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Abstract—In this paper, we investigate the sum-capacity of
the two-user Gaussian interference channel with Gaussian su-
perposition coding and successive decoding. We first examine
an approximate deterministic formulation of the problem, and
introduce the complementarity conditions that capture the use
of Gaussian coding and successive decoding. In the deterministic
channel problem, we show that the constrained sum-capacity
oscillates as a function of the cross link gain parameters between
the information theoretic sum-capacity and the sum-capacity
with interference treated as noise. Furthermore, we show that
if the number of messages of either user is fewer than the
minimum number required to achieve the constrained sum-
capacity, the maximum achievable sum-rate drops to that with
interference treated as noise. We translate the optimal schemes
in the deterministic channel model to the Gaussian channel
model, and also derive two upper bounds on the constrained
sum-capacity. Numerical evaluations show that the constrained
sum-capacity in the Gaussian channels oscillates between the
sum-capacity with Gaussian Han-Kobayashi schemes and that
with single message schemes.

I. INTRODUCTION

We consider the sum-rate maximization problem in two-
user Gaussian interference channels under the constraints of
successive decoding. While the information theoretic capacity
region of the Gaussian interference channel is still not known,
it has been shown that a Han-Kobayashi scheme with random
Gaussian codewords can achieve within 1 bit/s/Hz of the ca-
pacity region [4]. In this scheme, each user decodes both users’
common messages jointly, and then decodes its own private
message. In comparison, the simplest decoding constraint is
treating the interference from the other users as noise. It has
been shown that within a certain range of channel parameters
for weak interference channels, treating interference as noise
achieves the information theoretic sum-capacity [1], [6], [7].
In this paper, we consider a decoding constraint — succes-

sive decoding of Gaussian superposition codewords — that
bridges the complexity between joint decoding (e.g. in Han-
Kobayashi schemes) and treating interference as noise. We
investigate the constrained sum-capacity and how to achieve it.
To clarify and capture the key aspects of the problem, we resort
to a deterministic channel model [2]. In [3], the information
theoretic capacity region for the two-user deterministic inter-
ference channel is derived as a special case of the El Gamal-
Costa deterministic model [5], and is shown to be achievable
using Han-Kobayashi schemes.
To capture the use of successive decoding of Gaussian

codewords, we introduce the complementarity conditions on
the bit levels in the deterministic formulation. We develop
transmission schemes on the bit-levels, which in the Gaussian
model corresponds to message splitting and power allocation
of the messages. We then solve the constrained sum-capacity,
and show that it oscillates (as a function of the cross link gain
parameters) between the information theoretic sum-capacity
and the sum-capacity with interference treated as noise. Fur-
thermore, the minimum number of messages needed to achieve
the constrained sum-capacity is obtained. We show that if
the number of messages is limited to even one less than this
minimum capacity achieving number, the sum-capacity drops
to that with interference treated as noise.
We then translate the optimal scheme in the deterministic

interference channel to the Gaussian channel, using a rate
constraint equalization technique. To evaluate the optimality of
the translated achievable schemes, we derive two upper bounds
on the sum-capacity with Gaussian Han-Kobayashi schemes,
which automatically apply to the sum-capacity with successive
decoding schemes. The two bounds are shown to be tight in
different ranges of parameters.
The remainder of the paper is organized as follows. Section

II formulates the problem of sum-capacity with successive
decoding of Gaussian codewords in Gaussian interference
channels. Section III reformulates the problem with the de-
terministic channel model, and then solves the constrained
sum-capacity. Section IV translates the optimal schemes in
the deterministic channel back to the Gaussian channel, and
derives two upper bounds on the constrained sum-capacity.
Conclusions are drawn in Section V. Due to space limitations,
all the proofs are omitted here, and can be found in [9].

II. PROBLEM FORMULATION IN GAUSSIAN CHANNELS

We consider the two-user Gaussian interference channel:

y1 = h11x1 + h21x2 + z1,

y2 = h22x2 + h12x1 + z2,

where {hij} are constant complex channel gains, and
zi ∼ CN (0, Ni). Define gij � |hij |2, (i, j = 1, 2). There
is an average power constraint equal to p̄i for the ith user
(i = 1, 2). Suppose the ith user uses a superposition of Li

codewords x(�)
i (1 ≤ � ≤ Li) to generate the transmit signal xi,



xi =

Li∑
�=1

√
p
(�)
i x

(�)
i ,

Li∑
�=1

p
(�)
i ≤ p̄i, i = 1, 2, (1)

where each x
(�)
i has a block length n, and is chosen from

a codebook generated by using IID random variables of
CN (0, 1). The ith receiver attempts to decode all x

(�)
i ,

� = 1, . . . , Li, using successive decoding. Denote by Oi its
decoding order of the L1 + L2 messages from both users.
Denote the message that has order q in Oi by x

(�q,i)
tq,i

, i.e., it is
the �q,ith message of the tq,ith user. Denote by r

(�)
i the rate of

message x(�)
i . Then, treating undecoded messages as noise, for

the successive decoding procedure to have a vanishing error
probability as n → ∞, we have the following constraints:

r
(�q,i)
tq,i

≤ log

(
1 +

p
(�q,i)
tq,i

gtq,ii∑L1+L2

s=q+1 p
(�s,i)
ts,i

gts,ii +Ni

)
, (2)

∀1 ≤ q ≤ max
1≤�≤Li

{order of x(�)
i in Oi}, i = 1, 2.

Now, we formulate the sum-rate maximization problem as:

max
{p

(�)
i

},Oi,

i=1,2

2∑
i=1

Li∑
�=1

r
(�)
i (3)

subject to: (1), (2).

Note that problem (3) involves both a combinatorial op-
timization of the decoding orders {Oi} and a non-convex
optimization of the transmit power {p(�)i }. Thus, it is a hard
problem from an optimization point of view, which has not
been addressed in the literature. Interestingly, we show that
an “indirect” approach can effectively and fruitfully provide
approximately optimal solutions to the above problem (3).
Instead of directly working with the Gaussian model, we
approximate the problem using the recently developed deter-
ministic channel model [2]. We give a complete analytical
solution that achieves the constrained sum-capacity in all
channel parameters. Then, we translate it back to the Gaussian
formulation (3) to get approximately optimal solutions.

III. SUM-CAPACITY IN DETERMINISTIC INTERFERENCE
CHANNELS

A. Channel Model and Problem Formulation
In this section, we apply the deterministic channel model

[2] as an approximation of the Gaussian model on the two-
user interference channel. Fig. 1 depicts the desired signal and
the interference signal at the two receivers. For i = 1, 2 and
j �= i, we define

nii � log(SNRi) = log(
giip̄i
Ni

),

nij � log(INRi) = log(
gjip̄j
Ni

),

��� ���

���

���

�� ��� �� ���

�

	

	


��
���


��
���


��
���


��
���

Fig. 1. Two-user deterministic interference channel. Levels A and B interfere
at the 1

st receiver, and cannot be fully active simultaneously.

where nij denotes the number of bit levels of the signal sent
from the jth transmitter that are above the noise level at the
ith receiver. WLOG, we assume that n11 ≥ n22. Further, we
define

δ1 � n11 − n21, δ2 � n22 − n12, (4)

which represent the cross channel gains relative to the direct
channel gains, in terms of the number of bit-level shifts.
In the original formulation of the deterministic channel

model [2], {nij} are integers, and the achievable scheme must
also have integer bit-levels. Here, in formulating the optimiza-
tion problem, we consider {nij} to be real, which denote the
amount of information levels. We will show that this relaxation
gives integer bit-level optimal solutions whenever {nij} are
integers (cf. Remark 2 later). A concise representation of this
formulation is provided in Figure 2:

• The sets of information levels of the desired signals at re-
ceivers 1, 2 are represented by the intervals I1 = [0, n11]
and I2 = [n11−n22, n11] on two parallel lines, where the
leftmost points correspond to the most significant levels,
and the points at n11 correspond to the positions of the
noise levels at both receivers.

• The positions of the information levels of the interfering
signals are indicated by the dashed lines crossing between
the two parallel lines.

An information level is a real point, and the measure of a set of
levels equals the amount of information that this set can carry.
The design variables in the deterministic channel are whether
each level of a user carries information or not, characterized
by the following indicator function definition fi(x) (i = 1, 2):
Definition 1:

fi(x) =

⎧⎨
⎩

1, if x ∈ Ii, and level x carries
information for the ith user,

0, otherwise.
(5)

With this model, the rates of the two users are

R1 =

∫ n11

0

f1(x)dx, R2 =

∫ n11

0

f2(x)dx.

For an information level x s.t. fi(x) = 1, we call it an active
level for the ith user, and otherwise an inactive level.
The constraints from successive decoding of Gaussian code-

words translate to the following Complementarity Conditions
in the deterministic formulation:

f1(x)f2(x+ δ1) = 0, ∀ −∞ < x < ∞, (6)
f2(x)f1(x+ δ2) = 0, ∀ −∞ < x < ∞. (7)
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Fig. 2. Interval representation of the two-user deterministic interference
channel.

The interpretation of (6) and (7) are as follows: for any
two levels each from one of the two users, if they interfere
with each other at any of the two receivers, they cannot be
simultaneously active. For example, in Fig. 1, information
levels A from the 1st user and B from the 2nd user interfere
at the 1st receiver, and hence cannot be fully active simul-
taneously. These complementarity conditions have also been
characterized using a conflict graph model in [8].
Remark 1: Given any fi(x), x ∈ Ii, every disjoint segment

within Ii with fi(x) = 1 on it corresponds to a distinct
message. Adjacent segments that can be so combined as a
super-segment having fi(x) = 1 on it, are viewed as one
segment, i.e., the combined super-segment.
Finally, we note that

(6) ⇔ f2(x)f1(x− δ1) = 0, ∀ −∞ < x < ∞,

and (7) ⇔ f1(x)f2(x− δ2) = 0, ∀ −∞ < x < ∞.

Thus, we have the following result:

Lemma 1:
{

δ1 = a
δ2 = b

and
{

δ1 = −b
δ2 = −a

correspond to the
same set of complementarity conditions.
We consider the problem of maximizing the sum-rate of the

two users employing successive decoding, formulated as the
following infinite dimensional optimization problem:

max
f1(x),f2(x)

∫ n11

0

f1(x) + f2(x)dx (8)

subject to (5), (6), (7).

B. Symmetric Interference Channels
In this section, we consider the case where n11 =

n22, n12 = n21. Define α � n12

n11
, β � 1 − α = δ1 = δ2.

WLOG, we normalize the amount of information levels by
n11, and consider n11 = n22 = 1, and n12 = n21 = α.
From Lemma 1, it is sufficient to only consider the case with

β ≥ 0, i.e. α ≤ 1.We next derive the constrained sum-capacity
using successive decoding for α ∈ [0, 1], first without upper
bounds on the number of messages, then with upper bounds.
As the constrained sum-capacity is achievable with R1 = R2,
we also use the maximum achievable symmetric rate, denoted
by R(α) as a function of α, as an equivalent performance
measure. R(α) is thus one half of the optimal value of (8).
1) Symmetric Capacity without Constraint on the Number

of Messages:
Theorem 1: The maximum achievable symmetric rate us-

ing successive decoding, (i.e., having constraints (6), (7)),
R(α) (α ∈ [0, 1]), is characterized by
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Fig. 3. The symmetric capacity with successive decoding in symmetric
deterministic interference channels.

• R(α) = 1− α
2 , when α = 2n

2n+1 , n = 0, 1, 2, . . ..
• R(α) = 1

2 , when α = 2n−1
2n , n = 1, 2, 3, . . ..

• In every interval [ 2n
2n+1 ,

2n+1
2n+2 ], n = 0, 1, 2, . . ., R(α) is a

decreasing linear function.
• In every interval [ 2n−1

2n , 2n
2n+1 ], n = 1, 2, 3, . . ., R(α) is

an increasing linear function.
• R(1) = 1

2 .
R(α) is plotted in Fig. 3, compared with the information theo-
retic capacity [3]. We divide the interval [0, 1] into consecutive
segments s1, s2, . . . such that |s1| = |s2| = . . . = β, with
the last segment ending at 1 having the length of the proper
residual (cf. Fig. 4). Define

G1 �
⋃

i=1,2,...

s2i−1 and G2 �
⋃

i=1,2,...

s2i. (9)

We then have the following optimal scheme that achieves the
constrained symmetric-capacity R(α):
Corollary 1: When α ∈ (0, 1), the constrained symmetric

capacity is achievable with

f1(x) = f2(x) =

{
1, ∀x ∈ G1

0, ∀x ∈ G2
. (10)

In the special cases when α = 2n−1
2n , (n = 1, 2, . . . , )

and α = 1, the constrained symmetric-capacity drops to 1
2 ,

achievable by simply time sharing
{

f1(x) = 1, x ∈ [0, 1]
f2(x) = 0, x ∈ [0, 1]

and
{

f1(x) = 0, x ∈ [0, 1]
f2(x) = 1, x ∈ [0, 1]

.
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Fig. 4. The optimal scheme in the symmetric deterministic interference
channel.



We observe that the numbers of messages used by the two
users – L1, L2 – in the optimal scheme (10) are as follows:
Corollary 2:
• when α ∈ (2n−1

2n , 2n+1
2n+2 ), (n = 1, 2, . . .), L1 = L2 =

n+ 1;
• when α ∈ [0, 1

2 ], α = 2n−1
2n , (n = 1, 2, . . .), or α = 1,

L1 = L2 = 1.
Remark 2: In the case where {nij} are integers, α = n12

n11

is a rational number. As a result, the optimal scheme (10)
consists of active segments G1 that have rational boundaries
with the same denominator n11. This corresponds to an integer
bit-level solution.
From Theorem 1 (cf. Fig. 3), it is interesting to see that

the symmetric capacity oscillates as a function of α between
the information theoretic capacity and the baseline of 1/2.
This phenomenon is a consequence of the complementarity
conditions (6), (7).
2) The Case with a Limited Number of Messages:
Now, we consider the case when there are constraints on

the maximum number of messages for the two users. We start
with the following two lemmas:
Lemma 2: If there exists a segment with an even index

s2i (i ≥ 1) and s2i does not end at 1, such that f1(x) =
1, ∀x ∈ s2i, or f2(x) = 1, ∀x ∈ s2i, then R1 +R2 ≤ 1.
Lemma 3: If there exists a segment with an odd index

s2i−1 (i ≥ 1), such that f1(x) = 0, ∀x ∈ s2i−1, or f2(x) =
0, ∀x ∈ s2i−1, then R1 +R2 ≤ 1.
Recall that the optimal scheme (10) requires that, for both

users, all segments in G2 are fully inactive, and all segments
in G1 are fully active. The above two lemmas show the cost
of violating (10): if one of the segments in G2 becomes fully
active for either user (cf. Lemma 2), or one of the segments
in G1 becomes fully inactive for either user (cf. Lemma 3),
the resulting sum-rate cannot be greater than 1.
Lemmas 2 and 3 lead to the following theorem:
Theorem 2: Denote by Li(i = 1, 2) the number of mes-

sages used by the ith user. When α ∈ (2n−1
2n , 2n+1

2n+2 ), (n =
1, 2, . . . , ) if L1 ≤ n or L2 ≤ n, the maximum achievable
sum-rate is 1.
Comparing Theorem 2 with Corollary 2, we conclude that

if the number of messages used for either user is fewer
than the number used in the optimal scheme as in Corollary
2, the maximum achievable symmetric rate drops to 1

2 . An
illustration with L1 ≤ 2 (or L2 ≤ 2) is plotted in Fig. 5.
Complete solutions in asymmetric channels follow similar

ideas. The details can be found in [9].

IV. APPROXIMATE SUM-CAPACITY IN GAUSSIAN
INTERFERENCE CHANNELS

In this section, we turn our focus back to the two-user
Gaussian interference channel, and consider the sum-rate
maximization problem (3). We translate the optimal solution
of the deterministic channel into the Gaussian channel, and
derive upper bounds on the optimal value of (3). We then
evaluate the achievability of our translation against these upper
bounds.
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Fig. 5. Maximum achievable symmetric rate with L1 ≤ 2.

A. Achievable Sum-rate Motivated by the Optimal Scheme in
the Deterministic Channel
Consider symmetric interference channels: g11 = g22, g12 =

g21, N1 = N2, p̄1 = p̄2 = p̄. WLOG, we assume that N1 = 1
and g11 = 1. We consider the case where the cross channel
gain is no greater than the direct channel gain: 0 ≤ g12 ≤ g11.
We note that the achievable schemes for general asymmetric
channels can be derived similarly, albeit more tediously.
In the optimal deterministic scheme, the key property that

ensures optimality is the following (cf. Fig. 4):
Corollary 3: For any common message x(�)

i , it is subject to
the same achievable rate constraint at both receivers.
For example, message x

(1)
1 is subject to an achievable rate

constraint of |x
(1)
1 | at the 1st receiver, and that of |x̂

(1)
1 | at

the 2nd receiver, with |x
(1)
1 | = |x̂

(1)
1 | = β. Motivated by

Corollary 3, we translate the optimal deterministic scheme to
the power allocation of the messages by equalizing the two
rate constraints for every common message. We propose the
following power allocation algorithm that equalizes the rate
constraints, in which L counts the number of messages used
by each user. The derivations can be found in [9].
Algorithm 1
Initialize L = 1.

Step 1: If p̄ ≤ 1−g12
g2
12

, then p(L) ← p̄ and terminate.
Step 2: p(L) ← 1− g12 + (1− g212)p̄. L ← L+ 1.

p̄ ← p̄− p(1). Go to Step 1.

The decoding orders at both receivers then follow the same
ones as in the deterministic channel (cf. Fig. 4).

B. Upper Bounds on the Sum-capacity with Successive De-
coding of Gaussian Codewords
In this subsection, we provide two upper bounds on the

optimal value of (3) for general (asymmetric) channels. More
specifically, the bounds are derived for the sum-capacity with
Gaussian Han-Kobayashi schemes, which automatically upper
bound the sum-capacity with successive decoding of Gaussian
codewords, (as Gaussian superposition coding - successive
decoding is a special case of Han-Kobayashi schemes [9]).
The bounds are obtained by selecting two subsets of the
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inequality constraints that characterize the Han-Kobayashi
capacity region. Maximizing the sum-rate with each of the two
subsets of inequalities leads to one of the two upper bounds.
For the ith user (i = 1, 2), we denote by qi and p̄i − qi the

power allocated to its private and common messages. WLOG,
we normalize the channel parameters such that g11 = g22 = 1.
Theorem 3: The sum-capacity with Gaussian Han-

Kobayashi schemes is upper bounded by
max
q1,q2

min (11){
log

(
1 +

p̄1 + g21(p̄2 − q2)

g21q2 +N1

)
+ log

(
1 +

q2
g12q1 +N2

)
,

log

(
1 +

p̄2 + g12(p̄1 − q1)

g12q1 +N2

)
+ log

(
1 +

q1
g21q2 +N1

)}
,

and
max
q1,q2

log

(
1 +

q1 + g21(p̄2 − q2)

g21q2 +N1

)

+ log

(
1 +

q2 + g12(p̄1 − q1)

g12q1 +N2

)
. (12)

C. Performance Evaluation
We numerically evaluate our results in a symmetric Gaus-

sian interference channel with an SNR of 30dB. To evaluate
the performance of successive decoding, we sweep the param-
eter range of α = log(INR)

log(SNR) ∈ [0.5, 1], as when α ∈ [0, 0.5], an
approximate optimal transmission scheme is simply treating
interference as noise without successive decoding.
In Fig. 6, the achievable sum-rate for Algorithm 1 and the

two upper bounds (11), (12) are evaluated. The maximum
achievable sum-rate with a single message for each user is also
computed, and is used as a baseline scheme for comparison.
We make the following observations:
• The first upper bound (11) is tighter for higher INR while
the second upper bound (12) is tighter for lower INR.

• The constrained sum-capacity with successive decod-
ing of Gaussian codewords oscillates between the sum-
capacity with Han-Kobayashi schemes and that with
single message schemes.

• The largest difference between the sum-capacity of suc-
cessive decoding and that of single message schemes is
about 1.8 bits, appearing at around log(INR)

log(SNR) = 0.64.

• The largest difference between the sum-capacity of suc-
cessive decoding and that of Han-Kobayashi schemes is
about 1.0 bits, appearing at around log(INR)

log(SNR) = 0.75.
It is worth noting that although the above differences (1.8 bits
and 1.0 bits) with SNR = 30dB may not seem very significant,
as SNR → ∞, both differences will go to infinity [9].

V. CONCLUSIONS

In this paper, we studied the problem of sum-rate maxi-
mization with Gaussian superposition coding and successive
decoding in two-user interference channels. We used the de-
terministic channel model as an educated approximation of the
Gaussian channel model, and introduced the complementarity
conditions that capture the use of successive decoding of Gaus-
sian codewords. We solved the constrained sum-capacity in the
deterministic interference channel, and obtained the capacity
achieving schemes with the minimum number of messages.
The constrained sum-capacity oscillates as a function of the
cross link gain parameters between the information theoretic
sum-capacity and the sum-capacity with interference treated as
noise. Furthermore, we showed that if the number of messages
used by either of the two users is fewer than its minimum
capacity achieving number, the maximum achievable sum-rate
drops to that with interference treated as noise. We translated
the optimal schemes in the deterministic channel to the Gaus-
sian channel using a rate constraint equalization technique, and
provided two upper bounds on the constrained sum-capacity
with successive decoding of Gaussian codewords. Numerical
evaluations of the translation and the upper bounds showed
that the constrained sum-capacity oscillates between the sum-
capacity with Han-Kobayashi schemes and that with single
message schemes.
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