
n=1

wn ≤M, 0 ≤ wn ≤ 1.

Accordingly, the optimal value of (10) serves as a lower bound, denoted by L1, on the global

optimum of (7). Meanwhile, the same as in Algorithm 1, a greedy heuristic applied to (7)

provides an upper bound on its global optimum, denoted by U1.

For any location j, (7) can be split into two sub-problems by fixing wj to be either 0 or 1:

min
w
− β

K

∑
Ek∈E

log

(
N∑
n=1

wn exp

(
−gnk
β

))
(11)

s.t.
N∑
n=1

wn ≤M, wn ∈ {0, 1},

wj = 0.

and

min
w
− β

K

∑
Ek∈E

log

(
N∑
n=1

wn exp

(
−gnk
β

))
(12)

s.t.
N∑
n=1

wn ≤M, wn ∈ {0, 1},

wj = 1.

Similarly to (10), relaxations of these two sub-problems can be formed by replacing wn ∈ {0, 1}

with 0 ≤ wn ≤ 1, and they provide lower bounds, denoted by l(0)
2 and l(1)

2 , on the global optima

of (11) and (12) respectively. Meanwhile, applying the greedy heuristic under the constraint

wj = 0 or wj = 1 provides upper bounds, denoted by u
(0)
2 and u

(1)
2 , on these sub-problems’

global optima. Define

L2 , max{l(0)
2 , l

(1)
2 }, and U2 , max{u(0)

2 , u
(1)
2 }. (13)

Then, L2 and U2 are new lower and upper bounds on the global optimum of (7) (Balakrishnan

et al. (1991)).

More generally, the above splitting procedure with relaxations and greedy heuristics can be

applied on the sub-problems themselves to form more children sub-problems with lower and
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upper bounds. For example, for any location s, (s 6= j), (11) can be further split into two

sub-problems by adding yet another constraint ws = 0 or ws = 1 respectively.

We define the following lower and upper bounding oracles, as well as an oracle that returns

the next location to split:

Definition 1: Oracle LB(C) takes a constraint set C as input, where C specifies a set of

locations whose sensor indicator variables are pre-determined to be either 0 or 1. An MICP

under the constraints C is formed, a relaxation is solved, and the optimum of this relaxation is

output by LB(C) as a lower bound on the optimum of the constrained MICP.

For example, in (11) and (12), the constraint sets are C(0) = {wj = 0} and C(1) = {wj = 1},

respectively.

Definition 2: Oracle UB(C) takes a constraint set C as input. An MICP under the constraints

C is formed, a feasible sensor placement solution is found by a greedy heuristic, and the achieved

objective value is output by UB(C) as an upper bound on the optimum of the constrained MICP.

Definition 3: Based on the order of the locations chosen by the greedy heuristic, Oracle

next(C) outputs the first location that is chosen by this heuristic.

When a sub-problem with constraints C needs to be split further, next(C) is the location we

choose to perform the splitting by fixing wnext(C) to be either 0 or 1.

We now provide a branch and bound algorithm as in Algorithm 2 where imax is the maximum

number of iterations allowed. As the algorithm progresses, a binary tree is developed where

each node represents a constraint set. The leaf nodes are kept in S . The tree starts with a single

node, {∅}, corresponding to no initial constraint. When a sub-problem corresponding to a leaf

node C∗ is split into two new sub-problems, the two new constraint sets C(0) and C(1) become

the children of the parent constraint set C∗.

In Algorithm 2, (15) is a generalization of (13). It means that the current global lower bound

equals the lowest lower bound among all the leaf node constraint sets. This is true because all

the leaf nodes S represent a complete partition of the original parameter space. At the beginning

of every iteration, in choosing which leaf node to split (14), we select the one that gives the

lowest lower bound (i.e., the current global lower bound). It is a heuristic based on the reasoning

that, by further splitting this critical leaf node, a higher global lower bound may be obtained,

(whereas splitting any other node will leave the global lower bound unchanged.) At iteration i,

the current lower and upper bounds on the global optimum are available as Li and Ui. When
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Algorithm 2:

Sensor Placement using Branch and Bound

Initial step: i = 1,

the initial constraint set: C1 = ∅,

the initial set of leaves of the tree of constraint sets

(initially a single node): S = {C1}.

Compute L1 = LB(C1), U1 = UB(C1).

While Ui − Li > ε or i < imax, repeat

Choose which leaf node constraint set to split:

C∗ = argmin
C∈S

{LB(C)}. (14)

Choose the next location to split, j = next(C∗),

Form two new constraint sets,

C(0)i+1 = C∗ ∪ {wj = 0}, C(1)i+1 = C∗ ∪ {wj = 1}.

In the set of leaves S, replace the parent constraint set C∗ with

the two children C(0)i+1 and C(1)i+1:

S ← (S\{C∗}) ∪ {C(0)i+1} ∪ {C
(1)
i+1}.

Compute new lower and upper bounds for the two new

constrained MICP:

LB(C(0)i+1), LB(C(1)i+1), UB(C(0)i+1), UB(C(1)i+1),

Update the global lower and upper bounds,

Li+1 = min
C∈S
{LB(C)}, Ui+1 = min

C∈S
{UB(C)}. (15)

i← i+ 1.

Choose the best achieved solution so far:

Ĉ = argminC∈S UB(C).

Return the greedy solution under the constraint set Ĉ.

these two bounds meet, i.e., Ui − Li < ε, the solution that achieves the current upper bound is

guaranteed to be globally optimal.

As the total number of possible constraint sets is 2N (corresponding to the 2N sensor location

indicator vectors w), Algorithm 2 is guaranteed to converge in 2N iterations (and in practice

much less as will be shown later.) To limit the algorithm’s run time, a maximum number of
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iterations imax can be enforced as in Algorithm 2.

Finally, we define iachieve to be the number of iterations used to achieve the globally optimal

solution, and iprove the number of iterations used to prove its global optimality. In other words,

it takes iachieve iterations for the upper bound to reach the global optimum, while it takes iprove

iterations for both the upper and lower bounds to reach the global optimum.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed sensor placement algorithms in two representative

water networks that have served as the benchmarks in the Battle of the Water Sensor Networks

(BWSN) (Ostfeld et al., 2008), a previously held sensor placement design competition that

represents the state of the art.

A. Network and Event Data Description

The BWSN competition provides two benchmark systems: a 129-node network (BWSN1) and

a 12527-node network (BWSN2). The topologies of the two networks are depicted in Figure 1.

More than 37000 events are simulated for the 129-node network, and more than 25000 events

for the 12527-node network. All further details are summarized in Ostfeld et al. (2008). We

also attach as supplementary files the two BWSN network example applications we used as .inp

EPANET files. The reader can thus follow all the detailed results presented below.

 

Fig. 1: Topology of the two networks of the battle of the water sensor networks (BWSN) (Ostfeld et al., 2008) 

                                  BWSN1 network                                                                                     BWSN2 network 

Fig. 1. Topology of the two networks of the battle of the water sensor networks (BWSN) (Ostfeld et al., 2008).
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The problem data is the matrix G. For each pair of sensor m and event Ek, the entry gmk

can take two types of values: i) a nonnegative number that represents the consumption of the

contaminated water (gallons) before sensor m detects event Ek, as described in Section III, ii)

“-1”, meaning that that sensor does not detect the event at all. The performance metric for any

sensor placement solution consists of two numbers:

• The average consumption of the contaminated water for all detected events: gavg:

gavg =

∑
Ek∈E I (minm∈M gmk ≥ 0) ·minm∈M gmk∑

Ek∈E I (minm∈M gmk ≥ 0)
, (16)

where I (minm∈M gmk ≥ 0) is the indicator function on whether event Ek is detected at all.

• The event detection likelihood, i.e., the number of events being detected by at least one

sensor, divided by the number of all events: P(detect):

P(detect) =

∑
Ek∈E I (minm∈M gmk ≥ 0)

K
. (17)

Clearly, these two objectives must be considered simultaneously. For example, one can have

close to zero detection likelihood but a small average consumption of the contaminated water

among the few detected events; this would not be a desirable result. The problem is thus a

bi-criterion optimization, and there is a Pareto optimal boundary of (P(detect), pavg).

Our problem formulation (cf. Section III) is minimizing the average consumption of the

contaminated water among all events, detected and undetected. Thus, we need to employ a

number value in terms of the consumption of the contaminated water for estimating the impact

of undetected events. A natural choice of this number value is provided later in Section V-C,

in which we will define a “ceiling” denoted by p̄. Our formulation can then be understood as

a “scalarization” of this bi-criterion optimization problem considered in BWSN, as it scalarizes

optimizing two objectives in a program with a single objective (Boyd and Vandenberghe (2004),

Section 4.7.4).

B. Solutions and Evaluation Results

We now demonstrate our findings for the two BWSN benchmark networks. We present in

Tables I, II III and IV the 5, 5, 4 and 6 sets of representative sensor locations found based on

the proposed algorithms (and a technique of sampling subsets of events to be described later

in Section V-D) for the 129-node and 12527-node networks, each with either 5 or 20 sensors

as in the BWSN competition. The resulting average consumption of the contaminated water
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and detection likelihood for each set of sensor locations are also given. These results are then

compared with all the previous results presented in the BWSN competition representing the state

of the art, as shown in Figures 2, 3, 4 and 5. As higher detection likelihood and lower average

consumption of the contaminated water are preferred, points to the right and lower in the plots

represent more desirable performance.

TABLE I

OPTIMIZED SENSOR LOCATIONS, 129-NODE NETWORK, 5 SENSORS

Sets Sensor locations gavg P(detect)

1st set 18, 50, 69, 84, 99 1830 0.6839

2nd set 11, 22, 69, 84, 116 2956 0.7286

3rd set 11, 18, 32, 84, 101 3682 0.7519

4th set 11, 18, 32, 84, 121 3951 0.7624

5th set 11, 18, 46, 84, 121 7841 0.8004

TABLE II

OPTIMIZED SENSOR LOCATIONS, 129-NODE NETWORK, 20 SENSORS

Sets Sensor locations gavg P(detect)

1st set 5 , 11, 18, 19, 22, 26, 31, 32, 35, 38, 43, 47, 69, 78, 83, 84, 91, 100, 103, 120 363 0.8070

2nd set 5, 11, 18, 25, 31, 32, 35, 36, 47, 69, 78, 83, 84, 91, 99, 101, 103, 104, 115, 122 405 0.8443

3rd set 6, 11, 18, 22, 25, 32, 35, 36, 46, 69, 78, 83, 84, 91, 99, 101, 103, 117, 121, 123 441 0.8675

4th set 11, 18, 22, 28, 32, 35, 36, 46, 69, 77, 83, 84, 91, 99, 101, 103, 113, 117, 122, 123 540 0.8830

5th set 11, 18, 20, 22, 32, 35, 36, 46, 69, 75, 81, 84, 98, 101, 103, 113, 117, 122, 123, 125 678 0.8981

TABLE III

OPTIMIZED SENSOR LOCATIONS, 12527-NODE NETWORK, 5 SENSORS

Sets Sensor locations gavg P(detect)

1st set 3358, 3771, 10875, 11185, 11305 1830 0.2556

2nd set 1480, 3358, 3771, 10875, 11305 2956 0.2794

3rd set 637, 1487, 3230, 3771, 11305 3682 0.3048

4th set 637, 1487, 3230, 3771, 3837 3951 0.3156
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TABLE IV

OPTIMIZED SENSOR LOCATIONS, 12527-NODE NETWORK, 20 SENSORS

Sets Sensor locations gavg P(detect)

1st set 637, 1918, 2531, 3230, 3358, 3585, 3771, 4033, 4116, 4137, 4241, 5115, 6584, 8845,

9000, 9143, 9723, 10477, 10615, 11178

21512 0.3746

2nd set 74, 1905, 1918, 2531, 3358, 3627, 3771, 3782, 4116, 4133, 4241, 4553, 6584, 7933,

8847, 9000, 9143, 9365, 10615, 11272

25798 0.3924

3rd set 123, 1905, 1918, 2531, 3358, 3636, 3771, 3837, 4116, 4133, 4241, 6584, 7665, 7933,

8845, 9000, 9143, 9365, 11178, 11305

28007 0.3986

4th set 1487, 1905, 2593, 3236, 3358, 3676, 3771, 3782, 4033, 4150, 4241, 4307, 7665,

8835, 9000, 9143, 9365, 10875, 11178, 11305

32330 0.4072

5th set 74, 619, 1487, 1905, 2074, 2593, 3125, 3236, 3358, 3676, 3771, 3780, 4241, 7437,

7665, 9365, 10408, 10615, 10875, 11185

38059 0.4174

6th set 552, 1487, 2074, 2593, 3125, 3236, 3358, 3679, 3771, 3785, 4241, 4278, 5329, 7437,

7665, 8090, 9365, 10875, 11185, 11305

45708 0.4276

We observe that our results are very competitive, and in fact provide significant performance

enhancement over the state of the art. In Figure 2 and 3, for each of all sets of sensor locations

in the BWSN competition, there is always one set of locations obtained by our algorithms

that perform strictly better than it, i.e., with higher detection likelihood and lower average

consumption of the contaminated water. In Figure 4 and 5, for each of all but one sets of sensor

locations in the BWSN competition, there is one set of locations obtained by our algorithms

that perform strictly better. Considering the overwhelming complexity of the sensor placement

problems, (
129

5

)
= 2.752× 108,

(
129

20

)
= 1.416× 1023,(

12527

5

)
= 2.569× 1018,

(
12527

20

)
= 3.666× 1063, (18)

our methodology shows very powerful performance in optimizing the sensor locations.

In the remainder of this section, we present details of how these results are achieved based

on our methodology.

C. Algorithm Parameters

In the approximation step (4), the min function (LHS) is smoothed by a log-sum-exp function

(RHS). The greater the parameter β is, the closer this approximation is, and as β goes to zero,
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Fig. 2. Detection likelihood and average consumption of the contaminated water with 5 sensors in the 129-Node Network.

BWSN labels: 1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire and Barkdoll (demand); 5 = Ghimire

and Barkdoll (mass); 6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 = Preis

and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and Walski.

the RHS of (4) converges to the LHS. However, β cannot be set arbitrarily small due to the

following numerical reason. Specifically, if gmk is large but β is relatively small, exp
(
−gmk

β

)
in

(4) can fall below machine precision and be rounded to zero. For an event Ek, if gmk is too large

(compared to β) for every m ∈M,
∑

m∈M exp
(
−gmk

β

)
and log

(∑
m∈M exp

(
−gmk

β

))
will be

computed as 0 and −∞, respectively. This will then lead to a −∞ objective in (7). This situation

can in fact happen very frequently, or even at all times, when selecting just a small number of

sensors but evaluating a large number of events, as considered in the BWSN benchmarks. This

is because, it can happens that, no matter where the sensors are located, there is always some

“worst-case” event (among all) that is poorly detected and leads to large consumption of the

contaminated water, driving exp
(
−gmk

β

)
to zero.

To overcome this issue, for any chosen β, we impose a ceiling ḡ on the entries in G: gmk ←

min (gmk, ḡ) ,∀m, k, where ḡ is set so that exp
(
− ḡ
β

)
is above machine precision. Clearly, both

parameters β and ḡ affect the approximation of the original problem, which becomes more

precise with a smaller β and a larger ḡ. From the above, however, the ratio ḡ
β

cannot exceed

a level determined by the machine precision. There is thus a trade off between the choices of

β and ḡ. With a machine precision around 5 × 10−324 (as on the laptop used for most of the
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Fig. 3. Detection likelihood and average consumption of the contaminated water with 20 sensors in the 129-Node Network.

BWSN labels: 1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire and Barkdoll (demand); 5 = Ghimire

and Barkdoll (mass); 6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 = Preis

and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and Walski.

simulations in this section), ḡ
β

cannot exceed − log(5× 10−324) = 744.44.

With this limit in mind, the choice of β (and correspondingly ḡ) depends on a rough knowledge

of the problem data G: in particular, we make a rough guess on the ballpark of the optimal

objective value of the original problem (2), namely the minimum achievable average consumption

of the contaminated water. The idea is that, as long as β is somewhat small relative to this value,

it needs not be too small. This ballpark value can be obtained by simply evaluating any sensor

placement heuristics at hand. As we employ the BWSN benchmarks in this paper, we take the

best results achieved in the BWSN competition as indicators of this ballpark value. Specifically,

• For selecting 5 sensor locations in the 129-node network, the lowest average consumption

of the contaminated water achieved in the BWSN competition is 2459 gallons. Accordingly,

we choose β = 1000.

• For selecting 20 sensor locations in the 129-node network, the lowest average consumption

of the contaminated water achieved in the BWSN competition is 408 gallons. Accordingly,

we choose β = 200.

• For selecting 5 sensor locations in the 12527-node network, the lowest average consumption
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Fig. 4. Detection likelihood and average consumption of the contaminated water with 5 sensors in the 12527-Node Network.

BWSN labels: 1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire and Barkdoll (demand); 5 = Ghimire

and Barkdoll (mass); 6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 = Preis

and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and Walski.

of the contaminated water achieved in the BWSN competition is 95403 gallons. Accordingly,

we choose β = 40000.

• For selecting 20 sensor locations in the 12527-node network, the lowest average con-

sumption of the contaminated water achieved in the BWSN competition is 17456 gallons.

Accordingly, we choose β = 10000.

D. Random Subsets of Events

The problem sizes for both BWSN benchmarks are exceedingly large, as we have more than

37000 events for the 129-node network, and more than 25000 events for the 12527-node network.

To speed up the proposed algorithms, we employ the following technique: Instead of running the

greedy and branch and bound algorithms for the entire set of events, we randomly sample subsets

of the events for running the algorithms. We then repeat this random sampling for a considerable

number of trials, and pick the best achieved results. Interestingly, repeatedly sampling a very

small number of events, on the order of 20 to 200, can already lead to great performance (as

demonstrated in the evaluation results above).
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Fig. 5. Detection likelihood and average consumption of the contaminated water with 20 sensors in the 12527-Node Network.

BWSN labels: 1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire and Barkdoll (demand); 5 = Ghimire

and Barkdoll (mass); 6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 = Preis

and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and Walski.

Moreover, randomly selecting subsets of events also allows us to explore the Pareto optimal

boundary (the lower-right frontier in Figures 2, 3, 4 and 5) of average consumption of the

contaminated water vs. detection likelihood. Note that, for each fixed set of parameters and

subset of events, our algorithm runs deterministically, and the optimal value is unique. The

vastly different random subsets of events provide a diversity in the input data for exploring

different points on the Pareto optimal boundary. The choice of the ceiling parameter ḡ also

provides a degree of freedom for exploring different points on the Pareto optimal boundary.

E. Power of Greedy Heuristic

Surprisingly, we found that, with the above parameter choices and random sampling of small

subsets of events, the proposed greedy heuristic can already perform extremely well. In fact, all

the results shown in Section V-B are achieved simply by greedy heuristic applied to different

subsets of events (but of course evaluated using the entire set of events). Moreover, we used the

proposed branch and bound algorithm beyond the greedy heuristic for the 129-node network,

and observed the following interesting fact: For the cases that generate the solutions in Table

I, although it took a few hundreds of iterations for the upper bound and lower bound to meet,
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i.e., proving the global optimality of the solution, the optimal solution is always found in just 1

iteration, i.e., by the greedy heuristic. In other words, while iprove (defined at the end of Section

IV-B) can be a few hundred, iachieve is just 1. A representative plot for the progression of the

lower and upper bounds is given in Figure 6.
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Fig. 6. Progression of the lower and upper bounds with the branch and bound algorithm.

This discovered power of the proposed greedy heuristic is greatly useful in practice, particularly

for networks of very large sizes such as the 12527-node benchmark network. For networks of

such sizes, continuous optimization based approaches can take exceedingly long times to finish,

and the proposed simple but powerful greedy heuristic becomes very appealing.

VI. CONCLUSIONS

We have studied optimal sensor placement in water distribution systems for detecting contam-

ination events and reducing consumption of the contaminated water. We employ two benchmark

networks of 129 nodes and 12527 nodes and the corresponding contamination events from

the Battle of Water Sensor Networks for performance evaluation and comparison to the state

of the art. We employ the performance metric determined by the average consumption of the

contaminated water among all events, and optimize the sensor placement to minimize this metric.

Novel modeling and approximation techniques are developed to transform the combinatorial
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optimization of sensor placement into a mixed integer-convex programming problem. A greedy

heuristic is first developed. We have then developed a branch and bound algorithm to find the

global optimum of the MICP, based on convex relaxation and the greedy heuristic. The branch

and bound algorithm allows us to keep improving sensor placement solutions as long as run-time

constraints permit, and provides bounds that indicate the gap to the global optimum. We have

further developed a technique of repeatedly and randomly sampling subsets of events for running

the algorithms. It has been demonstrated that significant performance enhancement of the state

of the art is achieved by the proposed algorithms, in particular by the greedy heuristic applied to

repeatedly sampled random subsets of events. The developed methodology is broadly applicable

to employing other metrics for optimizing water sensor placement. In general, to achieve different

points on the Pareto optimal boundary under different metrics, tuning the algorithm parameters

will play an important role, and a systematic way of parameter tuning is left for future research.
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